#!/usr/bin/env python # Copyright 2015 The Chromium OS Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """Adjust pool balances to cover DUT shortfalls. This command takes all broken DUTs in a specific pool for specific models and swaps them with working DUTs taken from a selected pool of spares. The command is meant primarily for replacing broken DUTs in critical pools like BVT or CQ, but it can also be used to adjust pool sizes, or to create or remove pools. usage: balance_pool.py [ options ] POOL MODEL [ MODEL ... ] positional arguments: POOL Name of the pool to balance MODEL Names of models to balance optional arguments: -h, --help show this help message and exit -t COUNT, --total COUNT Set the number of DUTs in the pool to the specified count for every MODEL -a COUNT, --grow COUNT Add the specified number of DUTs to the pool for every MODEL -d COUNT, --shrink COUNT Remove the specified number of DUTs from the pool for every MODEL -s POOL, --spare POOL Pool from which to draw replacement spares (default: pool:suites) --sku SKU The specific SKU we intend to swap with -n, --dry-run Report actions to take in the form of shell commands The command attempts to remove all broken DUTs from the target POOL for every MODEL, and replace them with enough working DUTs taken from the spare pool to bring the strength of POOL to the requested total COUNT. If no COUNT options are supplied (i.e. there are no --total, --grow, or --shrink options), the command will maintain the current totals of DUTs for every MODEL in the target POOL. If not enough working spares are available, broken DUTs may be left in the pool to keep the pool at the target COUNT. When reducing pool size, working DUTs will be returned after broken DUTs, if it's necessary to achieve the target COUNT. """ import argparse import sys import time import common from autotest_lib.server import constants from autotest_lib.server import frontend from autotest_lib.server import site_utils from autotest_lib.server.lib import status_history from autotest_lib.site_utils import lab_inventory from autotest_lib.utils import labellib from chromite.lib import metrics from chromite.lib import parallel #This must be imported after chromite.lib.metrics from infra_libs import ts_mon _POOL_PREFIX = constants.Labels.POOL_PREFIX # This is the ratio of all models we should calculate the default max # number of broken models against. It seemed like the best choice that # was neither too strict nor lax. _MAX_BROKEN_DEFAULT_RATIO = 3.0 / 8.0 _ALL_CRITICAL_POOLS = 'all_critical_pools' _SPARE_DEFAULT = lab_inventory.SPARE_POOL def _log_message(message, *args): """Log a message with optional format arguments to stdout. This function logs a single line to stdout, with formatting if necessary, and without adornments. If `*args` are supplied, the message will be formatted using the arguments. @param message Message to be logged, possibly after formatting. @param args Format arguments. If empty, the message is logged without formatting. """ if args: message = message % args sys.stdout.write('%s\n' % message) def _log_info(dry_run, message, *args): """Log information in a dry-run dependent fashion. This function logs a single line to stdout, with formatting if necessary. When logging for a dry run, the message is printed as a shell comment, rather than as unadorned text. If `*args` are supplied, the message will be formatted using the arguments. @param message Message to be logged, possibly after formatting. @param args Format arguments. If empty, the message is logged without formatting. """ if dry_run: message = '# ' + message _log_message(message, *args) def _log_error(message, *args): """Log an error to stderr, with optional format arguments. This function logs a single line to stderr, prefixed to indicate that it is an error message. If `*args` are supplied, the message will be formatted using the arguments. @param message Message to be logged, possibly after formatting. @param args Format arguments. If empty, the message is logged without formatting. """ if args: message = message % args sys.stderr.write('ERROR: %s\n' % message) class _DUTPool(object): """Information about a pool of DUTs matching given labels. This class collects information about all DUTs for a given pool and matching the given labels, and divides them into three categories: + Working - the DUT is working for testing, and not locked. + Broken - the DUT is unable to run tests, or it is locked. + Ineligible - the DUT is not available to be removed from this pool. The DUT may be either working or broken. DUTs with more than one pool: label are ineligible for exchange during balancing. This is done for the sake of chameleon hosts, which must always be assigned to pool:suites. These DUTs are always marked with pool:chameleon to prevent their reassignment. TODO(jrbarnette): The use of `pool:chamelon` (instead of just the `chameleon` label is a hack that should be eliminated. _DUTPool instances are used to track both main pools that need to be resupplied with working DUTs and spare pools that supply those DUTs. @property pool Name of the pool associated with this pool of DUTs. @property labels Labels that constrain the DUTs to consider. @property working_hosts The list of this pool's working DUTs. @property broken_hosts The list of this pool's broken DUTs. @property ineligible_hosts The list of this pool's ineligible DUTs. @property pool_labels A list of labels that identify a DUT as part of this pool. @property total_hosts The total number of hosts in pool. """ def __init__(self, afe, pool, labels, start_time, end_time): self.pool = pool self.labels = labellib.LabelsMapping(labels) self.labels['pool'] = pool self._pool_labels = [_POOL_PREFIX + self.pool] self.working_hosts = [] self.broken_hosts = [] self.ineligible_hosts = [] self.total_hosts = self._get_hosts(afe, start_time, end_time) def _get_hosts(self, afe, start_time, end_time): all_histories = status_history.HostJobHistory.get_multiple_histories( afe, start_time, end_time, self.labels.getlabels()) for h in all_histories: host = h.host host_pools = [l for l in host.labels if l.startswith(_POOL_PREFIX)] if len(host_pools) != 1: self.ineligible_hosts.append(host) else: diag = h.last_diagnosis()[0] if (diag == status_history.WORKING and not host.locked): self.working_hosts.append(host) else: self.broken_hosts.append(host) return len(all_histories) @property def pool_labels(self): """Return the AFE labels that identify this pool. The returned labels are the labels that must be removed to remove a DUT from the pool, or added to add a DUT. @return A list of AFE labels suitable for AFE.add_labels() or AFE.remove_labels(). """ return self._pool_labels def calculate_spares_needed(self, target_total): """Calculate and log the spares needed to achieve a target. Return how many working spares are needed to achieve the given `target_total` with all DUTs working. The spares count may be positive or negative. Positive values indicate spares are needed to replace broken DUTs in order to reach the target; negative numbers indicate that no spares are needed, and that a corresponding number of working devices can be returned. If the new target total would require returning ineligible DUTs, an error is logged, and the target total is adjusted so that those DUTs are not exchanged. @param target_total The new target pool size. @return The number of spares needed. """ num_ineligible = len(self.ineligible_hosts) spares_needed = target_total >= num_ineligible metrics.Boolean( 'chromeos/autotest/balance_pools/exhausted_pools', 'True for each pool/model which requests more DUTs than supplied', # TODO(jrbarnette) The 'board' field is a legacy. We need # to leave it here until we do the extra work Monarch # requires to delete a field. field_spec=[ ts_mon.StringField('pool'), ts_mon.StringField('board'), ts_mon.StringField('model'), ]).set( not spares_needed, fields={ 'pool': self.pool, 'board': self.labels.get('model', ''), 'model': self.labels.get('model', ''), }, ) if not spares_needed: _log_error( '%s pool (%s): Target of %d is below minimum of %d DUTs.', self.pool, self.labels, target_total, num_ineligible, ) _log_error('Adjusting target to %d DUTs.', num_ineligible) target_total = num_ineligible