/* Copyright (c) 2014, Intel Corporation. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ // Developers and authors: // Shay Gueron (1, 2), and Vlad Krasnov (1) // (1) Intel Corporation, Israel Development Center // (2) University of Haifa // Reference: // S.Gueron and V.Krasnov, "Fast Prime Field Elliptic Curve Cryptography with // 256 Bit Primes" #include <openssl/ec.h> #include <assert.h> #include <stdint.h> #include <string.h> #include <openssl/bn.h> #include <openssl/crypto.h> #include <openssl/err.h> #include "../bn/internal.h" #include "../delocate.h" #include "../../internal.h" #include "internal.h" #include "p256-x86_64.h" #if !defined(OPENSSL_NO_ASM) && defined(OPENSSL_X86_64) && \ !defined(OPENSSL_SMALL) typedef P256_POINT_AFFINE PRECOMP256_ROW[64]; // One converted into the Montgomery domain static const BN_ULONG ONE[P256_LIMBS] = { TOBN(0x00000000, 0x00000001), TOBN(0xffffffff, 0x00000000), TOBN(0xffffffff, 0xffffffff), TOBN(0x00000000, 0xfffffffe), }; // Precomputed tables for the default generator #include "p256-x86_64-table.h" // Recode window to a signed digit, see util-64.c for details static unsigned booth_recode_w5(unsigned in) { unsigned s, d; s = ~((in >> 5) - 1); d = (1 << 6) - in - 1; d = (d & s) | (in & ~s); d = (d >> 1) + (d & 1); return (d << 1) + (s & 1); } static unsigned booth_recode_w7(unsigned in) { unsigned s, d; s = ~((in >> 7) - 1); d = (1 << 8) - in - 1; d = (d & s) | (in & ~s); d = (d >> 1) + (d & 1); return (d << 1) + (s & 1); } // copy_conditional copies |src| to |dst| if |move| is one and leaves it as-is // if |move| is zero. // // WARNING: this breaks the usual convention of constant-time functions // returning masks. static void copy_conditional(BN_ULONG dst[P256_LIMBS], const BN_ULONG src[P256_LIMBS], BN_ULONG move) { BN_ULONG mask1 = ((BN_ULONG)0) - move; BN_ULONG mask2 = ~mask1; dst[0] = (src[0] & mask1) ^ (dst[0] & mask2); dst[1] = (src[1] & mask1) ^ (dst[1] & mask2); dst[2] = (src[2] & mask1) ^ (dst[2] & mask2); dst[3] = (src[3] & mask1) ^ (dst[3] & mask2); if (P256_LIMBS == 8) { dst[4] = (src[4] & mask1) ^ (dst[4] & mask2); dst[5] = (src[5] & mask1) ^ (dst[5] & mask2); dst[6] = (src[6] & mask1) ^ (dst[6] & mask2); dst[7] = (src[7] & mask1) ^ (dst[7] & mask2); } } // is_not_zero returns one iff in != 0 and zero otherwise. // // WARNING: this breaks the usual convention of constant-time functions // returning masks. // // (define-fun is_not_zero ((in (_ BitVec 64))) (_ BitVec 64) // (bvlshr (bvor in (bvsub #x0000000000000000 in)) #x000000000000003f) // ) // // (declare-fun x () (_ BitVec 64)) // // (assert (and (= x #x0000000000000000) (= (is_not_zero x) #x0000000000000001))) // (check-sat) // // (assert (and (not (= x #x0000000000000000)) (= (is_not_zero x) #x0000000000000000))) // (check-sat) // static BN_ULONG is_not_zero(BN_ULONG in) { in |= (0 - in); in >>= BN_BITS2 - 1; return in; } // ecp_nistz256_mod_inverse_mont sets |r| to (|in| * 2^-256)^-1 * 2^256 mod p. // That is, |r| is the modular inverse of |in| for input and output in the // Montgomery