/* Copyright (c) 2014, Google Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #if !defined(__STDC_CONSTANT_MACROS) #define __STDC_CONSTANT_MACROS #endif #include <stdio.h> #include <stdlib.h> #include <string.h> #include <vector> #include <gtest/gtest.h> #include <openssl/bytestring.h> #include <openssl/crypto.h> #include "internal.h" #include "../internal.h" #include "../test/test_util.h" TEST(CBSTest, Skip) { static const uint8_t kData[] = {1, 2, 3}; CBS data; CBS_init(&data, kData, sizeof(kData)); EXPECT_EQ(3u, CBS_len(&data)); EXPECT_TRUE(CBS_skip(&data, 1)); EXPECT_EQ(2u, CBS_len(&data)); EXPECT_TRUE(CBS_skip(&data, 2)); EXPECT_EQ(0u, CBS_len(&data)); EXPECT_FALSE(CBS_skip(&data, 1)); } TEST(CBSTest, GetUint) { static const uint8_t kData[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}; uint8_t u8; uint16_t u16; uint32_t u32; CBS data; CBS_init(&data, kData, sizeof(kData)); ASSERT_TRUE(CBS_get_u8(&data, &u8)); EXPECT_EQ(1u, u8); ASSERT_TRUE(CBS_get_u16(&data, &u16)); EXPECT_EQ(0x203u, u16); ASSERT_TRUE(CBS_get_u24(&data, &u32)); EXPECT_EQ(0x40506u, u32); ASSERT_TRUE(CBS_get_u32(&data, &u32)); EXPECT_EQ(0x708090au, u32); ASSERT_TRUE(CBS_get_last_u8(&data, &u8)); EXPECT_EQ(0xcu, u8); ASSERT_TRUE(CBS_get_last_u8(&data, &u8)); EXPECT_EQ(0xbu, u8); EXPECT_FALSE(CBS_get_u8(&data, &u8)); EXPECT_FALSE(CBS_get_last_u8(&data, &u8)); } TEST(CBSTest, GetPrefixed) { static const uint8_t kData[] = {1, 2, 0, 2, 3, 4, 0, 0, 3, 3, 2, 1}; uint8_t u8; uint16_t u16; uint32_t u32; CBS data, prefixed; CBS_init(&data, kData, sizeof(kData)); ASSERT_TRUE(CBS_get_u8_length_prefixed(&data, &prefixed)); EXPECT_EQ(1u, CBS_len(&prefixed)); ASSERT_TRUE(CBS_get_u8(&prefixed, &u8)); EXPECT_EQ(2u, u8); ASSERT_TRUE(CBS_get_u16_length_prefixed(&data, &prefixed)); EXPECT_EQ(2u, CBS_len(&prefixed)); ASSERT_TRUE(CBS_get_u16(&prefixed, &u16)); EXPECT_EQ(0x304u, u16); ASSERT_TRUE(CBS_get_u24_length_prefixed(&data, &prefixed)); EXPECT_EQ(3u, CBS_len(&prefixed)); ASSERT_TRUE(CBS_get_u24(&prefixed, &u32)); EXPECT_EQ(0x30201u, u32); } TEST(CBSTest, GetPrefixedBad) { static const uint8_t kData1[] = {2, 1}; static const uint8_t kData2[] = {0, 2, 1}; static const uint8_t kData3[] = {0, 0, 2, 1}; CBS data, prefixed; CBS_init(&data, kData1, sizeof(kData1)); EXPECT_FALSE(CBS_get_u8_length_prefixed(&data, &prefixed)); CBS_init(&data, kData2, sizeof(kData2)); EXPECT_FALSE(CBS_get_u16_length_prefixed(&data, &prefixed)); CBS_init(&data, kData3, sizeof(kData3)); EXPECT_FALSE(CBS_get_u24_length_prefixed(&data, &prefixed)); } TEST(CBSTest, GetASN1) { static const uint8_t kData1[] = {0x30, 2, 1, 2}; static const uint8_t kData2[] = {0x30, 3, 1, 2}; static const uint8_t kData3[] = {0x30, 0x80}; static const uint8_t kData4[] = {0x30, 0x81, 1, 1}; static const uint8_t kData5[4 + 0x80] = {0x30, 0x82, 0, 0x80}; static const uint8_t kData6[] = {0xa1, 3, 0x4, 1, 1}; static const uint8_t kData7[] = {0xa1, 3, 0x4, 2, 1}; static const uint8_t kData8[] = {0xa1, 3, 0x2, 1, 1}; static const uint8_t kData9[] = {0xa1, 3, 0x2, 1, 0xff}; CBS data, contents; int present; uint64_t value; CBS_init(&data, kData1, sizeof(kData1)); EXPECT_FALSE(CBS_peek_asn1_tag(&data, CBS_ASN1_BOOLEAN)); EXPECT_TRUE(CBS_peek_asn1_tag(&data, CBS_ASN1_SEQUENCE)); ASSERT_TRUE(CBS_get_asn1(&data, &contents, CBS_ASN1_SEQUENCE)); EXPECT_EQ(Bytes("\x01\x02"), Bytes(CBS_data(&contents), CBS_len(&contents))); CBS_init(&data, kData2, sizeof(kData2)); // data is truncated EXPECT_FALSE(CBS_get_asn1(&data, &contents, CBS_ASN1_SEQUENCE)); CBS_init(&data, kData3, sizeof(kData3)); // zero byte length of length EXPECT_FALSE(CBS_get_asn1(&data, &contents, CBS_ASN1_SEQUENCE)); CBS_init(&data, kData4, sizeof(kData4)); // long form mistakenly used. EXPECT_FALSE(CBS_get_asn1(&data, &contents, CBS_ASN1_SEQUENCE)); CBS_init(&data, kData5, sizeof(kData5)); // length takes too many bytes. EXPECT_FALSE(CBS_get_asn1(&data, &contents, CBS_ASN1_SEQUENCE)); CBS_init(&data, kData1, sizeof(kData1)); // wrong tag. EXPECT_FALSE(CBS_get_asn1(&data, &contents, 