/////////////////////////////////////////////////////////////////////////////// // // Copyright (c) 2015 Microsoft Corporation. All rights reserved. // // This code is licensed under the MIT License (MIT). // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN // THE SOFTWARE. // /////////////////////////////////////////////////////////////////////////////// #include <catch/catch.hpp> #include <gsl/gsl> #include <memory> #include <string> #include <vector> using namespace gsl; struct MyBase { }; struct MyDerived : public MyBase { }; struct Unrelated { }; // stand-in for a user-defined ref-counted class template <typename T> struct RefCounted { RefCounted(T* p) : p_(p) {} operator T*() { return p_; } T* p_; }; // user defined smart pointer with comparison operators returning non bool value template <typename T> struct CustomPtr { CustomPtr(T* p) : p_(p) {} operator T*() { return p_; } bool operator!=(std::nullptr_t) const { return p_ != nullptr; } T* p_ = nullptr; }; template <typename T, typename U> std::string operator==(CustomPtr<T> const& lhs, CustomPtr<U> const& rhs) { return reinterpret_cast<const void*>(lhs.p_) == reinterpret_cast<const void*>(rhs.p_) ? "true" : "false"; } template <typename T, typename U> std::string operator!=(CustomPtr<T> const& lhs, CustomPtr<U> const& rhs) { return reinterpret_cast<const void*>(lhs.p_) != reinterpret_cast<const void*>(rhs.p_) ? "true" : "false"; } template <typename T, typename U> std::string operator<(CustomPtr<T> const& lhs, CustomPtr<U> const& rhs) { return reinterpret_cast<const void*>(lhs.p_) < reinterpret_cast<const void*>(rhs.p_) ? "true" : "false"; } template <typename T, typename U> std::string operator>(CustomPtr<T> const& lhs, CustomPtr<U> const& rhs) { return reinterpret_cast<const void*>(lhs.p_) > reinterpret_cast<const void*>(rhs.p_) ? "true" : "false"; } template <typename T, typename U> std::string operator<=(CustomPtr<T> const& lhs, CustomPtr<U> const& rhs) { return reinterpret_cast<const void*>(lhs.p_) <= reinterpret_cast<const void*>(rhs.p_) ? "true" : "false"; } template <typename T, typename U> std::string operator>=(CustomPtr<T> const& lhs, CustomPtr<U> const& rhs) { return reinterpret_cast<const void*>(lhs.p_) >= reinterpret_cast<const void*>(rhs.p_) ? "true" : "false"; } struct NonCopyableNonMovable { NonCopyableNonMovable() = default; NonCopyableNonMovable(const NonCopyableNonMovable&) = delete; NonCopyableNonMovable& operator=(const NonCopyableNonMovable&) = delete; NonCopyableNonMovable(NonCopyableNonMovable&&) = delete; NonCopyableNonMovable& operator=(NonCopyableNonMovable&&) = delete; }; bool helper(not_null<int*> p) { return *p == 12; } TEST_CASE("TestNotNullConstructors") { #ifdef CONFIRM_COMPILATION_ERRORS not_null<int*> p = nullptr; // yay...does not compile! not_null<std::vector<char>*> p = 0; // yay...does not compile! not_null<int*> p; // yay...does not compile! std::unique_ptr<int> up = std::make_unique<int>(120); not_null<int*> p = up; // Forbid non-nullptr assignable types not_null<std::vector<int>> f(std::vector<int>{1}); not_null<int> z(10); not_null<std::vector<int>> y({1, 2}); #endif int i = 12; auto rp = RefCounted<int>(&i); not_null<int*> p(rp); CHECK(p.get() == &i); not_null<std::shared_ptr<int>> x( std::make_shared<int>(10)); // shared_ptr<int> is nullptr assignable } TEST_CASE("TestNotNullCasting") { MyBase base; MyDerived derived; Unrelated unrelated; not_null<Unrelated*> u = &unrelated; (void) u; not_null<MyDerived*> p = &derived; not_null<MyBase*> q = &base; q = p; // allowed with heterogeneous copy ctor CHECK(q == p); #ifdef CONFIRM_COMPILATION_ERRORS q = u; // no viable conversion possible between MyBase* and Unrelated* p = q; // not possible to implicitly convert MyBase* to MyDerived* not_null<Unrelated*> r = p; not_null<Unrelated*> s = reinterpret_cast<Unrelated*>(p); #endif