domain. static void ecp_nistz256_mod_inverse_mont(BN_ULONG r[P256_LIMBS], const BN_ULONG in[P256_LIMBS]) { /* The poly is ffffffff 00000001 00000000 00000000 00000000 ffffffff ffffffff ffffffff We use FLT and used poly-2 as exponent */ BN_ULONG p2[P256_LIMBS]; BN_ULONG p4[P256_LIMBS]; BN_ULONG p8[P256_LIMBS]; BN_ULONG p16[P256_LIMBS]; BN_ULONG p32[P256_LIMBS]; BN_ULONG res[P256_LIMBS]; int i; ecp_nistz256_sqr_mont(res, in); ecp_nistz256_mul_mont(p2, res, in); // 3*p ecp_nistz256_sqr_mont(res, p2); ecp_nistz256_sqr_mont(res, res); ecp_nistz256_mul_mont(p4, res, p2); // f*p ecp_nistz256_sqr_mont(res, p4); ecp_nistz256_sqr_mont(res, res); ecp_nistz256_sqr_mont(res, res); ecp_nistz256_sqr_mont(res, res); ecp_nistz256_mul_mont(p8, res, p4); // ff*p ecp_nistz256_sqr_mont(res, p8); for (i = 0; i < 7; i++) { ecp_nistz256_sqr_mont(res, res); } ecp_nistz256_mul_mont(p16, res, p8); // ffff*p ecp_nistz256_sqr_mont(res, p16); for (i = 0; i < 15; i++) { ecp_nistz256_sqr_mont(res, res); } ecp_nistz256_mul_mont(p32, res, p16); // ffffffff*p ecp_nistz256_sqr_mont(res, p32); for (i = 0; i < 31; i++) { ecp_nistz256_sqr_mont(res, res); } ecp_nistz256_mul_mont(res, res, in); for (i = 0; i < 32 * 4; i++) { ecp_nistz256_sqr_mont(res, res); } ecp_nistz256_mul_mont(res, res, p32); for (i = 0; i < 32; i++) { ecp_nistz256_sqr_mont(res, res); } ecp_nistz256_mul_mont(res, res, p32); for (i = 0; i < 16; i++) { ecp_nistz256_sqr_mont(res, res); } ecp_nistz256_mul_mont(res, res, p16); for (i = 0; i < 8; i++) { ecp_nistz256_sqr_mont(res, res); } ecp_nistz256_mul_mont(res, res, p8); ecp_nistz256_sqr_mont(res, res); ecp_nistz256_sqr_mont(res, res); ecp_nistz256_sqr_mont(res, res); ecp_nistz256_sqr_mont(res, res); ecp_nistz256_mul_mont(res, res, p4); ecp_nistz256_sqr_mont(res, res); ecp_nistz256_sqr_mont(res, res); ecp_nistz256_mul_mont(res, res, p2); ecp_nistz256_sqr_mont(res, res); ecp_nistz256_sqr_mont(res, res); ecp_nistz256_mul_mont(r, res, in); } // ecp_nistz256_bignum_to_field_elem copies the contents of |in| to |out| and // returns one if it fits. Otherwise it returns zero. static int ecp_nistz256_bignum_to_field_elem(BN_ULONG out[P256_LIMBS], const BIGNUM *in) { return bn_copy_words(out, P256_LIMBS, in); } // r = p * p_scalar static int ecp_nistz256_windowed_mul(const EC_GROUP *group, P256_POINT *r, const EC_POINT *p, const EC_SCALAR *p_scalar) { assert(p != NULL); assert(p_scalar != NULL); static const unsigned kWindowSize = 5; static const unsigned kMask = (1 << (5 /* kWindowSize */ + 1)) - 1; // A |P256_POINT| is (3 * 32) = 96 bytes, and the 64-byte alignment should // add no more than 63 bytes of overhead. Thus, |table| should require // ~1599 ((96 * 16) + 63) bytes of stack space. alignas(64) P256_POINT table[16]; uint8_t p_str[33]; OPENSSL_memcpy(p_str, p_scalar->bytes, 32); p_str[32] = 0; // table[0] is implicitly (0,0,0) (the point at infinity), therefore it is // not stored. All other values are actually stored with an offset of -1 in // table. P256_POINT *row = table; if (!ecp_nistz256_bignum_to_field_elem(row[1 - 