0x31)); CBS_init(&data, NULL, 0); // peek at empty data. EXPECT_FALSE(CBS_peek_asn1_tag(&data, CBS_ASN1_SEQUENCE)); CBS_init(&data, NULL, 0); // optional elements at empty data. ASSERT_TRUE(CBS_get_optional_asn1( &data, &contents, &present, CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 0)); EXPECT_FALSE(present); ASSERT_TRUE(CBS_get_optional_asn1_octet_string( &data, &contents, &present, CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 0)); EXPECT_FALSE(present); EXPECT_EQ(0u, CBS_len(&contents)); ASSERT_TRUE(CBS_get_optional_asn1_octet_string( &data, &contents, NULL, CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 0)); EXPECT_EQ(0u, CBS_len(&contents)); ASSERT_TRUE(CBS_get_optional_asn1_uint64( &data, &value, CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 0, 42)); EXPECT_EQ(42u, value); CBS_init(&data, kData6, sizeof(kData6)); // optional element. ASSERT_TRUE(CBS_get_optional_asn1( &data, &contents, &present, CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 0)); EXPECT_FALSE(present); ASSERT_TRUE(CBS_get_optional_asn1( &data, &contents, &present, CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 1)); EXPECT_TRUE(present); EXPECT_EQ(Bytes("\x04\x01\x01"), Bytes(CBS_data(&contents), CBS_len(&contents))); CBS_init(&data, kData6, sizeof(kData6)); // optional octet string. ASSERT_TRUE(CBS_get_optional_asn1_octet_string( &data, &contents, &present, CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 0)); EXPECT_FALSE(present); EXPECT_EQ(0u, CBS_len(&contents)); ASSERT_TRUE(CBS_get_optional_asn1_octet_string( &data, &contents, &present, CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 1)); EXPECT_TRUE(present); EXPECT_EQ(Bytes("\x01"), Bytes(CBS_data(&contents), CBS_len(&contents))); CBS_init(&data, kData7, sizeof(kData7)); // invalid optional octet string. EXPECT_FALSE(CBS_get_optional_asn1_octet_string( &data, &contents, &present, CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 1)); CBS_init(&data, kData8, sizeof(kData8)); // optional integer. ASSERT_TRUE(CBS_get_optional_asn1_uint64( &data, &value, CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 0, 42)); EXPECT_EQ(42u, value); ASSERT_TRUE(CBS_get_optional_asn1_uint64( &data, &value, CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 1, 42)); EXPECT_EQ(1u, value); CBS_init(&data, kData9, sizeof(kData9)); // invalid optional integer. EXPECT_FALSE(CBS_get_optional_asn1_uint64( &data, &value, CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 1, 42)); unsigned tag; CBS_init(&data, kData1, sizeof(kData1)); ASSERT_TRUE(CBS_get_any_asn1(&data, &contents, &tag)); EXPECT_EQ(CBS_ASN1_SEQUENCE, tag); EXPECT_EQ(Bytes("\x01\x02"), Bytes(CBS_data(&contents), CBS_len(&contents))); size_t header_len; CBS_init(&data, kData1, sizeof(kData1)); ASSERT_TRUE(CBS_get_any_asn1_element(&data, &contents, &tag, &header_len)); EXPECT_EQ(CBS_ASN1_SEQUENCE, tag); EXPECT_EQ(2u, header_len); EXPECT_EQ(Bytes("\x30\x02\x01\x02"), Bytes(CBS_data(&contents), CBS_len(&contents))); } TEST(CBSTest, ParseASN1Tag) { const struct { bool ok; unsigned tag; std::vector<uint8_t> in; } kTests[] = { {true, CBS_ASN1_SEQUENCE, {0x30, 0}}, {true, CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 4, {0xa4, 0}}, {true, CBS_ASN1_APPLICATION | 30, {0x5e, 0}}, {true, CBS_ASN1_APPLICATION | 31, {0x5f, 0x1f, 0}}, {true, CBS_ASN1_APPLICATION | 32, {0x5f, 0x20, 0}}, {true, CBS_ASN1_PRIVATE | CBS_ASN1_CONSTRUCTED | 0x1fffffff, {0xff, 0x81, 0xff, 0xff, 0xff, 0x7f, 0}}, // Tag number fits in unsigned but not |CBS_ASN1_TAG_NUMBER_MASK|. {false, 0, {0xff, 0x82, 0xff, 0xff, 0xff, 0x7f, 0}}, // Tag number does not fit in unsigned. {false, 0, {0xff, 0x90, 0x80, 0x80, 0x80, 0, 0}}, // Tag number is not minimally-encoded {false, 0, {0x5f, 0x80, 0x1f, 0}}, // Tag number should have used short form. {false, 0, {0x5f, 0x80, 0x1e, 0}}, }; for (const auto &t : kTests) { SCOPED_TRACE(Bytes(t.in)); unsigned tag; CBS cbs, child; CBS_init(&cbs, t.in.data(), t.in.size()); ASSERT_EQ(t.ok, !!CBS_get_any_asn1(&cbs, &child, &tag)); if (t.ok) { EXPECT_EQ(t.tag, tag); EXPECT_EQ(0u, CBS_len(&child)); EXPECT_EQ(0u, CBS_len(&cbs)); CBS_init(&cbs, t.in.data(), t.in.size()); EXPECT_TRUE(CBS_peek_asn1_tag(&cbs, t.tag)); EXPECT_FALSE(CBS_peek_asn1_tag(&cbs, t.tag + 1)); EXPECT_TRUE(CBS_get_asn1(&cbs, &child, t.tag)); EXPECT_EQ(0u, CBS_len(&child)); EXPECT_EQ(0u, CBS_len(&cbs)); CBS_init(&cbs, t.in.data(), t.in.size()); EXPECT_FALSE(CBS_get_asn1(&cbs, &child, t.tag + 1)); } } } TEST(CBSTest, GetOptionalASN1Bool) { static const uint8_t kTrue[] = {0x0a, 3, CBS_ASN1_BOOLEAN, 1, 0xff}; static const uint8_t kFalse[] = {0x0a, 3, CBS_ASN1_BOOLEAN, 1, 0x00}; static const uint8_t kInvalid[] = {0x0a, 3, CBS_ASN1_BOOLEAN, 1, 0x01}; CBS data; CBS_init(&data, NULL, 0); int val = 2; ASSERT_TRUE(CBS_get_optional_asn1_bool(&data, &val, 0x0a, 0)); EXPECT_EQ(0, val); CBS_init(&data, kTrue, sizeof(kTrue)); val = 2; ASSERT_TRUE(CBS_get_optional_asn1_bool(&data, &val, 0x0a, 0)); EXPECT_EQ(1, val); CBS_init(&data, kFalse, sizeof(kFalse)); val = 2; ASSERT_TRUE(CBS_get_optional_asn1_bool(&data, &val, 0x0a, 1)); EXPECT_EQ(0, val); CBS_init(&data, kInvalid, sizeof(kInvalid)); EXPECT_FALSE(CBS_get_optional_asn1_bool(&data, &val, 0x0a, 1)); } // Test that CBB_init may be used on an uninitialized input. TEST(CBBTest, InitUninitialized) { CBB cbb; ASSERT_TRUE(CBB_init(&cbb, 100)); CBB_cleanup(&cbb); } TEST(CBBTest, Basic) { static const uint8_t kExpected[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 0xa, 0xb, 0xc}; uint8_t *buf; size_t buf_len; bssl::ScopedCBB cbb; ASSERT_TRUE(CBB_init(cbb.get(), 100)); cbb.Reset(); ASSERT_TRUE(CBB_init(cbb.get(), 0)); ASSERT_TRUE(CBB_add_u8(cbb.get(), 1)); ASSERT_TRUE(CBB_add_u16(cbb.get(), 0x203)); ASSERT_TRUE(CBB_add_u24(cbb.get(), 0x40506)); ASSERT_TRUE(CBB_add_u32(cbb.get(), 0x708090a)); ASSERT_TRUE(CBB_add_bytes(cbb.get(), (const uint8_t *)"\x0b\x0c", 2)); ASSERT_TRUE(CBB_finish(cbb.get(), &buf, &buf_len)); bssl::UniquePtr<uint8_t> scoper(buf); EXPECT_EQ(Bytes(kExpected), Bytes(buf, buf_len)); } TEST(CBBTest, Fixed) { bssl::ScopedCBB cbb; uint8_t buf[1]; uint8_t *out_buf; size_t out_size; ASSERT_TRUE(CBB_init_fixed(cbb.get(), NULL, 0)); ASSERT_TRUE(CBB_finish(cbb.get(), &out_buf, &out_size)); EXPECT_EQ(NULL, out_buf); EXPECT_EQ(0u, out_size); cbb.Reset(); ASSERT_TRUE(CBB_init_fixed(cbb.get(), buf, 1)); ASSERT_TRUE(CBB_add_u8(cbb.get(), 1)); ASSERT_TRUE(CBB_finish(cbb.get(), &out_buf, &out_size)); EXPECT_EQ(buf, out_buf); EXPECT_EQ(1u, out_size); EXPECT_EQ(1u, buf[0]); cbb.Reset(); ASSERT_TRUE(CBB_init_fixed(cbb.get(), buf, 1)); ASSERT_TRUE(CBB_add_u8(cbb.get(), 1)); EXPECT_FALSE(CBB_add_u8(cbb.get(), 2)); } // Test that calling CBB_finish on a child does nothing. TEST(CBBTest, FinishChild) { CBB child; uint8_t *out_buf; size_t out_size; bssl::ScopedCBB cbb; ASSERT_TRUE(CBB_init(cbb.get(), 16)); ASSERT_TRUE(CBB_add_u8_length_prefixed(cbb.get(), &child)); EXPECT_FALSE(CBB_finish(&child, &out_buf, &out_size)); ASSERT_TRUE(CBB_finish(cbb.get(), &out_buf, &out_size)); bssl::UniquePtr<uint8_t> scoper(out_buf); ASSERT_EQ(1u, out_size); EXPECT_EQ(0u, out_buf[0]); } TEST(CBBTest, Prefixed) { static const uint8_t kExpected[] = {0, 1, 1, 0, 2, 2, 3, 0, 0, 3, 4, 5, 6, 5, 4, 1, 0, 1, 2}; uint8_t *buf; size_t buf_len; bssl::ScopedCBB cbb; CBB contents, inner_contents, inner_inner_contents; ASSERT_TRUE(CBB_init(cbb.get(), 0)); EXPECT_EQ(0u, CBB_len(cbb.get())); ASSERT_TRUE(CBB_add_u8_length_prefixed(cbb.get(), &contents)); ASSERT_TRUE(CBB_add_u8_length_prefixed(cbb.get(), &contents)); ASSERT_TRUE(CBB_add_u8(&contents, 1)); EXPECT_EQ(1u, CBB_len(&contents)); ASSERT_TRUE(CBB_flush(cbb.get())); EXPECT_EQ(3u, CBB_len(cbb.get())); ASSERT_TRUE(CBB_add_u16_length_prefixed(cbb.get(), &contents)); ASSERT_TRUE(CBB_add_u16(&contents, 0x203)); ASSERT_TRUE(CBB_add_u24_length_prefixed(cbb.get(), &contents)); ASSERT_TRUE(CBB_add_u24(&contents, 0x40506)); ASSERT_TRUE(CBB_add_u8_length_prefixed(cbb.get(), &contents)); ASSERT_TRUE(CBB_add_u8_length_prefixed(&contents, &inner_contents)); ASSERT_TRUE(CBB_add_u8(&inner_contents, 