else: _log_message('%s %s pool: Target of %d is above minimum.', self.labels.get('model', ''), self.pool, target_total) adjustment = target_total - self.total_hosts return len(self.broken_hosts) + adjustment def allocate_surplus(self, num_broken): """Allocate a list DUTs that can returned as surplus. Return a list of devices that can be returned in order to reduce this pool's supply. Broken DUTs will be preferred over working ones. The `num_broken` parameter indicates the number of broken DUTs to be left in the pool. If this number exceeds the number of broken DUTs actually in the pool, the returned list will be empty. If this number is negative, it indicates a number of working DUTs to be returned in addition to all broken ones. @param num_broken Total number of broken DUTs to be left in this pool. @return A list of DUTs to be returned as surplus. """ if num_broken >= 0: surplus = self.broken_hosts[num_broken:] return surplus else: return (self.broken_hosts + self.working_hosts[:-num_broken]) def _exchange_labels(dry_run, hosts, target_pool, spare_pool): """Reassign a list of DUTs from one pool to another. For all the given hosts, remove all labels associated with `spare_pool`, and add the labels for `target_pool`. If `dry_run` is true, perform no changes, but log the `atest` commands needed to accomplish the necessary label changes. @param dry_run Whether the logging is for a dry run or for actual execution. @param hosts List of DUTs (AFE hosts) to be reassigned. @param target_pool The `_DUTPool` object from which the hosts are drawn. @param spare_pool The `_DUTPool` object to which the hosts will be added. """ _log_info(dry_run, 'Transferring %d DUTs from %s to %s.', len(hosts), spare_pool.pool, target_pool.pool) metrics.Counter( 'chromeos/autotest/balance_pools/duts_moved', 'DUTs transferred between pools', # TODO(jrbarnette) The 'board' field is a legacy. We need to # leave it here until we do the extra work Monarch requires to # delete a field. field_spec=[ ts_mon.StringField('board'), ts_mon.StringField('model'), ts_mon.StringField('source_pool'), ts_mon.StringField('target_pool'), ] ).increment_by( len(hosts), fields={ 'board': target_pool.labels.get('model', ''), 'model': target_pool.labels.get('model', ''), 'source_pool': spare_pool.pool, 'target_pool': target_pool.pool, }, ) if not hosts: return additions = target_pool.pool_labels removals = spare_pool.pool_labels for host in hosts: if not dry_run: _log_message('Updating host: %s.', host.hostname) host.remove_labels(removals) host.add_labels(additions) else: _log_message('atest label remove -m %s %s', host.hostname, ' '.join(removals)) _log_message('atest label add -m %s %s', host.hostname, ' '.join(additions)) def _balance_model(arguments, afe, pool, labels, start_time, end_time): """Balance one model as requested by command line arguments. @param arguments Parsed command line arguments. @param afe AFE object to be used for the changes. @param pool Pool of the model to be balanced. @param labels Restrict the balancing operation within DUTs that have these labels. @param start_time Start time for HostJobHistory objects in the DUT pools. @param end_time End time for HostJobHistory objects in the DUT pools. """ spare_pool = _DUTPool(afe, arguments.spare, labels, start_time, end_time) main_pool = _DUTPool(afe, pool, labels, start_time, end_time) target_total = main_pool.total_hosts if arguments.total is not None: target_total = arguments.total elif arguments.grow: target_total += arguments.grow elif arguments.shrink: target_total -= arguments.shrink spares_needed = main_pool.calculate_spares_needed(target_total) if spares_needed > 0: spare_duts = spare_pool.working_hosts[:spares_needed] shortfall = spares_needed - len(spare_duts) else: spare_duts = [] shortfall = spares_needed surplus_duts = main_pool.allocate_surplus(shortfall) if spares_needed or surplus_duts or arguments.verbose: dry_run = arguments.dry_run _log_message('') _log_info(dry_run, 'Balancing %s %s pool:', labels, main_pool.pool) _log_info(dry_run, 'Total %d DUTs, %d working, %d broken, %d