/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) * All rights reserved. * * This package is an SSL implementation written * by Eric Young (eay@cryptsoft.com). * The implementation was written so as to conform with Netscapes SSL. * * This library is free for commercial and non-commercial use as long as * the following conditions are aheared to. The following conditions * apply to all code found in this distribution, be it the RC4, RSA, * lhash, DES, etc., code; not just the SSL code. The SSL documentation * included with this distribution is covered by the same copyright terms * except that the holder is Tim Hudson (tjh@cryptsoft.com). * * Copyright remains Eric Young's, and as such any Copyright notices in * the code are not to be removed. * If this package is used in a product, Eric Young should be given attribution * as the author of the parts of the library used. * This can be in the form of a textual message at program startup or * in documentation (online or textual) provided with the package. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * "This product includes cryptographic software written by * Eric Young (eay@cryptsoft.com)" * The word 'cryptographic' can be left out if the rouines from the library * being used are not cryptographic related :-). * 4. If you include any Windows specific code (or a derivative thereof) from * the apps directory (application code) you must include an acknowledgement: * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" * * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * The licence and distribution terms for any publically available version or * derivative of this code cannot be changed. i.e. this code cannot simply be * copied and put under another distribution licence * [including the GNU Public Licence.] */ /* ==================================================================== * Copyright (c) 1998-2001 The OpenSSL Project. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * 3. All advertising materials mentioning features or use of this * software must display the following acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" * * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to * endorse or promote products derived from this software without * prior written permission. For written permission, please contact * openssl-core@openssl.org. * * 5. Products derived from this software may not be called "OpenSSL" * nor may "OpenSSL" appear in their names without prior written * permission of the OpenSSL Project. * * 6. Redistributions of any form whatsoever must retain the following * acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit (http://www.openssl.org/)" * * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * ==================================================================== * * This product includes cryptographic software written by Eric Young * (eay@cryptsoft.com). This product includes software written by Tim * Hudson (tjh@cryptsoft.com). */ #include <openssl/bn.h> #include <assert.h> #include <openssl/err.h> #include "internal.h" static BIGNUM *euclid(BIGNUM *a, BIGNUM *b) { BIGNUM *t; int shifts = 0; // 0 <= b <= a while (!BN_is_zero(b)) { // 0 < b <= a if (BN_is_odd(a)) { if (BN_is_odd(b)) { if (!BN_sub(a, a, b)) { goto err; } if (!BN_rshift1(a, a)) { goto err; } if (BN_cmp(a, b) < 0) { t = a; a = b; b = t; } } else { // a odd - b even if (!BN_rshift1(b, b)) { goto err; } if (BN_cmp(a, b) < 0) { t = a; a = b; b = t; } } } else { // a is even if (BN_is_odd(b)) { if (!BN_rshift1(a, a)) { goto err; } if (BN_cmp(a, b) < 0) { t = a; a = b; b = t; } } else { // a even - b even if (!BN_rshift1(a, a)) { goto err; } if (!BN_rshift1(b, b)) { goto err; } shifts++; } } // 0 <= b <= a } if (shifts) { if (!BN_lshift(a, a, shifts)) { goto err; } } return a; err: return NULL; } int BN_gcd(BIGNUM *r, const BIGNUM *in_a, const BIGNUM *in_b, BN_CTX *ctx) { BIGNUM *a, *b, *t; int ret = 0; BN_CTX_start(ctx); a = BN_CTX_get(ctx); b = BN_CTX_get(ctx); if (a == NULL || b == NULL) { goto err; } if (BN_copy(a, in_a) == NULL) { goto