1].X, &p->X) || !ecp_nistz256_bignum_to_field_elem(row[1 - 1].Y, &p->Y) || !ecp_nistz256_bignum_to_field_elem(row[1 - 1].Z, &p->Z)) { OPENSSL_PUT_ERROR(EC, EC_R_COORDINATES_OUT_OF_RANGE); return 0; } ecp_nistz256_point_double(&row[2 - 1], &row[1 - 1]); ecp_nistz256_point_add(&row[3 - 1], &row[2 - 1], &row[1 - 1]); ecp_nistz256_point_double(&row[4 - 1], &row[2 - 1]); ecp_nistz256_point_double(&row[6 - 1], &row[3 - 1]); ecp_nistz256_point_double(&row[8 - 1], &row[4 - 1]); ecp_nistz256_point_double(&row[12 - 1], &row[6 - 1]); ecp_nistz256_point_add(&row[5 - 1], &row[4 - 1], &row[1 - 1]); ecp_nistz256_point_add(&row[7 - 1], &row[6 - 1], &row[1 - 1]); ecp_nistz256_point_add(&row[9 - 1], &row[8 - 1], &row[1 - 1]); ecp_nistz256_point_add(&row[13 - 1], &row[12 - 1], &row[1 - 1]); ecp_nistz256_point_double(&row[14 - 1], &row[7 - 1]); ecp_nistz256_point_double(&row[10 - 1], &row[5 - 1]); ecp_nistz256_point_add(&row[15 - 1], &row[14 - 1], &row[1 - 1]); ecp_nistz256_point_add(&row[11 - 1], &row[10 - 1], &row[1 - 1]); ecp_nistz256_point_double(&row[16 - 1], &row[8 - 1]); BN_ULONG tmp[P256_LIMBS]; alignas(32) P256_POINT h; unsigned index = 255; unsigned wvalue = p_str[(index - 1) / 8]; wvalue = (wvalue >> ((index - 1) % 8)) & kMask; ecp_nistz256_select_w5(r, table, booth_recode_w5(wvalue) >> 1); while (index >= 5) { if (index != 255) { unsigned off = (index - 1) / 8; wvalue = p_str[off] | p_str[off + 1] << 8; wvalue = (wvalue >> ((index - 1) % 8)) & kMask; wvalue = booth_recode_w5(wvalue); ecp_nistz256_select_w5(&h, table, wvalue >> 1); ecp_nistz256_neg(tmp, h.Y); copy_conditional(h.Y, tmp, (wvalue & 1)); ecp_nistz256_point_add(r, r, &h); } index -= kWindowSize; ecp_nistz256_point_double(r, r); ecp_nistz256_point_double(r, r); ecp_nistz256_point_double(r, r); ecp_nistz256_point_double(r, r); ecp_nistz256_point_double(r, r); } // Final window wvalue = p_str[0]; wvalue = (wvalue << 1) & kMask; wvalue = booth_recode_w5(wvalue); ecp_nistz256_select_w5(&h, table, wvalue >> 1); ecp_nistz256_neg(tmp, h.Y); copy_conditional(h.Y, tmp, wvalue & 1); ecp_nistz256_point_add(r, r, &h); return 1; } static int ecp_nistz256_points_mul(const EC_GROUP *group, EC_POINT *r, const EC_SCALAR *g_scalar, const EC_POINT *p_, const EC_SCALAR *p_scalar, BN_CTX *ctx) { assert((p_ != NULL) == (p_scalar != NULL)); static const unsigned kWindowSize = 7; static const unsigned kMask = (1 << (7 /* kWindowSize */ + 1)) - 1; alignas(32) union { P256_POINT p; P256_POINT_AFFINE a; } t, p; if (g_scalar != NULL) { uint8_t p_str[33]; OPENSSL_memcpy(p_str, g_scalar->bytes, 32); p_str[32] = 0; // First window unsigned wvalue = (p_str[0] << 1) & kMask; unsigned index = kWindowSize; wvalue = booth_recode_w7(wvalue); const PRECOMP256_ROW *const precomputed_table = (const PRECOMP256_ROW *)ecp_nistz256_precomputed; ecp_nistz256_select_w7(&p.a, precomputed_table[0], wvalue >> 1); ecp_nistz256_neg(p.p.Z, p.p.Y); copy_conditional(p.p.Y, p.p.Z, wvalue & 1); // Convert |p| from affine to Jacobian coordinates. We set Z to zero if |p| // is infinity and |ONE| otherwise. |p| was computed from