reserved.', main_pool.total_hosts, len(main_pool.working_hosts), len(main_pool.broken_hosts), len(main_pool.ineligible_hosts)) if spares_needed > 0: add_msg = 'grow pool by %d DUTs' % spares_needed elif spares_needed < 0: add_msg = 'shrink pool by %d DUTs' % -spares_needed else: add_msg = 'no change to pool size' _log_info(dry_run, 'Target is %d working DUTs; %s.', target_total, add_msg) _log_info(dry_run, '%s %s pool has %d spares available for balancing pool %s', labels, spare_pool.pool, len(spare_pool.working_hosts), main_pool.pool) if spares_needed > len(spare_duts): _log_error('Not enough spares: need %d, only have %d.', spares_needed, len(spare_duts)) elif shortfall >= 0: _log_info(dry_run, '%s %s pool will return %d broken DUTs, ' 'leaving %d still in the pool.', labels, main_pool.pool, len(surplus_duts), len(main_pool.broken_hosts) - len(surplus_duts)) else: _log_info(dry_run, '%s %s pool will return %d surplus DUTs, ' 'including %d working DUTs.', labels, main_pool.pool, len(main_pool.broken_hosts) - shortfall, -shortfall) if (len(main_pool.broken_hosts) > arguments.max_broken and not arguments.force_rebalance): _log_error('%s %s pool: Refusing to act on pool with %d broken DUTs.', labels, main_pool.pool, len(main_pool.broken_hosts)) _log_error('Please investigate this model to for a bug ') _log_error('that is bricking devices. Once you have finished your ') _log_error('investigation, you can force a rebalance with ') _log_error('--force-rebalance') spare_duts = [] surplus_duts = [] if not spare_duts and not surplus_duts: if arguments.verbose: _log_info(arguments.dry_run, 'No exchange required.') _exchange_labels(arguments.dry_run, surplus_duts, spare_pool, main_pool) _exchange_labels(arguments.dry_run, spare_duts, main_pool, spare_pool) def _too_many_broken(inventory, pool, args): """ Get the inventory of models and check if too many are broken. @param inventory: _LabInventory object. @param pool: The pool to check. @param args: Parsed command line arguments. @return True if the number of models with 1 or more broken duts exceed max_broken_models, False otherwise. """ # Were we asked to skip this check? if (args.force_rebalance or (args.all_models and args.max_broken_models == 0)): return False max_broken = args.max_broken_models if max_broken is None: total_num = len(inventory.get_pool_models(pool)) max_broken = int(_MAX_BROKEN_DEFAULT_RATIO * total_num) _log_info(args.dry_run, 'Max broken models for pool %s: %d', pool, max_broken) broken = [model for model, counts in inventory.iteritems() if counts.get_broken(pool) != 0] _log_message('There are %d models in the %s pool with at least 1 ' 'broken DUT (max threshold %d)', len(broken), pool, max_broken) for b in sorted(broken): _log_message(b) return len(broken) > max_broken def _parse_command(argv): """Parse the command line arguments. Create an argument parser for this command's syntax, parse the command line, and return the result of the `ArgumentParser` `parse_args()` method. @param argv Standard command line argument vector; `argv[0]` is assumed to be the command name. @return Result returned by `ArgumentParser.parse_args()`. """ parser = argparse.ArgumentParser( prog=argv[0], description='Balance pool shortages from spares on reserve') parser.add_argument( '-w', '--web', type=str, default=None, help='AFE host to use. Default comes from shadow_config.', ) count_group = parser.add_mutually_exclusive_group() count_group.add_argument('-t', '--total', type=int, metavar='COUNT', default=None, help='Set the number of DUTs in the ' 'pool to the specified count for ' 'every MODEL') count_group.add_argument('-a', '--grow', type=int, metavar='COUNT', default=None, help='Add the specified number of DUTs ' 'to the pool for every MODEL') count_group.add_argument('-d', '--shrink', type=int, metavar='COUNT', default=None, help='Remove the specified number of DUTs ' 'from the pool for every MODEL') parser.add_argument('-s', '--spare', default=_SPARE_DEFAULT, metavar='POOL', help='Pool from which to draw replacement ' 'spares (default: pool:%s)' % _SPARE_DEFAULT) parser.add_argument('-n', '--dry-run', action='store_true', help='Report actions to take in the form