/* ==================================================================== * Copyright (c) 2006 The OpenSSL Project. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * 3. All advertising materials mentioning features or use of this * software must display the following acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" * * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to * endorse or promote products derived from this software without * prior written permission. For written permission, please contact * licensing@OpenSSL.org. * * 5. Products derived from this software may not be called "OpenSSL" * nor may "OpenSSL" appear in their names without prior written * permission of the OpenSSL Project. * * 6. Redistributions of any form whatsoever must retain the following * acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" * * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * ==================================================================== * * This product includes cryptographic software written by Eric Young * (eay@cryptsoft.com). This product includes software written by Tim * Hudson (tjh@cryptsoft.com). */ #include <openssl/evp.h> #include <openssl/bio.h> #include <openssl/bn.h> #include <openssl/dsa.h> #include <openssl/ec.h> #include <openssl/ec_key.h> #include <openssl/mem.h> #include <openssl/rsa.h> #include "../internal.h" #include "../fipsmodule/rsa/internal.h" static int bn_print(BIO *bp, const char *number, const BIGNUM *num, uint8_t *buf, int off) { if (num == NULL) { return 1; } if (!BIO_indent(bp, off, 128)) { return 0; } if (BN_is_zero(num)) { if (BIO_printf(bp, "%s 0\n", number) <= 0) { return 0; } return 1; } if (BN_num_bytes(num) <= sizeof(long)) { const char *neg = BN_is_negative(num) ? "-" : ""; if (BIO_printf(bp, "%s %s%lu (%s0x%lx)\n", number, neg, (unsigned long)num->d[0], neg, (unsigned long)num->d[0]) <= 0) { return 0; } } else { buf[0] = 0; if (BIO_printf(bp, "%s%s", number, (BN_is_negative(num)) ? " (Negative)" : "") <= 0) { return 0; } int n = BN_bn2bin(num, &buf[1]); if (buf[1] & 0x80) { n++; } else { buf++; } int i; for (i = 0; i < n; i++) { if ((i % 15) == 0) { if (BIO_puts(bp, "\n") <= 0 || !BIO_indent(bp, off + 4, 128)) { return 0; } } if (BIO_printf(bp, "%02x%s", buf[i], ((i + 1) == n) ? "" : ":") <= 0) { return 0; } } if (BIO_write(bp, "\n", 1) <= 0) { return 0; } } return 1; } static void update_buflen(const BIGNUM *b, size_t *pbuflen) { if (!b) { return; } size_t len = BN_num_bytes(b); if (*pbuflen < len) { *pbuflen = len; } } // RSA keys. static int do_rsa_print(BIO *out, const RSA *rsa, int off, int include_private) { const char *s, *str; uint8_t *m = NULL; int ret = 0, mod_len = 0; size_t buf_len = 0; update_buflen(rsa->n, &buf_len); update_buflen(rsa->e, &buf_len); if (include_private) { update_buflen(rsa->d, &buf_len); update_buflen(rsa->p, &buf_len); update_buflen(rsa->q, &buf_len); update_buflen(rsa->dmp1, &buf_len); update_buflen(rsa->dmq1, &buf_len); update_buflen(rsa->iqmp, &buf_len); } m = (uint8_t *)OPENSSL_malloc(buf_len + 10); if (m == NULL) { OPENSSL_PUT_ERROR(EVP, ERR_R_MALLOC_FAILURE); goto err; } if (rsa->n != NULL) { mod_len = BN_num_bits(rsa->n); } if (!BIO_indent(out, off, 128)) { goto err; } if (include_private && rsa->d) { if (BIO_printf(out, "Private-Key: (%d bit)\n", mod_len) <= 0) { goto err; } str = "modulus:"; s = "publicExponent:"; } else { if (BIO_printf(out, "Public-Key: (%d bit)\n", mod_len) <= 0) { goto