the table, so it // is infinity iff |wvalue >> 1| is zero. OPENSSL_memset(p.p.Z, 0, sizeof(p.p.Z)); copy_conditional(p.p.Z, ONE, is_not_zero(wvalue >> 1)); for (int i = 1; i < 37; i++) { unsigned off = (index - 1) / 8; wvalue = p_str[off] | p_str[off + 1] << 8; wvalue = (wvalue >> ((index - 1) % 8)) & kMask; index += kWindowSize; wvalue = booth_recode_w7(wvalue); ecp_nistz256_select_w7(&t.a, precomputed_table[i], wvalue >> 1); ecp_nistz256_neg(t.p.Z, t.a.Y); copy_conditional(t.a.Y, t.p.Z, wvalue & 1); ecp_nistz256_point_add_affine(&p.p, &p.p, &t.a); } } const int p_is_infinity = g_scalar == NULL; if (p_scalar != NULL) { P256_POINT *out = &t.p; if (p_is_infinity) { out = &p.p; } if (!ecp_nistz256_windowed_mul(group, out, p_, p_scalar)) { return 0; } if (!p_is_infinity) { ecp_nistz256_point_add(&p.p, &p.p, out); } } // Not constant-time, but we're only operating on the public output. if (!bn_set_words(&r->X, p.p.X, P256_LIMBS) || !bn_set_words(&r->Y, p.p.Y, P256_LIMBS) || !bn_set_words(&r->Z, p.p.Z, P256_LIMBS)) { return 0; } return 1; } static int ecp_nistz256_get_affine(const EC_GROUP *group, const EC_POINT *point, BIGNUM *x, BIGNUM *y, BN_CTX *ctx) { BN_ULONG z_inv2[P256_LIMBS]; BN_ULONG z_inv3[P256_LIMBS]; BN_ULONG point_x[P256_LIMBS], point_y[P256_LIMBS], point_z[P256_LIMBS]; if (EC_POINT_is_at_infinity(group, point)) { OPENSSL_PUT_ERROR(EC, EC_R_POINT_AT_INFINITY); return 0; } if (!ecp_nistz256_bignum_to_field_elem(point_x, &point->X) || !ecp_nistz256_bignum_to_field_elem(point_y, &point->Y) || !ecp_nistz256_bignum_to_field_elem(point_z, &point->Z)) { OPENSSL_PUT_ERROR(EC, EC_R_COORDINATES_OUT_OF_RANGE); return 0; } ecp_nistz256_mod_inverse_mont(z_inv3, point_z); ecp_nistz256_sqr_mont(z_inv2, z_inv3); // Instead of using |ecp_nistz256_from_mont| to convert the |x| coordinate // and then calling |ecp_nistz256_from_mont| again to convert the |y| // coordinate below, convert the common factor |z_inv2| once now, saving one // reduction. ecp_nistz256_from_mont(z_inv2, z_inv2); if (x != NULL) { BN_ULONG x_aff[P256_LIMBS]; ecp_nistz256_mul_mont(x_aff, z_inv2, point_x); if (!bn_set_words(x, x_aff, P256_LIMBS)) { OPENSSL_PUT_ERROR(EC, ERR_R_MALLOC_FAILURE); return 0; } } if (y != NULL) { BN_ULONG y_aff[P256_LIMBS]; ecp_nistz256_mul_mont(z_inv3, z_inv3, z_inv2); ecp_nistz256_mul_mont(y_aff, z_inv3, point_y); if (!bn_set_words(y, y_aff, P256_LIMBS)) { OPENSSL_PUT_ERROR(EC, ERR_R_MALLOC_FAILURE); return 0; } } return 1; } DEFINE_METHOD_FUNCTION(EC_METHOD, EC_GFp_nistz256_method) { out->group_init = ec_GFp_mont_group_init; out->group_finish = ec_GFp_mont_group_finish; out->group_set_curve = ec_GFp_mont_group_set_curve; out->point_get_affine_coordinates = ecp_nistz256_get_affine; out->mul = ecp_nistz256_points_mul; out->mul_public = ecp_nistz256_points_mul; out->field_mul = ec_GFp_mont_field_mul; out->field_sqr = ec_GFp_mont_field_sqr; out->field_encode = ec_GFp_mont_field_encode; out->field_decode = ec_GFp_mont_field_decode; }; #endif /* !defined(OPENSSL_NO_ASM) && defined(OPENSSL_X86_64) && \ !defined(OPENSSL_SMALL) */