err; } if (BN_copy(b, in_b) == NULL) { goto err; } a->neg = 0; b->neg = 0; if (BN_cmp(a, b) < 0) { t = a; a = b; b = t; } t = euclid(a, b); if (t == NULL) { goto err; } if (BN_copy(r, t) == NULL) { goto err; } ret = 1; err: BN_CTX_end(ctx); return ret; } // solves ax == 1 (mod n) static int bn_mod_inverse_general(BIGNUM *out, int *out_no_inverse, const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx); int BN_mod_inverse_odd(BIGNUM *out, int *out_no_inverse, const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx) { *out_no_inverse = 0; if (!BN_is_odd(n)) { OPENSSL_PUT_ERROR(BN, BN_R_CALLED_WITH_EVEN_MODULUS); return 0; } if (BN_is_negative(a) || BN_cmp(a, n) >= 0) { OPENSSL_PUT_ERROR(BN, BN_R_INPUT_NOT_REDUCED); return 0; } BIGNUM *A, *B, *X, *Y; int ret = 0; int sign; BN_CTX_start(ctx); A = BN_CTX_get(ctx); B = BN_CTX_get(ctx); X = BN_CTX_get(ctx); Y = BN_CTX_get(ctx); if (Y == NULL) { goto err; } BIGNUM *R = out; BN_zero(Y); if (!BN_one(X) || BN_copy(B, a) == NULL || BN_copy(A, n) == NULL) { goto err; } A->neg = 0; sign = -1; // From B = a mod |n|, A = |n| it follows that // // 0 <= B < A, // -sign*X*a == B (mod |n|), // sign*Y*a == A (mod |n|). // Binary inversion algorithm; requires odd modulus. This is faster than the // general algorithm if the modulus is sufficiently small (about 400 .. 500 // bits on 32-bit systems, but much more on 64-bit systems) int shift; while (!BN_is_zero(B)) { // 0 < B < |n|, // 0 < A <= |n|, // (1) -sign*X*a == B (mod |n|), // (2) sign*Y*a == A (mod |n|) // Now divide B by the maximum possible power of two in the integers, // and divide X by the same value mod |n|. // When we're done, (1) still holds. shift = 0; while (!BN_is_bit_set(B, shift)) { // note that 0 < B shift++; if (BN_is_odd(X)) { if (!BN_uadd(X, X, n)) { goto err; } } // now X is even, so we can easily divide it by two if (!BN_rshift1(X, X)) { goto err; } } if (shift > 0) { if (!BN_rshift(B, B, shift)) { goto err; } } // Same for A and Y. Afterwards, (2) still holds. shift = 0; while (!BN_is_bit_set(A, shift)) { // note that 0 < A shift++; if (BN_is_odd(Y)) { if (!BN_uadd(Y, Y, n)) { goto err; } } // now Y is even if (!BN_rshift1(Y, Y)) { goto err; } } if (shift > 0) { if (!BN_rshift(A, A, shift)) { goto err; } } // We still have (1) and (2). // Both A and B are odd. // The following computations ensure that // // 0 <= B < |n|, // 0 < A < |n|, // (1) -sign*X*a == B (mod |n|), // (2) sign*Y*a == A (mod |n|), // // and that either A or B is even in the next iteration. if (BN_ucmp(B, A) >= 0) { // -sign*(X + Y)*a == B - A (mod |n|) if (!BN_uadd(X, X, Y)) { goto err; } // NB: we could use BN_mod_add_quick(X, X, Y, n), but that // actually makes the algorithm slower if (!BN_usub(B, B, A)) { goto err; } } else { // sign*(X + Y)*a == A - B (mod |n|) if (!BN_uadd(Y, Y, X)) { goto err; } // as above, BN_mod_add_quick(Y, Y, X, n) would slow things down if (!BN_usub(A, A, B)) { goto err; } } } if (!BN_is_one(A)) { *out_no_inverse = 1; OPENSSL_PUT_ERROR(BN, BN_R_NO_INVERSE); goto err; } // The while loop (Euclid's algorithm) ends when // A == gcd(a,n); // we have // sign*Y*a == A (mod |n|), // where Y is non-negative. if (sign < 0) { if (!BN_sub(Y, n, Y)) { goto err; } } // Now Y*a == A (mod |n|). // Y*a == 1 (mod |n|) if (!Y->neg && BN_ucmp(Y, n) < 0) { if (!BN_copy(R, Y)) { goto err; } } else { if (!BN_nnmod(R, Y, n, ctx)) { goto err; } } ret = 1; err: BN_CTX_end(ctx); return ret; } BIGNUM *BN_mod_inverse(BIGNUM *out, const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx) { BIGNUM *new_out = NULL; if (out == NULL) { new_out = BN_new(); if (new_out == NULL) { OPENSSL_PUT_ERROR(BN, ERR_R_MALLOC_FAILURE); return NULL; } out = new_out; } int ok = 0; BIGNUM *a_reduced = NULL; if (a->neg || BN_ucmp(a, n) >= 0) { a_reduced = BN_dup(a); if (a_reduced == NULL) { goto err; } if (!BN_nnmod(a_reduced, a_reduced, n, ctx)) { goto err; } a = a_reduced; } int no_inverse; if (!BN_is_odd(n)) { if (!bn_mod_inverse_general(out, &no_inverse, a, n, ctx)) { goto err; } } else if (!BN_mod_inverse_odd(out, &no_inverse, a, n, ctx)) { goto