1)); ASSERT_TRUE( CBB_add_u16_length_prefixed(&inner_contents, &inner_inner_contents)); ASSERT_TRUE(CBB_add_u8(&inner_inner_contents, 2)); ASSERT_TRUE(CBB_finish(cbb.get(), &buf, &buf_len)); bssl::UniquePtr<uint8_t> scoper(buf); EXPECT_EQ(Bytes(kExpected), Bytes(buf, buf_len)); } TEST(CBBTest, DiscardChild) { bssl::ScopedCBB cbb; CBB contents, inner_contents, inner_inner_contents; ASSERT_TRUE(CBB_init(cbb.get(), 0)); ASSERT_TRUE(CBB_add_u8(cbb.get(), 0xaa)); // Discarding |cbb|'s children preserves the byte written. CBB_discard_child(cbb.get()); ASSERT_TRUE(CBB_add_u8_length_prefixed(cbb.get(), &contents)); ASSERT_TRUE(CBB_add_u8_length_prefixed(cbb.get(), &contents)); ASSERT_TRUE(CBB_add_u8(&contents, 0xbb)); ASSERT_TRUE(CBB_add_u16_length_prefixed(cbb.get(), &contents)); ASSERT_TRUE(CBB_add_u16(&contents, 0xcccc)); ASSERT_TRUE(CBB_add_u24_length_prefixed(cbb.get(), &contents)); ASSERT_TRUE(CBB_add_u24(&contents, 0xdddddd)); ASSERT_TRUE(CBB_add_u8_length_prefixed(cbb.get(), &contents)); ASSERT_TRUE(CBB_add_u8(&contents, 0xff)); ASSERT_TRUE(CBB_add_u8_length_prefixed(&contents, &inner_contents)); ASSERT_TRUE(CBB_add_u8(&inner_contents, 0x42)); ASSERT_TRUE( CBB_add_u16_length_prefixed(&inner_contents, &inner_inner_contents)); ASSERT_TRUE(CBB_add_u8(&inner_inner_contents, 0x99)); // Discard everything from |inner_contents| down. CBB_discard_child(&contents); uint8_t *buf; size_t buf_len; ASSERT_TRUE(CBB_finish(cbb.get(), &buf, &buf_len)); bssl::UniquePtr<uint8_t> scoper(buf); static const uint8_t kExpected[] = { 0xaa, 0, 1, 0xbb, 0, 2, 0xcc, 0xcc, 0, 0, 3, 0xdd, 0xdd, 0xdd, 1, 0xff, }; EXPECT_EQ(Bytes(kExpected), Bytes(buf, buf_len)); } TEST(CBBTest, Misuse) { bssl::ScopedCBB cbb; CBB child, contents; uint8_t *buf; size_t buf_len; ASSERT_TRUE(CBB_init(cbb.get(), 0)); ASSERT_TRUE(CBB_add_u8_length_prefixed(cbb.get(), &child)); ASSERT_TRUE(CBB_add_u8(&child, 1)); ASSERT_TRUE(CBB_add_u8(cbb.get(), 2)); // Since we wrote to |cbb|, |child| is now invalid and attempts to write to // it should fail. EXPECT_FALSE(CBB_add_u8(&child, 1)); EXPECT_FALSE(CBB_add_u16(&child, 1)); EXPECT_FALSE(CBB_add_u24(&child, 1)); EXPECT_FALSE(CBB_add_u8_length_prefixed(&child, &contents)); EXPECT_FALSE(CBB_add_u16_length_prefixed(&child, &contents)); EXPECT_FALSE(CBB_add_asn1(&child, &contents, 1)); EXPECT_FALSE(CBB_add_bytes(&child, (const uint8_t*) "a", 1)); ASSERT_TRUE(CBB_finish(cbb.get(), &buf, &buf_len)); bssl::UniquePtr<uint8_t> scoper(buf); EXPECT_EQ(Bytes("\x01\x01\x02"), Bytes(buf, buf_len)); } TEST(CBBTest, ASN1) { static const uint8_t kExpected[] = { // SEQUENCE { 1 2 3 } 0x30, 3, 1, 2, 3, // [4 CONSTRUCTED] { 4 5 6 } 0xa4, 3, 4, 5, 6, // [APPLICATION 30 PRIMITIVE] { 7 8 9 } 0x5e, 3, 7, 8, 9, // [APPLICATION 31 PRIMITIVE] { 10 11 12 } 0x5f, 0x1f, 3, 10, 11, 12, // [PRIVATE 2^29-1 CONSTRUCTED] { 13 14 15 } 0xff, 0x81, 0xff, 0xff, 0xff, 0x7f, 3, 13, 14, 15, }; uint8_t *buf; size_t buf_len; bssl::ScopedCBB cbb; CBB contents, inner_contents; ASSERT_TRUE(CBB_init(cbb.get(), 0)); ASSERT_TRUE(CBB_add_asn1(cbb.get(), &contents, CBS_ASN1_SEQUENCE)); ASSERT_TRUE(CBB_add_bytes(&contents, (const uint8_t *)"\x01\x02\x03", 3)); ASSERT_TRUE( CBB_add_asn1(cbb.get(), &contents, CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 4)); ASSERT_TRUE(CBB_add_bytes(&contents, (const uint8_t *)"\x04\x05\x06", 3)); ASSERT_TRUE( CBB_add_asn1(cbb.get(), &contents, CBS_ASN1_APPLICATION | 30)); ASSERT_TRUE(CBB_add_bytes(&contents, (const uint8_t *)"\x07\x08\x09", 3)); ASSERT_TRUE( CBB_add_asn1(cbb.get(), &contents, CBS_ASN1_APPLICATION | 31)); ASSERT_TRUE(CBB_add_bytes(&contents, (const uint8_t *)"\x0a\x0b\x0c", 3)); ASSERT_TRUE( CBB_add_asn1(cbb.get(), &contents, CBS_ASN1_PRIVATE | CBS_ASN1_CONSTRUCTED | 0x1fffffff)); ASSERT_TRUE(CBB_add_bytes(&contents, (const uint8_t *)"\x0d\x0e\x0f", 3)); ASSERT_TRUE(CBB_finish(cbb.get(), &buf, &buf_len)); bssl::UniquePtr<uint8_t> scoper(buf); EXPECT_EQ(Bytes(kExpected), Bytes(buf, buf_len)); std::vector<uint8_t> test_data(100000, 