/* ** $Id: lopcodes.h,v 1.142.1.1 2013/04/12 18:48:47 roberto Exp $ ** Opcodes for Lua virtual machine ** See Copyright Notice in lua.h */ #ifndef lopcodes_h #define lopcodes_h #include "llimits.h" /*=========================================================================== We assume that instructions are unsigned numbers. All instructions have an opcode in the first 6 bits. Instructions can have the following fields: `A' : 8 bits `B' : 9 bits `C' : 9 bits 'Ax' : 26 bits ('A', 'B', and 'C' together) `Bx' : 18 bits (`B' and `C' together) `sBx' : signed Bx A signed argument is represented in excess K; that is, the number value is the unsigned value minus K. K is exactly the maximum value for that argument (so that -max is represented by 0, and +max is represented by 2*max), which is half the maximum for the corresponding unsigned argument. ===========================================================================*/ enum OpMode {iABC, iABx, iAsBx, iAx}; /* basic instruction format */ /* ** size and position of opcode arguments. */ #define SIZE_C 9 #define SIZE_B 9 #define SIZE_Bx (SIZE_C + SIZE_B) #define SIZE_A 8 #define SIZE_Ax (SIZE_C + SIZE_B + SIZE_A) #define SIZE_OP 6 #define POS_OP 0 #define POS_A (POS_OP + SIZE_OP) #define POS_C (POS_A + SIZE_A) #define POS_B (POS_C + SIZE_C) #define POS_Bx POS_C #define POS_Ax POS_A /* ** limits for opcode arguments. ** we use (signed) int to manipulate most arguments, ** so they must fit in LUAI_BITSINT-1 bits (-1 for sign) */ #if SIZE_Bx < LUAI_BITSINT-1 #define MAXARG_Bx ((1<<SIZE_Bx)-1) #define MAXARG_sBx (MAXARG_Bx>>1) /* `sBx' is signed */ #else #define MAXARG_Bx MAX_INT #define MAXARG_sBx MAX_INT #endif #if SIZE_Ax < LUAI_BITSINT-1 #define MAXARG_Ax ((1<<SIZE_Ax)-1) #else #define MAXARG_Ax MAX_INT #endif #define MAXARG_A ((1<<SIZE_A)-1) #define MAXARG_B ((1<<SIZE_B)-1) #define MAXARG_C ((1<<SIZE_C)-1) /* creates a mask with `n' 1 bits at position `p' */ #define MASK1(n,p) ((~((~(Instruction)0)<<(n)))<<(p)) /* creates a mask with `n' 0 bits at position `p' */ #define MASK0(n,p) (~MASK1(n,p)) /* ** the following macros help to manipulate instructions */ #define GET_OPCODE(i) (cast(OpCode, ((i)>>POS_OP) & MASK1(SIZE_OP,0))) #define SET_OPCODE(i,o) ((i) = (((i)&MASK0(SIZE_OP,POS_OP)) | \ ((cast(Instruction, o)<<POS_OP)&MASK1(SIZE_OP,POS_OP)))) #define getarg(i,pos,size) (cast(int, ((i)>>pos) & MASK1(size,0))) #define setarg(i,v,pos,size) ((i) = (((i)&MASK0(size,pos)) | \ ((cast(Instruction, v)<<pos)&MASK1(size,pos)))) #define GETARG_A(i) getarg(i, POS_A, SIZE_A) #define SETARG_A(i,v) setarg(i, v, POS_A, SIZE_A) #define GETARG_B(i) getarg(i, POS_B, SIZE_B) #define SETARG_B(i,v) setarg(i, v, POS_B, SIZE_B) #define GETARG_C(i) getarg(i, POS_C, SIZE_C) #define SETARG_C(i,v) setarg(i, v, POS_C, SIZE_C) #define GETARG_Bx(i) getarg(i, POS_Bx, SIZE_Bx) #define SETARG_Bx(i,v) setarg(i, v, POS_Bx, SIZE_Bx) #define GETARG_Ax(i) getarg(i, POS_Ax, SIZE_Ax) #define SETARG_Ax(i,v) setarg(i, v, POS_Ax, SIZE_Ax) #define GETARG_sBx(i) (GETARG_Bx(i)-MAXARG_sBx) #define SETARG_sBx(i,b) SETARG_Bx((i),cast(unsigned int, (b)+MAXARG_sBx)) #define CREATE_ABC(o,a,b,c) ((cast(Instruction, o)<<POS_OP) \ | (cast(Instruction, a)<<POS_A) \ | (cast(Instruction, b)<<POS_B) \ | (cast(Instruction, c)<<POS_C)) #define CREATE_ABx(o,a,bc) ((cast(Instruction, o)<<POS_OP) \ | (cast(Instruction, a)<<POS_A) \ | (cast(Instruction, bc)<<POS_Bx)) #define CREATE_Ax(o,a) ((cast(Instruction, o)<<POS_OP) \ | (cast(Instruction, a)<<POS_Ax)) /* ** Macros to operate RK indices */ /* this bit 1 means constant (0 means register) */ #define BITRK (1 << (SIZE_B - 1)) /* test whether value is a constant */ #define ISK(x) ((x) & BITRK) /* gets the index of the constant */ #define INDEXK(r) ((int)(r) & ~BITRK) #define MAXINDEXRK (BITRK - 1) /* code a constant index as a RK value */ #define RKASK(x) ((x) | BITRK) /* ** invalid register that fits in 8 bits */ #define NO_REG MAXARG_A /* ** R(x) - register ** Kst(x) - constant (in constant table) ** RK(x) == if ISK(x) then Kst(INDEXK(x)) else R(x) */ /* ** grep "ORDER