err; } str = "Modulus:"; s = "Exponent:"; } if (!bn_print(out, str, rsa->n, m, off) || !bn_print(out, s, rsa->e, m, off)) { goto err; } if (include_private) { if (!bn_print(out, "privateExponent:", rsa->d, m, off) || !bn_print(out, "prime1:", rsa->p, m, off) || !bn_print(out, "prime2:", rsa->q, m, off) || !bn_print(out, "exponent1:", rsa->dmp1, m, off) || !bn_print(out, "exponent2:", rsa->dmq1, m, off) || !bn_print(out, "coefficient:", rsa->iqmp, m, off)) { goto err; } } ret = 1; err: OPENSSL_free(m); return ret; } static int rsa_pub_print(BIO *bp, const EVP_PKEY *pkey, int indent, ASN1_PCTX *ctx) { return do_rsa_print(bp, pkey->pkey.rsa, indent, 0); } static int rsa_priv_print(BIO *bp, const EVP_PKEY *pkey, int indent, ASN1_PCTX *ctx) { return do_rsa_print(bp, pkey->pkey.rsa, indent, 1); } // DSA keys. static int do_dsa_print(BIO *bp, const DSA *x, int off, int ptype) { uint8_t *m = NULL; int ret = 0; size_t buf_len = 0; const char *ktype = NULL; const BIGNUM *priv_key, *pub_key; priv_key = NULL; if (ptype == 2) { priv_key = x->priv_key; } pub_key = NULL; if (ptype > 0) { pub_key = x->pub_key; } ktype = "DSA-Parameters"; if (ptype == 2) { ktype = "Private-Key"; } else if (ptype == 1) { ktype = "Public-Key"; } update_buflen(x->p, &buf_len); update_buflen(x->q, &buf_len); update_buflen(x->g, &buf_len); update_buflen(priv_key, &buf_len); update_buflen(pub_key, &buf_len); m = (uint8_t *)OPENSSL_malloc(buf_len + 10); if (m == NULL) { OPENSSL_PUT_ERROR(EVP, ERR_R_MALLOC_FAILURE); goto err; } if (priv_key) { if (!BIO_indent(bp, off, 128) || BIO_printf(bp, "%s: (%d bit)\n", ktype, BN_num_bits(x->p)) <= 0) { goto err; } } if (!bn_print(bp, "priv:", priv_key, m, off) || !bn_print(bp, "pub: ", pub_key, m, off) || !bn_print(bp, "P: ", x->p, m, off) || !bn_print(bp, "Q: ", x->q, m, off) || !bn_print(bp, "G: ", x->g, m, off)) { goto err; } ret = 1; err: OPENSSL_free(m); return ret; } static int dsa_param_print(BIO *bp, const EVP_PKEY *pkey, int indent, ASN1_PCTX *ctx) { return do_dsa_print(bp, pkey->pkey.dsa, indent, 0); } static int dsa_pub_print(BIO *bp, const EVP_PKEY *pkey, int indent, ASN1_PCTX *ctx) { return do_dsa_print(bp, pkey->pkey.dsa, indent, 1); } static int dsa_priv_print(BIO *bp, const EVP_PKEY *pkey, int indent, ASN1_PCTX *ctx) { return do_dsa_print(bp, pkey->pkey.dsa, indent, 2); } // EC keys. static int do_EC_KEY_print(BIO *bp, const EC_KEY *x, int off, int ktype) { uint8_t *buffer = NULL; const char *ecstr; size_t buf_len = 0, i; int ret = 0, reason = ERR_R_BIO_LIB; BIGNUM *order = NULL; BN_CTX *ctx = NULL; const EC_GROUP *group; const EC_POINT *public_key; const BIGNUM *priv_key; uint8_t *pub_key_bytes = NULL; size_t pub_key_bytes_len = 0; if (x == NULL || (group = EC_KEY_get0_group(x)) == NULL) { reason = ERR_R_PASSED_NULL_PARAMETER; goto err; } ctx = BN_CTX_new(); if (ctx == NULL) { reason = ERR_R_MALLOC_FAILURE; goto err; } if (ktype > 0) { public_key = EC_KEY_get0_public_key(x); if (public_key != NULL) { pub_key_bytes_len = EC_POINT_point2oct( group, public_key, EC_KEY_get_conv_form(x), NULL, 0, ctx); if (pub_key_bytes_len == 0) { reason = ERR_R_MALLOC_FAILURE; goto err; } pub_key_bytes = OPENSSL_malloc(pub_key_bytes_len); if (pub_key_bytes == NULL) { reason = ERR_R_MALLOC_FAILURE; goto err; } pub_key_bytes_len = EC_POINT_point2oct(group, public_key, EC_KEY_get_conv_form(x), pub_key_bytes, pub_key_bytes_len, ctx); if (pub_key_bytes_len == 0) { reason = ERR_R_MALLOC_FAILURE; goto