/* Originally written by Bodo Moeller and Nils Larsch for the OpenSSL project. * ==================================================================== * Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * 3. All advertising materials mentioning features or use of this * software must display the following acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" * * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to * endorse or promote products derived from this software without * prior written permission. For written permission, please contact * openssl-core@openssl.org. * * 5. Products derived from this software may not be called "OpenSSL" * nor may "OpenSSL" appear in their names without prior written * permission of the OpenSSL Project. * * 6. Redistributions of any form whatsoever must retain the following * acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit (http://www.openssl.org/)" * * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * ==================================================================== * * This product includes cryptographic software written by Eric Young * (eay@cryptsoft.com). This product includes software written by Tim * Hudson (tjh@cryptsoft.com). * */ /* ==================================================================== * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. * * Portions of the attached software ("Contribution") are developed by * SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project. * * The Contribution is licensed pursuant to the OpenSSL open source * license provided above. * * The elliptic curve binary polynomial software is originally written by * Sheueling Chang Shantz and Douglas Stebila of Sun Microsystems * Laboratories. */ #include <openssl/ec.h> #include <openssl/bn.h> #include <openssl/err.h> #include <openssl/mem.h> #include "../bn/internal.h" #include "../delocate.h" #include "internal.h" int ec_GFp_mont_group_init(EC_GROUP *group) { int ok; ok = ec_GFp_simple_group_init(group); group->mont = NULL; return ok; } void ec_GFp_mont_group_finish(EC_GROUP *group) { BN_MONT_CTX_free(group->mont); group->mont = NULL; ec_GFp_simple_group_finish(group); } int ec_GFp_mont_group_set_curve(EC_GROUP *group, const BIGNUM *p, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) { BN_CTX *new_ctx = NULL; int ret = 0; BN_MONT_CTX_free(group->mont); group->mont = NULL; if (ctx == NULL) { ctx = new_ctx = BN_CTX_new(); if (ctx == NULL) { return 0; } } group->mont = BN_MONT_CTX_new_for_modulus(p, ctx); if (group->mont == NULL) { OPENSSL_PUT_ERROR(EC, ERR_R_BN_LIB); goto err; } ret = ec_GFp_simple_group_set_curve(group, p, a, b, ctx); if (!ret) { BN_MONT_CTX_free(group->mont); group->mont = NULL; } err: BN_CTX_free(new_ctx); return ret; } int ec_GFp_mont_field_mul(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) { if (group->mont == NULL) { OPENSSL_PUT_ERROR(EC, EC_R_NOT_INITIALIZED); return 0; } return BN_mod_mul_montgomery(r, a, b, group->mont, ctx); } int ec_GFp_mont_field_sqr(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, BN_CTX *ctx) { if (group->mont == NULL) { OPENSSL_PUT_ERROR(EC, EC_R_NOT_INITIALIZED); return 0; } return BN_mod_mul_montgomery(r, a, a, group->mont, ctx); } int ec_GFp_mont_field_encode(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, BN_CTX *ctx) { if (group->mont == NULL) { OPENSSL_PUT_ERROR(EC, EC_R_NOT_INITIALIZED); return 0; } return BN_to_montgomery(r, a, group->mont, ctx); } int ec_GFp_mont_field_decode(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, BN_CTX *ctx) { if (group->mont == NULL) { OPENSSL_PUT_ERROR(EC, EC_R_NOT_INITIALIZED); return 0; } return BN_from_montgomery(r, a, group->mont, ctx); } static int ec_GFp_mont_point_get_affine_coordinates(const EC_GROUP *group, const EC_POINT *point, BIGNUM *x, BIGNUM *y, BN_CTX *ctx) { if (EC_POINT_is_at_infinity(group, point)) { OPENSSL_PUT_ERROR(EC, EC_R_POINT_AT_INFINITY); return 0; } BN_CTX *new_ctx = NULL; if (ctx == NULL) { ctx = new_ctx = BN_CTX_new(); if (ctx == NULL) { return 0; } } int ret = 0; BN_CTX_start(ctx); if (BN_cmp(&point->Z, &group->one) == 0) { // |point| is already affine. if (x != NULL && !BN_from_montgomery(x, &point->X, group->mont, ctx)) { goto err; } if (y != NULL && !BN_from_montgomery(y, &point->Y, group->mont, ctx)) { goto err; } } else { // transform (X, Y, Z) into (x, y) := (X/Z^2, Y/Z^3) BIGNUM *Z_1 = BN_CTX_get(ctx); BIGNUM *Z_2 = BN_CTX_get(ctx); BIGNUM *Z_3 = BN_CTX_get(ctx); if (Z_1 == NULL || Z_2 == NULL || Z_3 == NULL) { goto err; } // The straightforward way to calculate the inverse of a Montgomery-encoded // value where the result is Montgomery-encoded is: // // |BN_from_montgomery| + invert + |BN_to_montgomery|. // // This is equivalent, but more efficient, because |BN_from_montgomery| // is more efficient (at least in theory) than |BN_to_montgomery|, since it // doesn't have to do the multiplication before the reduction. // // Use Fermat's Little Theorem instead of |BN_mod_inverse_odd| since this // inversion may be done as the final step of private key operations. // Unfortunately, this is suboptimal for ECDSA verification. if (!BN_from_montgomery(Z_1, &point->Z, group->mont, ctx) || !BN_from_montgomery(Z_1, Z_1, group->mont, ctx) || !bn_mod_inverse_prime(Z_1, Z_1, &group->field, ctx, group->mont)) { goto err; } if (!BN_mod_mul_montgomery(Z_2, Z_1, Z_1, group->mont, ctx)) { goto err; } // Instead of using |BN_from_montgomery| to convert the |x| coordinate // and then calling |BN_from_montgomery| again to convert the |y| // coordinate below, convert the common factor |Z_2| once now, saving one // reduction. if (!BN_from_montgomery(Z_2, Z_2, group->mont, ctx)) { goto err; } if (x != NULL) { if (!BN_mod_mul_montgomery(x, &point->X, Z_2, group->mont, ctx)) { goto err; } } if (y != NULL) { if (!BN_mod_mul_montgomery(Z_3, Z_2, Z_1, group->mont, ctx) || !BN_mod_mul_montgomery(y, &point->Y, Z_3, group->mont, ctx)) { goto err; } } } ret = 1; err: BN_CTX_end(ctx); BN_CTX_free(new_ctx); return ret; } DEFINE_METHOD_FUNCTION(EC_METHOD, EC_GFp_mont_method) { out->group_init = ec_GFp_mont_group_init; out->group_finish = ec_GFp_mont_group_finish; out->group_set_curve = ec_GFp_mont_group_set_curve; out->point_get_affine_coordinates = ec_GFp_mont_point_get_affine_coordinates; out->mul = ec_wNAF_mul /* XXX: Not constant time. */; out->mul_public = ec_wNAF_mul; out->field_mul = ec_GFp_mont_field_mul; out->field_sqr = ec_GFp_mont_field_sqr; out->field_encode = ec_GFp_mont_field_encode; out->field_decode = ec_GFp_mont_field_decode; }