/* Copyright (c) 2014, Google Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include <openssl/aead.h> #include <string.h> #include <openssl/chacha.h> #include <openssl/cipher.h> #include <openssl/cpu.h> #include <openssl/err.h> #include <openssl/mem.h> #include <openssl/poly1305.h> #include <openssl/type_check.h> #include "../fipsmodule/cipher/internal.h" #include "../internal.h" #define POLY1305_TAG_LEN 16 struct aead_chacha20_poly1305_ctx { uint8_t key[32]; }; // For convenience (the x86_64 calling convention allows only six parameters in // registers), the final parameter for the assembly functions is both an input // and output parameter. union open_data { struct { alignas(16) uint8_t key[32]; uint32_t counter; uint8_t nonce[12]; } in; struct { uint8_t tag[POLY1305_TAG_LEN]; } out; }; union seal_data { struct { alignas(16) uint8_t key[32]; uint32_t counter; uint8_t nonce[12]; const uint8_t *extra_ciphertext; size_t extra_ciphertext_len; } in; struct { uint8_t tag[POLY1305_TAG_LEN]; } out; }; #if defined(OPENSSL_X86_64) && !defined(OPENSSL_NO_ASM) && \ !defined(OPENSSL_WINDOWS) static int asm_capable(void) { const int sse41_capable = (OPENSSL_ia32cap_P[1] & (1 << 19)) != 0; return sse41_capable; } OPENSSL_COMPILE_ASSERT(sizeof(union open_data) == 48, wrong_open_data_size); OPENSSL_COMPILE_ASSERT(sizeof(union seal_data) == 48 + 8 + 8, wrong_seal_data_size); // chacha20_poly1305_open is defined in chacha20_poly1305_x86_64.pl. It decrypts // |plaintext_len| bytes from |ciphertext| and writes them to |out_plaintext|. // Additional input parameters are passed in |aead_data->in|. On exit, it will // write calculated tag value to |aead_data->out.tag|, which the caller must // check. extern void chacha20_poly1305_open(uint8_t *out_plaintext, const uint8_t *ciphertext, size_t plaintext_len, const uint8_t *ad, size_t ad_len, union open_data *aead_data); // chacha20_poly1305_open is defined in chacha20_poly1305_x86_64.pl. It encrypts // |plaintext_len| bytes from |plaintext| and writes them to |out_ciphertext|. // Additional input parameters are passed in |aead_data->in|. The calculated tag // value is over the computed ciphertext concatenated with |extra_ciphertext| // and written to |aead_data->out.tag|. extern void chacha20_poly1305_seal(uint8_t *out_ciphertext, const uint8_t *plaintext, size_t plaintext_len, const uint8_t *ad, size_t ad_len, union seal_data *aead_data); #else static int asm_capable(void) { return 0; } static void chacha20_poly1305_open(uint8_t *out_plaintext, const uint8_t *ciphertext, size_t plaintext_len, const uint8_t *ad, size_t ad_len, union open_data *aead_data) {} static void chacha20_poly1305_seal(uint8_t *out_ciphertext, const uint8_t *plaintext, size_t plaintext_len, const uint8_t *ad, size_t ad_len, union seal_data *aead_data) {} #endif static int aead_chacha20_poly1305_init(EVP_AEAD_CTX *ctx, const uint8_t *key, size_t key_len, size_t tag_len) { struct aead_chacha20_poly1305_ctx *c20_ctx; if (tag_len == 0) { tag_len = POLY1305_TAG_LEN; } if (tag_len > POLY1305_TAG_LEN) { OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TOO_LARGE); return 0; } if (key_len != sizeof(c20_ctx->key)) { return 0; // internal error - EVP_AEAD_CTX_init should catch this. } c20_ctx = OPENSSL_malloc(sizeof(struct aead_chacha20_poly1305_ctx)); if (c20_ctx == NULL) { return 0; } OPENSSL_memcpy(c20_ctx->key, key, key_len); ctx->aead_state = c20_ctx; ctx->tag_len = tag_len; return 1; } static void aead_chacha20_poly1305_cleanup(EVP_AEAD_CTX *ctx) { OPENSSL_free(ctx->aead_state); } static void poly1305_update_length(poly1305_state *poly1305, size_t data_len) { uint8_t length_bytes[8]; for (unsigned i = 0; i < sizeof(length_bytes); i++) { length_bytes[i] = data_len; data_len >>= 8; } CRYPTO_poly1305_update(poly1305, length_bytes, sizeof(length_bytes)); } // calc_tag fills |tag| with the authentication tag for the given inputs. static void calc_tag(uint8_t tag[POLY1305_TAG_LEN], const struct aead_chacha20_poly1305_ctx *c20_ctx, const uint8_t nonce[12], const uint8_t *ad, size_t ad_len, const uint8_t *ciphertext, size_t ciphertext_len, const uint8_t *ciphertext_extra, size_t ciphertext_extra_len) { alignas(16) uint8_t poly1305_key[32]; OPENSSL_memset(poly1305_key, 0, sizeof(poly1305_key)); CRYPTO_chacha_20(poly1305_key, poly1305_key, sizeof(poly1305_key), c20_ctx->key, nonce, 0); static const uint8_t padding[16] = { 0 }; // Padding is all zeros. poly1305_state ctx; CRYPTO_poly1305_init(&ctx, poly1305_key); CRYPTO_poly1305_update(&ctx, ad, ad_len); if (ad_len % 16 != 0) { CRYPTO_poly1305_update(&ctx, padding, sizeof(padding) - (ad_len % 16)); } CRYPTO_poly1305_update(&ctx, ciphertext, ciphertext_len); CRYPTO_poly1305_update(&ctx, ciphertext_extra, ciphertext_extra_len); const size_t ciphertext_total = ciphertext_len + ciphertext_extra_len; if (ciphertext_total % 16 != 