err; } buf_len = pub_key_bytes_len; } } if (ktype == 2) { priv_key = EC_KEY_get0_private_key(x); if (priv_key && (i = (size_t)BN_num_bytes(priv_key)) > buf_len) { buf_len = i; } } else { priv_key = NULL; } if (ktype > 0) { buf_len += 10; if ((buffer = OPENSSL_malloc(buf_len)) == NULL) { reason = ERR_R_MALLOC_FAILURE; goto err; } } if (ktype == 2) { ecstr = "Private-Key"; } else if (ktype == 1) { ecstr = "Public-Key"; } else { ecstr = "ECDSA-Parameters"; } if (!BIO_indent(bp, off, 128)) { goto err; } order = BN_new(); if (order == NULL || !EC_GROUP_get_order(group, order, NULL) || BIO_printf(bp, "%s: (%d bit)\n", ecstr, BN_num_bits(order)) <= 0) { goto err; } if ((priv_key != NULL) && !bn_print(bp, "priv:", priv_key, buffer, off)) { goto err; } if (pub_key_bytes != NULL) { BIO_hexdump(bp, pub_key_bytes, pub_key_bytes_len, off); } // TODO(fork): implement /* if (!ECPKParameters_print(bp, group, off)) goto err; */ ret = 1; err: if (!ret) { OPENSSL_PUT_ERROR(EVP, reason); } OPENSSL_free(pub_key_bytes); BN_free(order); BN_CTX_free(ctx); OPENSSL_free(buffer); return ret; } static int eckey_param_print(BIO *bp, const EVP_PKEY *pkey, int indent, ASN1_PCTX *ctx) { return do_EC_KEY_print(bp, pkey->pkey.ec, indent, 0); } static int eckey_pub_print(BIO *bp, const EVP_PKEY *pkey, int indent, ASN1_PCTX *ctx) { return do_EC_KEY_print(bp, pkey->pkey.ec, indent, 1); } static int eckey_priv_print(BIO *bp, const EVP_PKEY *pkey, int indent, ASN1_PCTX *ctx) { return do_EC_KEY_print(bp, pkey->pkey.ec, indent, 2); } typedef struct { int type; int (*pub_print)(BIO *out, const EVP_PKEY *pkey, int indent, ASN1_PCTX *pctx); int (*priv_print)(BIO *out, const EVP_PKEY *pkey, int indent, ASN1_PCTX *pctx); int (*param_print)(BIO *out, const EVP_PKEY *pkey, int indent, ASN1_PCTX *pctx); } EVP_PKEY_PRINT_METHOD; static EVP_PKEY_PRINT_METHOD kPrintMethods[] = { { EVP_PKEY_RSA, rsa_pub_print, rsa_priv_print, NULL /* param_print */, }, { EVP_PKEY_DSA, dsa_pub_print, dsa_priv_print, dsa_param_print, }, { EVP_PKEY_EC, eckey_pub_print, eckey_priv_print, eckey_param_print, }, }; static size_t kPrintMethodsLen = OPENSSL_ARRAY_SIZE(kPrintMethods); static EVP_PKEY_PRINT_METHOD *find_method(int type) { for (size_t i = 0; i < kPrintMethodsLen; i++) { if (kPrintMethods[i].type == type) { return &kPrintMethods[i]; } } return NULL; } static int print_unsupported(BIO *out, const EVP_PKEY *pkey, int indent, const char *kstr) { BIO_indent(out, indent, 128); BIO_printf(out, "%s algorithm unsupported\n", kstr); return 1; } int EVP_PKEY_print_public(BIO *out, const EVP_PKEY *pkey, int indent, ASN1_PCTX *pctx) { EVP_PKEY_PRINT_METHOD *method = find_method(pkey->type); if (method != NULL && method->pub_print != NULL) { return method->pub_print(out, pkey, indent, pctx); } return print_unsupported(out, pkey, indent, "Public Key"); } int EVP_PKEY_print_private(BIO *out, const EVP_PKEY *pkey, int indent, ASN1_PCTX *pctx) { EVP_PKEY_PRINT_METHOD *method = find_method(pkey->type); if (method != NULL && method->priv_print != NULL) { return method->priv_print(out, pkey, indent, pctx); } return print_unsupported(out, pkey, indent, "Private Key"); } int EVP_PKEY_print_params(BIO *out, const EVP_PKEY *pkey, int indent, ASN1_PCTX *pctx) { EVP_PKEY_PRINT_METHOD *method = find_method(pkey->type); if (method != NULL && method->param_print != NULL) { return method->param_print(out, pkey, indent, pctx); } return print_unsupported(out, pkey, indent, "Parameters"); }