0x42); ASSERT_TRUE(CBB_init(cbb.get(), 0)); ASSERT_TRUE(CBB_add_asn1(cbb.get(), &contents, CBS_ASN1_SEQUENCE)); ASSERT_TRUE(CBB_add_bytes(&contents, test_data.data(), 130)); ASSERT_TRUE(CBB_finish(cbb.get(), &buf, &buf_len)); scoper.reset(buf); ASSERT_EQ(3u + 130u, buf_len); EXPECT_EQ(Bytes("\x30\x81\x82"), Bytes(buf, 3)); EXPECT_EQ(Bytes(test_data.data(), 130), Bytes(buf + 3, 130)); ASSERT_TRUE(CBB_init(cbb.get(), 0)); ASSERT_TRUE(CBB_add_asn1(cbb.get(), &contents, CBS_ASN1_SEQUENCE)); ASSERT_TRUE(CBB_add_bytes(&contents, test_data.data(), 1000)); ASSERT_TRUE(CBB_finish(cbb.get(), &buf, &buf_len)); scoper.reset(buf); ASSERT_EQ(4u + 1000u, buf_len); EXPECT_EQ(Bytes("\x30\x82\x03\xe8"), Bytes(buf, 4)); EXPECT_EQ(Bytes(test_data.data(), 1000), Bytes(buf + 4, 1000)); ASSERT_TRUE(CBB_init(cbb.get(), 0)); ASSERT_TRUE(CBB_add_asn1(cbb.get(), &contents, CBS_ASN1_SEQUENCE)); ASSERT_TRUE(CBB_add_asn1(&contents, &inner_contents, CBS_ASN1_SEQUENCE)); ASSERT_TRUE(CBB_add_bytes(&inner_contents, test_data.data(), 100000)); ASSERT_TRUE(CBB_finish(cbb.get(), &buf, &buf_len)); scoper.reset(buf); ASSERT_EQ(5u + 5u + 100000u, buf_len); EXPECT_EQ(Bytes("\x30\x83\x01\x86\xa5\x30\x83\x01\x86\xa0"), Bytes(buf, 10)); EXPECT_EQ(Bytes(test_data.data(), test_data.size()), Bytes(buf + 10, 100000)); } static void ExpectBerConvert(const char *name, const uint8_t *der_expected, size_t der_len, const uint8_t *ber, size_t ber_len) { SCOPED_TRACE(name); CBS in; uint8_t *out; size_t out_len; CBS_init(&in, ber, ber_len); ASSERT_TRUE(CBS_asn1_ber_to_der(&in, &out, &out_len)); bssl::UniquePtr<uint8_t> scoper(out); if (out == NULL) { EXPECT_EQ(Bytes(der_expected, der_len), Bytes(ber, ber_len)); } else { EXPECT_NE(Bytes(der_expected, der_len), Bytes(ber, ber_len)); EXPECT_EQ(Bytes(der_expected, der_len), Bytes(out, out_len)); } } TEST(CBSTest, BerConvert) { static const uint8_t kSimpleBER[] = {0x01, 0x01, 0x00}; // kIndefBER contains a SEQUENCE with an indefinite length. static const uint8_t kIndefBER[] = {0x30, 0x80, 0x01, 0x01, 0x02, 0x00, 0x00}; static const uint8_t kIndefDER[] = {0x30, 0x03, 0x01, 0x01, 0x02}; // kIndefBER2 contains a constructed [APPLICATION 31] with an indefinite // length. static const uint8_t kIndefBER2[] = {0x7f, 0x1f, 0x80, 0x01, 0x01, 0x02, 0x00, 0x00}; static const uint8_t kIndefDER2[] = {0x7f, 0x1f, 0x03, 0x01, 0x01, 0x02}; // kOctetStringBER contains an indefinite length OCTET STRING with two parts. // These parts need to be concatenated in DER form. static const uint8_t kOctetStringBER[] = {0x24, 0x80, 0x04, 0x02, 0, 1, 0x04, 0x02, 2, 3, 0x00, 0x00}; static const uint8_t kOctetStringDER[] = {0x04, 0x04, 0, 1, 2, 3}; // kNSSBER is part of a PKCS#12 message generated by NSS that uses indefinite // length elements extensively. static const uint8_t kNSSBER[] = { 0x30, 0x80, 0x02, 0x01, 0x03, 0x30, 0x80, 0x06, 0x09, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x01, 0x07, 0x01, 0xa0, 0x80, 0x24, 0x80, 0x04, 0x04, 0x01, 0x02, 0x03, 0x04, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x30, 0x39, 0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 0x2b, 0x0e, 0x03, 0x02, 0x1a, 0x05, 0x00, 0x04, 0x14, 0x84, 0x98, 0xfc, 0x66, 0x33, 0xee, 0xba, 0xe7, 0x90, 0xc1, 0xb6, 0xe8, 0x8f, 0xfe, 0x1d, 0xc5, 0xa5, 0x97, 0x93, 0x3e, 0x04, 0x10, 0x38, 0x62, 0xc6, 0x44, 0x12, 0xd5, 0x30, 0x00, 0xf8, 0xf2, 0x1b, 0xf0, 0x6e, 0x10, 0x9b, 0xb8, 0x02, 0x02, 0x07, 0xd0, 0x00, 0x00, }; static const uint8_t kNSSDER[] = { 0x30, 0x53, 0x02, 0x01, 0x03, 0x30, 0x13, 0x06, 0x09, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x01, 0x07, 0x01, 0xa0, 0x06, 0x04, 0x04, 0x01, 0x02, 0x03, 0x04, 0x30, 0x39, 0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 0x2b, 0x0e, 0x03, 0x02, 0x1a, 0x05, 0x00, 0x04, 0x14, 0x84, 0x98, 0xfc, 0x66, 0x33, 0xee, 0xba, 0xe7, 0x90, 0xc1, 0xb6, 0xe8, 0x8f, 0xfe, 0x1d, 0xc5, 0xa5, 0x97, 0x93, 0x3e, 0x04, 0x10, 0x38, 0x62, 0xc6, 0x44, 0x12, 0xd5, 0x30, 0x00, 0xf8, 0xf2, 0x1b, 0xf0, 0x6e, 0x10, 0x9b, 0xb8, 0x02, 0x02, 0x07, 