OP" if you change these enums */ typedef enum { /*---------------------------------------------------------------------- name args description ------------------------------------------------------------------------*/ OP_MOVE,/* A B R(A) := R(B) */ OP_LOADK,/* A Bx R(A) := Kst(Bx) */ OP_LOADKX,/* A R(A) := Kst(extra arg) */ OP_LOADBOOL,/* A B C R(A) := (Bool)B; if (C) pc++ */ OP_LOADNIL,/* A B R(A), R(A+1), ..., R(A+B) := nil */ OP_GETUPVAL,/* A B R(A) := UpValue[B] */ OP_GETTABUP,/* A B C R(A) := UpValue[B][RK(C)] */ OP_GETTABLE,/* A B C R(A) := R(B)[RK(C)] */ OP_SETTABUP,/* A B C UpValue[A][RK(B)] := RK(C) */ OP_SETUPVAL,/* A B UpValue[B] := R(A) */ OP_SETTABLE,/* A B C R(A)[RK(B)] := RK(C) */ OP_NEWTABLE,/* A B C R(A) := {} (size = B,C) */ OP_SELF,/* A B C R(A+1) := R(B); R(A) := R(B)[RK(C)] */ OP_ADD,/* A B C R(A) := RK(B) + RK(C) */ OP_SUB,/* A B C R(A) := RK(B) - RK(C) */ OP_MUL,/* A B C R(A) := RK(B) * RK(C) */ OP_DIV,/* A B C R(A) := RK(B) / RK(C) */ OP_MOD,/* A B C R(A) := RK(B) % RK(C) */ OP_POW,/* A B C R(A) := RK(B) ^ RK(C) */ OP_UNM,/* A B R(A) := -R(B) */ OP_NOT,/* A B R(A) := not R(B) */ OP_LEN,/* A B R(A) := length of R(B) */ OP_CONCAT,/* A B C R(A) := R(B).. ... ..R(C) */ OP_JMP,/* A sBx pc+=sBx; if (A) close all upvalues >= R(A) + 1 */ OP_EQ,/* A B C if ((RK(B) == RK(C)) ~= A) then pc++ */ OP_LT,/* A B C if ((RK(B) < RK(C)) ~= A) then pc++ */ OP_LE,/* A B C if ((RK(B) <= RK(C)) ~= A) then pc++ */ OP_TEST,/* A C if not (R(A) <=> C) then pc++ */ OP_TESTSET,/* A B C if (R(B) <=> C) then R(A) := R(B) else pc++ */ OP_CALL,/* A B C R(A), ... ,R(A+C-2) := R(A)(R(A+1), ... ,R(A+B-1)) */ OP_TAILCALL,/* A B C return R(A)(R(A+1), ... ,R(A+B-1)) */ OP_RETURN,/* A B return R(A), ... ,R(A+B-2) (see note) */ OP_FORLOOP,/* A sBx R(A)+=R(A+2); if R(A) <?= R(A+1) then { pc+=sBx; R(A+3)=R(A) }*/ OP_FORPREP,/* A sBx R(A)-=R(A+2); pc+=sBx */ OP_TFORCALL,/* A C R(A+3), ... ,R(A+2+C) := R(A)(R(A+1), R(A+2)); */ OP_TFORLOOP,/* A sBx if R(A+1) ~= nil then { R(A)=R(A+1); pc += sBx }*/ OP_SETLIST,/* A B C R(A)[(C-1)*FPF+i] := R(A+i), 1 <= i <= B */ OP_CLOSURE,/* A Bx R(A) := closure(KPROTO[Bx]) */ OP_VARARG,/* A B R(A), R(A+1), ..., R(A+B-2) = vararg */ OP_EXTRAARG/* Ax extra (larger) argument for previous opcode */ } OpCode; #define NUM_OPCODES (cast(int, OP_EXTRAARG) + 1) /*=========================================================================== Notes: (*) In OP_CALL, if (B == 0) then B = top. If (C == 0), then `top' is set to last_result+1, so next open instruction (OP_CALL, OP_RETURN, OP_SETLIST) may use `top'. (*) In OP_VARARG, if (B == 0) then use actual number of varargs and set top (like in OP_CALL with C == 0). (*) In OP_RETURN, if (B == 0) then return up to `top'. (*) In OP_SETLIST, if (B == 0) then B = `top'; if (C == 0) then next 'instruction' is EXTRAARG(real C). (*) In OP_LOADKX, the next 'instruction' is always EXTRAARG. (*) For comparisons, A specifies what condition the test should accept (true or false). (*) All `skips' (pc++) assume that next instruction is a jump. ===========================================================================*/ /* ** masks for instruction properties. The format is: ** bits 0-1: op mode ** bits 2-3: C arg mode ** bits 4-5: B arg mode ** bit 6: instruction set register A ** bit 7: operator is a test (next instruction must be a jump) */ enum OpArgMask { OpArgN, /* argument is not used */ OpArgU, /* argument is used */ OpArgR, /* argument is a register or a jump offset */ OpArgK /* argument is a constant or register/constant */ }; LUAI_DDEC const lu_byte luaP_opmodes[NUM_OPCODES]; #define getOpMode(m) (cast(enum OpMode, luaP_opmodes[m] & 3)) #define getBMode(m) (cast(enum OpArgMask, (luaP_opmodes[m] >> 4) & 3)) #define getCMode(m) (cast(enum OpArgMask, (luaP_opmodes[m] >> 2) & 3)) #define testAMode(m) (luaP_opmodes[m] & (1 << 6)) #define testTMode(m) (luaP_opmodes[m] & (1 << 7)) LUAI_DDEC const char *const luaP_opnames[NUM_OPCODES+1]; /* opcode names */ /* number of list items to accumulate before a SETLIST instruction */ #define LFIELDS_PER_FLUSH 50 #endif