err; } ok = 1; err: if (!ok) { BN_free(new_out); out = NULL; } BN_free(a_reduced); return out; } int BN_mod_inverse_blinded(BIGNUM *out, int *out_no_inverse, const BIGNUM *a, const BN_MONT_CTX *mont, BN_CTX *ctx) { *out_no_inverse = 0; if (BN_is_negative(a) || BN_cmp(a, &mont->N) >= 0) { OPENSSL_PUT_ERROR(BN, BN_R_INPUT_NOT_REDUCED); return 0; } int ret = 0; BIGNUM blinding_factor; BN_init(&blinding_factor); if (!BN_rand_range_ex(&blinding_factor, 1, &mont->N) || !BN_mod_mul_montgomery(out, &blinding_factor, a, mont, ctx) || !BN_mod_inverse_odd(out, out_no_inverse, out, &mont->N, ctx) || !BN_mod_mul_montgomery(out, &blinding_factor, out, mont, ctx)) { OPENSSL_PUT_ERROR(BN, ERR_R_BN_LIB); goto err; } ret = 1; err: BN_free(&blinding_factor); return ret; } // bn_mod_inverse_general is the general inversion algorithm that works for // both even and odd |n|. It was specifically designed to contain fewer // branches that may leak sensitive information; see "New Branch Prediction // Vulnerabilities in OpenSSL and Necessary Software Countermeasures" by // Onur Acıçmez, Shay Gueron, and Jean-Pierre Seifert. static int bn_mod_inverse_general(BIGNUM *out, int *out_no_inverse, const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx) { BIGNUM *A, *B, *X, *Y, *M, *D, *T; int ret = 0; int sign; *out_no_inverse = 0; BN_CTX_start(ctx); A = BN_CTX_get(ctx); B = BN_CTX_get(ctx); X = BN_CTX_get(ctx); D = BN_CTX_get(ctx); M = BN_CTX_get(ctx); Y = BN_CTX_get(ctx); T = BN_CTX_get(ctx); if (T == NULL) { goto err; } BIGNUM *R = out; BN_zero(Y); if (!BN_one(X) || BN_copy(B, a) == NULL || BN_copy(A, n) == NULL) { goto err; } A->neg = 0; sign = -1; // From B = a mod |n|, A = |n| it follows that // // 0 <= B < A, // -sign*X*a == B (mod |n|), // sign*Y*a == A (mod |n|). while (!BN_is_zero(B)) { BIGNUM *tmp; // 0 < B < A, // (*) -sign*X*a == B (mod |n|), // sign*Y*a == A (mod |n|) // (D, M) := (A/B, A%B) ... if (!BN_div(D, M, A, B, ctx)) { goto err; } // Now // A = D*B + M; // thus we have // (**) sign*Y*a == D*B + M (mod |n|). tmp = A; // keep the BIGNUM object, the value does not matter // (A, B) := (B, A mod B) ... A = B; B = M; // ... so we have 0 <= B < A again // Since the former M is now B and the former B is now A, // (**) translates into // sign*Y*a == D*A + B (mod |n|), // i.e. // sign*Y*a - D*A == B (mod |n|). // Similarly, (*) translates into // -sign*X*a == A (mod |n|). // // Thus, // sign*Y*a + D*sign*X*a == B (mod |n|), // i.e. // sign*(Y + D*X)*a == B (mod |n|). // // So if we set (X, Y, sign) := (Y + D*X, X, -sign), we arrive back at // -sign*X*a == B (mod |n|), // sign*Y*a == A (mod |n|). // Note that X and Y stay non-negative all the time. if (!BN_mul(tmp, D, X, ctx)) { goto err; } if (!BN_add(tmp, tmp, Y)) { goto err; } M = Y; // keep the BIGNUM object, the value does not matter Y = X; X = tmp; sign = -sign; } if (!BN_is_one(A)) { *out_no_inverse = 1; OPENSSL_PUT_ERROR(BN, BN_R_NO_INVERSE); goto err; } // The while loop (Euclid's algorithm) ends when // A == gcd(a,n); // we have // sign*Y*a == A (mod |n|), // where Y is non-negative. if (sign < 0) { if (!BN_sub(Y, n, Y)) { goto err; } } // Now Y*a == A (mod |n|). // Y*a == 1 (mod |n|) if (!Y->neg && BN_ucmp(Y, n) < 0) { if (!BN_copy(R, Y)) { goto err; } } else { if (!BN_nnmod(R, Y, n, ctx)) { goto err; } } ret = 1; err: BN_CTX_end(ctx); return ret; } int bn_mod_inverse_prime(BIGNUM *out, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx, const BN_MONT_CTX *mont_p) { BN_CTX_start(ctx); BIGNUM *p_minus_2 = BN_CTX_get(ctx); int ok = p_minus_2 != NULL && BN_copy(p_minus_2, p) && BN_sub_word(p_minus_2, 2) && BN_mod_exp_mont(out, a, p_minus_2, p, ctx, mont_p); BN_CTX_end(ctx); return ok; } int bn_mod_inverse_secret_prime(BIGNUM *out, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx, const BN_MONT_CTX *mont_p) { BN_CTX_start(ctx); BIGNUM *p_minus_2 = BN_CTX_get(ctx); int ok = p_minus_2 != NULL && BN_copy(p_minus_2, p) && BN_sub_word(p_minus_2, 2) && BN_mod_exp_mont_consttime(out, a, p_minus_2, p, ctx, mont_p); BN_CTX_end(ctx); return ok; }