not_null<Unrelated*> t = reinterpret_cast<Unrelated*>(p.get()); CHECK(reinterpret_cast<void*>(p.get()) == reinterpret_cast<void*>(t.get())); } TEST_CASE("TestNotNullAssignment") { int i = 12; not_null<int*> p = &i; CHECK(helper(p)); int* q = nullptr; CHECK_THROWS_AS(p = q, fail_fast); } TEST_CASE("TestNotNullRawPointerComparison") { int ints[2] = {42, 43}; int* p1 = &ints[0]; const int* p2 = &ints[1]; using NotNull1 = not_null<decltype(p1)>; using NotNull2 = not_null<decltype(p2)>; CHECK((NotNull1(p1) == NotNull1(p1)) == true); CHECK((NotNull1(p1) == NotNull2(p2)) == false); CHECK((NotNull1(p1) != NotNull1(p1)) == false); CHECK((NotNull1(p1) != NotNull2(p2)) == true); CHECK((NotNull1(p1) < NotNull1(p1)) == false); CHECK((NotNull1(p1) < NotNull2(p2)) == (p1 < p2)); CHECK((NotNull2(p2) < NotNull1(p1)) == (p2 < p1)); CHECK((NotNull1(p1) > NotNull1(p1)) == false); CHECK((NotNull1(p1) > NotNull2(p2)) == (p1 > p2)); CHECK((NotNull2(p2) > NotNull1(p1)) == (p2 > p1)); CHECK((NotNull1(p1) <= NotNull1(p1)) == true); CHECK((NotNull1(p1) <= NotNull2(p2)) == (p1 <= p2)); CHECK((NotNull2(p2) <= NotNull1(p1)) == (p2 <= p1)); } TEST_CASE("TestNotNullDereferenceOperator") { { auto sp1 = std::make_shared<NonCopyableNonMovable>(); using NotNullSp1 = not_null<decltype(sp1)>; CHECK(typeid(*sp1) == typeid(*NotNullSp1(sp1))); CHECK(std::addressof(*NotNullSp1(sp1)) == std::addressof(*sp1)); } { int ints[1] = { 42 }; CustomPtr<int> p1(&ints[0]); using NotNull1 = not_null<decltype(p1)>; CHECK(typeid(*NotNull1(p1)) == typeid(*p1)); CHECK(*NotNull1(p1) == 42); *NotNull1(p1) = 43; CHECK(ints[0] == 43); } { int v = 42; gsl::not_null<int*> p(&v); CHECK(typeid(*p) == typeid(*(&v))); *p = 43; CHECK(v == 43); } } TEST_CASE("TestNotNullSharedPtrComparison") { auto sp1 = std::make_shared<int>(42); auto sp2 = std::make_shared<const int>(43); using NotNullSp1 = not_null<decltype(sp1)>; using NotNullSp2 = not_null<decltype(sp2)>; CHECK((NotNullSp1(sp1) == NotNullSp1(sp1)) == true); CHECK((NotNullSp1(sp1) == NotNullSp2(sp2)) == false); CHECK((NotNullSp1(sp1) != NotNullSp1(sp1)) == false); CHECK((NotNullSp1(sp1) != NotNullSp2(sp2)) == true); CHECK((NotNullSp1(sp1) < NotNullSp1(sp1)) == false); CHECK((NotNullSp1(sp1) < NotNullSp2(sp2)) == (sp1 < sp2)); CHECK((NotNullSp2(sp2) < NotNullSp1(sp1)) == (sp2 < sp1)); CHECK((NotNullSp1(sp1) > NotNullSp1(sp1)) == false); CHECK((NotNullSp1(sp1) > NotNullSp2(sp2)) == (sp1 > sp2)); CHECK((NotNullSp2(sp2) > NotNullSp1(sp1)) == (sp2 > sp1)); CHECK((NotNullSp1(sp1) <= NotNullSp1(sp1)) == true); CHECK((NotNullSp1(sp1) <= NotNullSp2(sp2)) == (sp1 <= sp2)); CHECK((NotNullSp2(sp2) <= NotNullSp1(sp1)) == (sp2 <= sp1)); CHECK((NotNullSp1(sp1) >= NotNullSp1(sp1)) == true); CHECK((NotNullSp1(sp1) >= NotNullSp2(sp2)) == (sp1 >= sp2)); CHECK((NotNullSp2(sp2) >= NotNullSp1(sp1)) == (sp2 >= sp1)); } TEST_CASE("TestNotNullCustomPtrComparison") { int ints[2] = {42, 43}; CustomPtr<int> p1(&ints[0]); CustomPtr<const int> p2(&ints[1]); using NotNull1 = not_null<decltype(p1)>; using NotNull2 = not_null<decltype(p2)>; CHECK((NotNull1(p1) == NotNull1(p1)) == "true"); CHECK((NotNull1(p1) == NotNull2(p2)) == "false"); CHECK((NotNull1(p1) != NotNull1(p1)) == "false"); CHECK((NotNull1(p1) != NotNull2(p2)) == "true"); CHECK((NotNull1(p1) < NotNull1(p1)) == "false"); CHECK((NotNull1(p1) < NotNull2(p2)) == (p1 < p2)); CHECK((NotNull2(p2) < NotNull1(p1)) == (p2 < p1)); CHECK((NotNull1(p1) > NotNull1(p1)) == "false"); CHECK((NotNull1(p1) > NotNull2(p2)) == (p1 > p2)); CHECK((NotNull2(p2) > NotNull1(p1)) == (p2 > p1)); CHECK((NotNull1(p1) <= NotNull1(p1)) == "true"); CHECK((NotNull1(p1) <= NotNull2(p2)) == (p1 <= p2)); CHECK((NotNull2(p2) <= NotNull1(p1)) == (p2 <= p1)); CHECK((NotNull1(p1) >= NotNull1(p1)) == "true"); CHECK((NotNull1(p1) >= NotNull2(p2)) == (p1 >= p2)); CHECK((NotNull2(p2) >= NotNull1(p1)) == (p2 >= p1)); }