0xd0, }; // kConstructedStringBER contains a deeply-nested constructed OCTET STRING. // The BER conversion collapses this to one level deep, but not completely. static const uint8_t kConstructedStringBER[] = { 0xa0, 0x10, 0x24, 0x06, 0x04, 0x01, 0x00, 0x04, 0x01, 0x01, 0x24, 0x06, 0x04, 0x01, 0x02, 0x04, 0x01, 0x03, }; static const uint8_t kConstructedStringDER[] = { 0xa0, 0x08, 0x04, 0x02, 0x00, 0x01, 0x04, 0x02, 0x02, 0x03, }; ExpectBerConvert("kSimpleBER", kSimpleBER, sizeof(kSimpleBER), kSimpleBER, sizeof(kSimpleBER)); ExpectBerConvert("kIndefBER", kIndefDER, sizeof(kIndefDER), kIndefBER, sizeof(kIndefBER)); ExpectBerConvert("kIndefBER2", kIndefDER2, sizeof(kIndefDER2), kIndefBER2, sizeof(kIndefBER2)); ExpectBerConvert("kOctetStringBER", kOctetStringDER, sizeof(kOctetStringDER), kOctetStringBER, sizeof(kOctetStringBER)); ExpectBerConvert("kNSSBER", kNSSDER, sizeof(kNSSDER), kNSSBER, sizeof(kNSSBER)); ExpectBerConvert("kConstructedStringBER", kConstructedStringDER, sizeof(kConstructedStringDER), kConstructedStringBER, sizeof(kConstructedStringBER)); } struct ImplicitStringTest { const char *in; size_t in_len; bool ok; const char *out; size_t out_len; }; static const ImplicitStringTest kImplicitStringTests[] = { // A properly-encoded string. {"\x80\x03\x61\x61\x61", 5, true, "aaa", 3}, // An implicit-tagged string. {"\xa0\x09\x04\x01\x61\x04\x01\x61\x04\x01\x61", 11, true, "aaa", 3}, // |CBS_get_asn1_implicit_string| only accepts one level deep of nesting. {"\xa0\x0b\x24\x06\x04\x01\x61\x04\x01\x61\x04\x01\x61", 13, false, nullptr, 0}, // The outer tag must match. {"\x81\x03\x61\x61\x61", 5, false, nullptr, 0}, {"\xa1\x09\x04\x01\x61\x04\x01\x61\x04\x01\x61", 11, false, nullptr, 0}, // The inner tag must match. {"\xa1\x09\x0c\x01\x61\x0c\x01\x61\x0c\x01\x61", 11, false, nullptr, 0}, }; TEST(CBSTest, ImplicitString) { for (const auto &test : kImplicitStringTests) { SCOPED_TRACE(Bytes(test.in, test.in_len)); uint8_t *storage = nullptr; CBS in, out; CBS_init(&in, reinterpret_cast<const uint8_t *>(test.in), test.in_len); int ok = CBS_get_asn1_implicit_string(&in, &out, &storage, CBS_ASN1_CONTEXT_SPECIFIC | 0, CBS_ASN1_OCTETSTRING); bssl::UniquePtr<uint8_t> scoper(storage); EXPECT_EQ(test.ok, static_cast<bool>(ok)); if (ok) { EXPECT_EQ(Bytes(test.out, test.out_len), Bytes(CBS_data(&out), CBS_len(&out))); } } } struct ASN1Uint64Test { uint64_t value; const char *encoding; size_t encoding_len; }; static const ASN1Uint64Test kASN1Uint64Tests[] = { {0, "\x02\x01\x00", 3}, {1, "\x02\x01\x01", 3}, {127, "\x02\x01\x7f", 3}, {128, "\x02\x02\x00\x80", 4}, {0xdeadbeef, "\x02\x05\x00\xde\xad\xbe\xef", 7}, {UINT64_C(0x0102030405060708), "\x02\x08\x01\x02\x03\x04\x05\x06\x07\x08", 10}, {UINT64_C(0xffffffffffffffff), "\x02\x09\x00\xff\xff\xff\xff\xff\xff\xff\xff", 11}, }; struct ASN1InvalidUint64Test { const char *encoding; size_t encoding_len; }; static const ASN1InvalidUint64Test kASN1InvalidUint64Tests[] = { // Bad tag. {"\x03\x01\x00", 3}, // Empty contents. {"\x02\x00", 2}, // Negative number. {"\x02\x01\x80", 3}, // Overflow. {"\x02\x09\x01\x00\x00\x00\x00\x00\x00\x00\x00", 11}, // Leading zeros. {"\x02\x02\x00\x01", 4}, }; TEST(CBSTest, ASN1Uint64) { for (size_t i = 0; i < OPENSSL_ARRAY_SIZE(kASN1Uint64Tests); i++) { SCOPED_TRACE(i); const ASN1Uint64Test *test = &kASN1Uint64Tests[i]; CBS cbs; uint64_t value; uint8_t *out; size_t len; CBS_init(&cbs, (const uint8_t *)test->encoding, test->encoding_len); ASSERT_TRUE(CBS_get_asn1_uint64(&cbs, &value)); EXPECT_EQ(0u, CBS_len(&cbs)); EXPECT_EQ(test->value, value); bssl::ScopedCBB cbb; ASSERT_TRUE(CBB_init(cbb.get(), 0)); ASSERT_TRUE(CBB_add_asn1_uint64(cbb.get(), test->value)); ASSERT_TRUE(CBB_finish(cbb.get(), &out, &len)); bssl::UniquePtr<uint8_t> scoper(out); EXPECT_EQ(Bytes(test->encoding, test->encoding_len), Bytes(out, len)); } for (size_t i = 0; i < OPENSSL_ARRAY_SIZE(kASN1InvalidUint64Tests); i++) { const ASN1InvalidUint64Test *test = &kASN1InvalidUint64Tests[i]; CBS cbs; uint64_t value; CBS_init(&cbs, (const