0) { CRYPTO_poly1305_update(&ctx, padding, sizeof(padding) - (ciphertext_total % 16)); } poly1305_update_length(&ctx, ad_len); poly1305_update_length(&ctx, ciphertext_total); CRYPTO_poly1305_finish(&ctx, tag); } static int aead_chacha20_poly1305_seal_scatter( const EVP_AEAD_CTX *ctx, uint8_t *out, uint8_t *out_tag, size_t *out_tag_len, size_t max_out_tag_len, const uint8_t *nonce, size_t nonce_len, const uint8_t *in, size_t in_len, const uint8_t *extra_in, size_t extra_in_len, const uint8_t *ad, size_t ad_len) { const struct aead_chacha20_poly1305_ctx *c20_ctx = ctx->aead_state; if (extra_in_len + ctx->tag_len < ctx->tag_len) { OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TOO_LARGE); return 0; } if (max_out_tag_len < ctx->tag_len + extra_in_len) { OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BUFFER_TOO_SMALL); return 0; } if (nonce_len != 12) { OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_UNSUPPORTED_NONCE_SIZE); return 0; } // |CRYPTO_chacha_20| uses a 32-bit block counter. Therefore we disallow // individual operations that work on more than 256GB at a time. // |in_len_64| is needed because, on 32-bit platforms, size_t is only // 32-bits and this produces a warning because it's always false. // Casting to uint64_t inside the conditional is not sufficient to stop // the warning. const uint64_t in_len_64 = in_len; if (in_len_64 >= (UINT64_C(1) << 32) * 64 - 64) { OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TOO_LARGE); return 0; } if (max_out_tag_len < ctx->tag_len) { OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BUFFER_TOO_SMALL); return 0; } // The the extra input is given, it is expected to be very short and so is // encrypted byte-by-byte first. if (extra_in_len) { static const size_t kChaChaBlockSize = 64; uint32_t block_counter = 1 + (in_len / kChaChaBlockSize); size_t offset = in_len % kChaChaBlockSize; uint8_t block[64 /* kChaChaBlockSize */]; for (size_t done = 0; done < extra_in_len; block_counter++) { memset(block, 0, sizeof(block)); CRYPTO_chacha_20(block, block, sizeof(block), c20_ctx->key, nonce, block_counter); for (size_t i = offset; i < sizeof(block) && done < extra_in_len; i++, done++) { out_tag[done] = extra_in[done] ^ block[i]; } offset = 0; } } union seal_data data; if (asm_capable()) { OPENSSL_memcpy(data.in.key, c20_ctx->key, 32); data.in.counter = 0; OPENSSL_memcpy(data.in.nonce, nonce, 12); data.in.extra_ciphertext = out_tag; data.in.extra_ciphertext_len = extra_in_len; chacha20_poly1305_seal(out, in, in_len, ad, ad_len, &data); } else { CRYPTO_chacha_20(out, in, in_len, c20_ctx->key, nonce, 1); calc_tag(data.out.tag, c20_ctx, nonce, ad, ad_len, out, in_len, out_tag, extra_in_len); } OPENSSL_memcpy(out_tag + extra_in_len, data.out.tag, ctx->tag_len); *out_tag_len = extra_in_len + ctx->tag_len; return 1; } static int aead_chacha20_poly1305_open_gather( const EVP_AEAD_CTX *ctx, uint8_t *out, const uint8_t *nonce, size_t nonce_len, const uint8_t *in, size_t in_len, const uint8_t *in_tag, size_t in_tag_len, const uint8_t *ad, size_t ad_len) { const struct aead_chacha20_poly1305_ctx *c20_ctx = ctx->aead_state; if (nonce_len != 12) { OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_UNSUPPORTED_NONCE_SIZE); return 0; } if (in_tag_len != ctx->tag_len) { OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT); return 0; } // |CRYPTO_chacha_20| uses a 32-bit block counter. Therefore we disallow // individual operations that work on more than 256GB at a time. // |in_len_64| is needed because, on 32-bit platforms, size_t is only // 32-bits and this produces a warning because it's always false. // Casting to uint64_t inside the conditional is not sufficient to stop // the warning. const uint64_t in_len_64 = in_len; if (in_len_64 >= (UINT64_C(1) << 32) * 64 - 64) { OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TOO_LARGE); return 0; } union open_data data; if (asm_capable()) { OPENSSL_memcpy(data.in.key, c20_ctx->key, 32); data.in.counter = 0; OPENSSL_memcpy(data.in.nonce, nonce, 12); chacha20_poly1305_open(out, in, in_len, ad, ad_len, &data); } else { calc_tag(data.out.tag, c20_ctx, nonce, ad, ad_len, in, in_len, NULL, 0); CRYPTO_chacha_20(out, in, in_len, c20_ctx->key, nonce, 1); } if (CRYPTO_memcmp(data.out.tag, in_tag, ctx->tag_len) != 0) { OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT); return 0; } return 1; } static const EVP_AEAD aead_chacha20_poly1305 = { 32, // key len 12, // nonce len POLY1305_TAG_LEN, // overhead POLY1305_TAG_LEN, // max tag length 1, // seal_scatter_supports_extra_in aead_chacha20_poly1305_init, NULL, // init_with_direction aead_chacha20_poly1305_cleanup, NULL /* open */, aead_chacha20_poly1305_seal_scatter, aead_chacha20_poly1305_open_gather, NULL, // get_iv NULL, // tag_len }; const EVP_AEAD *EVP_aead_chacha20_poly1305(void) { return &aead_chacha20_poly1305; }