of ' 'shell commands') parser.add_argument('-v', '--verbose', action='store_true', help='Print more detail about calculations for debug ' 'purposes.') parser.add_argument('-m', '--max-broken', default=2, type=int, metavar='COUNT', help='Only rebalance a pool if it has at most ' 'COUNT broken DUTs.') parser.add_argument('-f', '--force-rebalance', action='store_true', help='Forcefully rebalance all DUTs in a pool, even ' 'if it has a large number of broken DUTs. ' 'Before doing this, please investigate whether ' 'there is a bug that is bricking devices in the ' 'lab.') parser.add_argument('--production', action='store_true', help='Treat this as a production run. This will ' 'collect metrics.') parser.add_argument( '--all-models', action='store_true', help='Rebalance all managed models. This will do a very expensive ' 'check to see how many models have at least one broken DUT. ' 'To bypass that check, set --max-broken-models to 0.', ) parser.add_argument( '--max-broken-models', default=None, type=int, metavar='COUNT', help='Only rebalance all models if number of models with broken ' 'DUTs in the specified pool is less than COUNT.', ) parser.add_argument('pool', metavar='POOL', help='Name of the pool to balance. Use %s to balance ' 'all critical pools' % _ALL_CRITICAL_POOLS) parser.add_argument('models', nargs='*', metavar='MODEL', help='Names of models to balance.') parser.add_argument('--sku', type=str, help='Optional name of sku to restrict to.') arguments = parser.parse_args(argv[1:]) # Error-check arguments. if arguments.models and arguments.all_models: parser.error('Cannot specify individual models on the command line ' 'when using --all-models.') if (arguments.pool == _ALL_CRITICAL_POOLS and arguments.spare != _SPARE_DEFAULT): parser.error('Cannot specify --spare pool to be %s when balancing all ' 'critical pools.' % _SPARE_DEFAULT) return arguments def infer_balancer_targets(afe, arguments, pools): """Take some arguments and translate them to a list of models to balance Args: @param afe AFE object to be used for taking inventory. @param arguments Parsed command line arguments. @param pools The list of pools to balance. @returns a list of (model, labels) tuples to be balanced """ balancer_targets = [] for pool in pools: if arguments.all_models: inventory = lab_inventory.get_inventory(afe) quarantine = _too_many_broken(inventory, pool, arguments) if quarantine: _log_error('Refusing to balance all models for %s pool, ' 'too many models with at least 1 broken DUT ' 'detected.', pool) else: for model in inventory.get_models(pool): labels = labellib.LabelsMapping() labels['model'] = model balancer_targets.append((pool, labels.getlabels())) metrics.Boolean( 'chromeos/autotest/balance_pools/unchanged_pools').set( quarantine, fields={'pool': pool}) _log_message('Pool %s quarantine status: %s', pool, quarantine) else: for model in arguments.models: labels = labellib.LabelsMapping() labels['model'] = model if arguments.sku: labels['sku'] = arguments.sku balancer_targets.append((pool, labels.getlabels())) return balancer_targets def main(argv): """Standard main routine. @param argv Command line arguments including `sys.argv[0]`. """ arguments = _parse_command(argv) if arguments.production: metrics_manager = site_utils.SetupTsMonGlobalState( 'balance_pools', indirect=False, auto_flush=False, ) else: metrics_manager = site_utils.TrivialContextManager() with metrics_manager: end_time = time.time() start_time = end_time - 24 * 60 * 60 afe = frontend.AFE(server=arguments.web) def balancer(pool, labels): """Balance the specified model. @param pool: The pool to rebalance for the model. @param labels: labels to restrict to balancing operations within. """ _balance_model(arguments, afe, pool, labels, start_time, end_time) _log_message('') pools = (lab_inventory.CRITICAL_POOLS if arguments.pool == _ALL_CRITICAL_POOLS else [arguments.pool]) balancer_targets = infer_balancer_targets(afe, arguments, pools) try: parallel.RunTasksInProcessPool( balancer, balancer_targets, processes=8, ) except KeyboardInterrupt: pass finally: metrics.Flush() if __name__ == '__main__': main(sys.argv)