uint8_t *)test->encoding, test->encoding_len); EXPECT_FALSE(CBS_get_asn1_uint64(&cbs, &value)); } } TEST(CBBTest, Zero) { CBB cbb; CBB_zero(&cbb); // Calling |CBB_cleanup| on a zero-state |CBB| must not crash. CBB_cleanup(&cbb); } TEST(CBBTest, Reserve) { uint8_t buf[10]; uint8_t *ptr; size_t len; bssl::ScopedCBB cbb; ASSERT_TRUE(CBB_init_fixed(cbb.get(), buf, sizeof(buf))); // Too large. EXPECT_FALSE(CBB_reserve(cbb.get(), &ptr, 11)); cbb.Reset(); ASSERT_TRUE(CBB_init_fixed(cbb.get(), buf, sizeof(buf))); // Successfully reserve the entire space. ASSERT_TRUE(CBB_reserve(cbb.get(), &ptr, 10)); EXPECT_EQ(buf, ptr); // Advancing under the maximum bytes is legal. ASSERT_TRUE(CBB_did_write(cbb.get(), 5)); ASSERT_TRUE(CBB_finish(cbb.get(), NULL, &len)); EXPECT_EQ(5u, len); } // Test that CBB errors are sticky; once on operation on CBB fails, all // subsequent ones do. TEST(CBBTest, StickyError) { // Write an input that exceeds the limit for its length prefix. bssl::ScopedCBB cbb; CBB child; static const uint8_t kZeros[256] = {0}; ASSERT_TRUE(CBB_init(cbb.get(), 0)); ASSERT_TRUE(CBB_add_u8_length_prefixed(cbb.get(), &child)); ASSERT_TRUE(CBB_add_bytes(&child, kZeros, sizeof(kZeros))); ASSERT_FALSE(CBB_flush(cbb.get())); // All future operations should fail. uint8_t *ptr; size_t len; EXPECT_FALSE(CBB_add_u8(cbb.get(), 0)); EXPECT_FALSE(CBB_finish(cbb.get(), &ptr, &len)); // Write an input that cannot fit in a fixed CBB. cbb.Reset(); uint8_t buf; ASSERT_TRUE(CBB_init_fixed(cbb.get(), &buf, 1)); ASSERT_FALSE(CBB_add_bytes(cbb.get(), kZeros, sizeof(kZeros))); // All future operations should fail. EXPECT_FALSE(CBB_add_u8(cbb.get(), 0)); EXPECT_FALSE(CBB_finish(cbb.get(), &ptr, &len)); // Write a u32 that cannot fit in a u24. cbb.Reset(); ASSERT_TRUE(CBB_init(cbb.get(), 0)); ASSERT_FALSE(CBB_add_u24(cbb.get(), 1u << 24)); // All future operations should fail. EXPECT_FALSE(CBB_add_u8(cbb.get(), 0)); EXPECT_FALSE(CBB_finish(cbb.get(), &ptr, &len)); } TEST(CBSTest, BitString) { static const std::vector<uint8_t> kValidBitStrings[] = { {0x00}, // 0 bits {0x07, 0x80}, // 1 bit {0x04, 0xf0}, // 4 bits {0x00, 0xff}, // 8 bits {0x06, 0xff, 0xff, 0xff, 0xff, 0xff, 0xc0}, // 42 bits }; for (const auto& test : kValidBitStrings) { SCOPED_TRACE(Bytes(test.data(), test.size())); CBS cbs; CBS_init(&cbs, test.data(), test.size()); EXPECT_TRUE(CBS_is_valid_asn1_bitstring(&cbs)); } static const std::vector<uint8_t> kInvalidBitStrings[] = { // BIT STRINGs always have a leading byte. std::vector<uint8_t>{}, // It's not possible to take an unused bit off the empty string. {0x01}, // There can be at most 7 unused bits. {0x08, 0xff}, {0xff, 0xff}, // All unused bits must be cleared. {0x06, 0xff, 0xc1}, }; for (const auto& test : kInvalidBitStrings) { SCOPED_TRACE(Bytes(test.data(), test.size())); CBS cbs; CBS_init(&cbs, test.data(), test.size()); EXPECT_FALSE(CBS_is_valid_asn1_bitstring(&cbs)); // CBS_asn1_bitstring_has_bit returns false on invalid inputs. EXPECT_FALSE(CBS_asn1_bitstring_has_bit(&cbs, 0)); } static const struct { std::vector<uint8_t> in; unsigned bit; bool bit_set; } kBitTests[] = { // Basic tests. {{0x00}, 0, false}, {{0x07, 0x80}, 0, true}, {{0x06, 0x0f, 0x40}, 0, false}, {{0x06, 0x0f, 0x40}, 1, false}, {{0x06, 0x0f, 0x40}, 2, false}, {{0x06, 0x0f, 0x40}, 3, false}, {{0x06, 0x0f, 0x40}, 4, true}, {{0x06, 0x0f, 0x40}, 5, true}, {{0x06, 0x0f, 0x40}, 6, true}, {{0x06, 0x0f, 0x40}, 7, true}, {{0x06, 0x0f, 0x40}, 8, false}, {{0x06, 0x0f, 0x40}, 9, true}, // Out-of-bounds bits return 0. {{0x06, 0x0f, 0x40}, 10, false}, {{0x06, 0x0f, 0x40}, 15, false}, {{0x06, 0x0f, 0x40}, 16, false}, {{0x06, 0x0f, 0x40}, 1000, false}, }; for (const auto& test : kBitTests) { SCOPED_TRACE(Bytes(test.in.data(), test.in.size())); SCOPED_TRACE(test.bit); CBS cbs; CBS_init(&cbs, test.in.data(), test.in.size()); EXPECT_EQ(static_cast<int>(test.bit_set), CBS_asn1_bitstring_has_bit(&cbs, test.bit)); } } TEST(CBBTest, AddOIDFromText) { const struct { const char *text; std::vector<uint8_t> der; } kValidOIDs[] = { // Some valid values. {"0.0", {0x00}}, {"0.2.3.4", {0x2, 0x3, 0x4}}, {"1.2.3.4", {0x2a, 0x3, 0x4}}, {"2.2.3.4", {0x52, 0x3, 0x4}}, {"1.2.840.113554.4.1.72585", {0x2a, 0x86, 0x48, 0x86, 0xf7, 0x12, 0x04, 0x01, 0x84, 0xb7, 0x09}}, // Test edge cases around the first component. {"0.39", {0x27}}, {"1.0", {0x28}}, {"1.39", {0x4f}}, {"2.0", {0x50}}, {"2.1", {0x51}}, {"2.40", {0x78}}, // Edge cases near an overflow. {"1.2.18446744073709551615", {0x2a, 0x81, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x7f}}, {"2.18446744073709551535", {0x81, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x7f}}, }; const char *kInvalidTexts[] = { // Invalid second component. "0.40", "1.40", // Invalid first component. "3.1", // The empty string is not an OID. "", // No empty components. ".1.2.3.4.5", "1..2.3.4.5", "1.2.3.4.5.", // There must be at least two components. "1", // No extra leading zeros. "00.1.2.3.4", "01.1.2.3.4", // Overflow for both components or 40*A + B. "1.2.18446744073709551616", "2.18446744073709551536", }; const std::vector<uint8_t> kInvalidDER[] = { // The empty string is not an OID. {}, // Non-minimal representation. {0x80, 0x01}, // Overflow. This is the DER representation of // 1.2.840.113554.4.1.72585.18446744073709551616. (The final value is // 2^64.) {0x2a, 0x86, 0x48, 0x86, 0xf7, 0x12, 0x04, 0x01, 0x84, 0xb7, 0x09, 0x82, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x00}, }; for (const auto &t : kValidOIDs) { SCOPED_TRACE(t.text); bssl::ScopedCBB cbb; ASSERT_TRUE(CBB_init(cbb.get(), 0)); ASSERT_TRUE(CBB_add_asn1_oid_from_text(cbb.get(), t.text, strlen(t.text))); uint8_t *out; size_t len; ASSERT_TRUE(CBB_finish(cbb.get(), &out, &len)); bssl::UniquePtr<uint8_t> free_out(out); EXPECT_EQ(Bytes(t.der), Bytes(out, len)); CBS cbs; CBS_init(&cbs, t.der.data(), t.der.size()); bssl::UniquePtr<char> text(CBS_asn1_oid_to_text(&cbs)); ASSERT_TRUE(text.get()); EXPECT_STREQ(t.text, text.get()); } for (const char *t : kInvalidTexts) { SCOPED_TRACE(t); bssl::ScopedCBB cbb; ASSERT_TRUE(CBB_init(cbb.get(), 0)); EXPECT_FALSE(CBB_add_asn1_oid_from_text(cbb.get(), t, strlen(t))); } for (const auto &t : kInvalidDER) { SCOPED_TRACE(Bytes(t)); CBS cbs; CBS_init(&cbs, t.data(), t.size()); bssl::UniquePtr<char> text(CBS_asn1_oid_to_text(&cbs)); EXPECT_FALSE(text); } } TEST(CBBTest, FlushASN1SetOf) { const struct { std::vector<uint8_t> in, out; } kValidInputs[] = { // No elements. {{}, {}}, // One element. {{0x30, 0x00}, {0x30, 0x00}}, // Two identical elements. {{0x30, 0x00, 0x30, 0x00}, {0x30, 0x00, 0x30, 0x00}}, // clang-format off {{0x30, 0x02, 0x00, 0x00, 0x30, 0x00, 0x01, 0x00, 0x30, 0x02, 0x00, 0x00, 0x30, 0x03, 0x00, 0x00, 0x00, 0x30, 0x00, 0x30, 0x03, 0x00, 0x00, 0x01, 0x30, 0x01, 0x00, 0x01, 0x01, 0x00}, {0x01, 0x00, 0x01, 0x01, 0x00, 0x30, 0x00, 0x30, 0x00, 0x30, 0x01, 0x00, 0x30, 0x02, 0x00, 0x00, 0x30, 0x02, 0x00, 0x00, 0x30, 0x03, 0x00, 0x00, 0x00, 0x30, 0x03, 0x00, 0x00, 0x01}}, // clang-format on }; for (const auto &t : kValidInputs) { SCOPED_TRACE(Bytes(t.in)); bssl::ScopedCBB cbb; CBB child; ASSERT_TRUE(CBB_init(cbb.get(), 0)); ASSERT_TRUE(CBB_add_asn1(cbb.get(), &child, CBS_ASN1_SET)); ASSERT_TRUE(CBB_add_bytes(&child, t.in.data(), t.in.size())); ASSERT_TRUE(CBB_flush_asn1_set_of(&child)); EXPECT_EQ(Bytes(t.out), Bytes(CBB_data(&child), CBB_len(&child))); // Running it again should be idempotent. ASSERT_TRUE(CBB_flush_asn1_set_of(&child)); EXPECT_EQ(Bytes(t.out), Bytes(CBB_data(&child), CBB_len(&child))); // The ASN.1 header remain intact. ASSERT_TRUE(CBB_flush(cbb.get())); EXPECT_EQ(0x31, CBB_data(cbb.get())[0]); } const std::vector<uint8_t> kInvalidInputs[] = { {0x30}, {0x30, 0x01}, {0x30, 0x00, 0x30, 0x00, 0x30, 0x01}, }; for (const auto &t : kInvalidInputs) { SCOPED_TRACE(Bytes(t)); bssl::ScopedCBB cbb; CBB child; ASSERT_TRUE(CBB_init(cbb.get(), 0)); ASSERT_TRUE(CBB_add_asn1(cbb.get(), &child, CBS_ASN1_SET)); ASSERT_TRUE(CBB_add_bytes(&child, t.data(), t.size())); EXPECT_FALSE(CBB_flush_asn1_set_of(&child)); } }