// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_UMFPACKSUPPORT_H #define EIGEN_UMFPACKSUPPORT_H namespace Eigen { /* TODO extract L, extract U, compute det, etc... */ // generic double/complex<double> wrapper functions: inline void umfpack_defaults(double control[UMFPACK_CONTROL], double) { umfpack_di_defaults(control); } inline void umfpack_defaults(double control[UMFPACK_CONTROL], std::complex<double>) { umfpack_zi_defaults(control); } inline void umfpack_report_info(double control[UMFPACK_CONTROL], double info[UMFPACK_INFO], double) { umfpack_di_report_info(control, info);} inline void umfpack_report_info(double control[UMFPACK_CONTROL], double info[UMFPACK_INFO], std::complex<double>) { umfpack_zi_report_info(control, info);} inline void umfpack_report_status(double control[UMFPACK_CONTROL], int status, double) { umfpack_di_report_status(control, status);} inline void umfpack_report_status(double control[UMFPACK_CONTROL], int status, std::complex<double>) { umfpack_zi_report_status(control, status);} inline void umfpack_report_control(double control[UMFPACK_CONTROL], double) { umfpack_di_report_control(control);} inline void umfpack_report_control(double control[UMFPACK_CONTROL], std::complex<double>) { umfpack_zi_report_control(control);} inline void umfpack_free_numeric(void **Numeric, double) { umfpack_di_free_numeric(Numeric); *Numeric = 0; } inline void umfpack_free_numeric(void **Numeric, std::complex<double>) { umfpack_zi_free_numeric(Numeric); *Numeric = 0; } inline void umfpack_free_symbolic(void **Symbolic, double) { umfpack_di_free_symbolic(Symbolic); *Symbolic = 0; } inline void umfpack_free_symbolic(void **Symbolic, std::complex<double>) { umfpack_zi_free_symbolic(Symbolic); *Symbolic = 0; } inline int umfpack_symbolic(int n_row,int n_col, const int Ap[], const int Ai[], const double Ax[], void **Symbolic, const double Control [UMFPACK_CONTROL], double Info [UMFPACK_INFO]) { return umfpack_di_symbolic(n_row,n_col,Ap,Ai,Ax,Symbolic,Control,Info); } inline int umfpack_symbolic(int n_row,int n_col, const int Ap[], const int Ai[], const std::complex<double> Ax[], void **Symbolic, const double Control [UMFPACK_CONTROL], double Info [UMFPACK_INFO]) { return umfpack_zi_symbolic(n_row,n_col,Ap,Ai,&numext::real_ref(Ax[0]),0,Symbolic,Control,Info); } inline int umfpack_numeric( const int Ap[], const int Ai[], const double Ax[], void *Symbolic, void **Numeric, const double Control[UMFPACK_CONTROL],double Info [UMFPACK_INFO]) { return umfpack_di_numeric(Ap,Ai,Ax,Symbolic,Numeric,Control,Info); } inline int umfpack_numeric( const int Ap[], const int Ai[], const std::complex<double> Ax[], void *Symbolic, void **Numeric, const double Control[UMFPACK_CONTROL],double Info [UMFPACK_INFO]) { return umfpack_zi_numeric(Ap,Ai,&numext::real_ref(Ax[0]),0,Symbolic,Numeric,Control,Info); } inline int umfpack_solve( int sys, const int Ap[], const int Ai[], const double Ax[], double X[], const double B[], void *Numeric, const double Control[UMFPACK_CONTROL], double Info[UMFPACK_INFO]) { return umfpack_di_solve(sys,Ap,Ai,Ax,X,B,Numeric,Control,Info); } inline int umfpack_solve( int sys, const int Ap[], const int Ai[], const std::complex<double> Ax[], std::complex<double> X[], const std::complex<double> B[], void *Numeric, const double Control[UMFPACK_CONTROL], double Info[UMFPACK_INFO]) { return umfpack_zi_solve(sys,Ap,Ai,&numext::real_ref(Ax[0]),0,&numext::real_ref(X[0]),0,&numext::real_ref(B[0]),0,Numeric,Control,Info); } inline int umfpack_get_lunz(int *lnz, int *unz, int *n_row, int *n_col, int *nz_udiag, void *Numeric, double) { return umfpack_di_get_lunz(lnz,unz,n_row,n_col,nz_udiag,Numeric); } inline int umfpack_get_lunz(int *lnz, int *unz, int *n_row, int *n_col, int *nz_udiag, void *Numeric, std::complex<double>) { return umfpack_zi_get_lunz(lnz,unz,n_row,n_col,nz_udiag,Numeric); } inline int umfpack_get_numeric(int Lp[], int Lj[], double Lx[], int Up[], int Ui[], double Ux[], int P[], int Q[], double Dx[], int *do_recip, double Rs[], void *Numeric) { return umfpack_di_get_numeric(Lp,Lj,Lx,Up,Ui,Ux,P,Q,Dx,do_recip,Rs,Numeric); } inline int umfpack_get_numeric(int Lp[], int Lj[], std::complex<double> Lx[], int Up[], int Ui[], std::complex<double> Ux[], int P[], int Q[], std::complex<double> Dx[], int *do_recip, double Rs[], void *Numeric) { double& lx0_real = numext::real_ref(Lx[0]); double& ux0_real = numext::real_ref(Ux[0]); double& dx0_real = numext::real_ref(Dx[0]); return umfpack_zi_get_numeric(Lp,Lj,Lx?&lx0_real:0,0,Up,Ui,Ux?&ux0_real:0,0,P,Q, Dx?&dx0_real:0,0,do_recip,Rs,Numeric); } inline int umfpack_get_determinant(double *Mx, double *Ex, void *NumericHandle, double User_Info [UMFPACK_INFO]) { return umfpack_di_get_determinant(Mx,Ex,NumericHandle,User_Info); } inline int umfpack_get_determinant(std::complex<double> *Mx, double *Ex, void *NumericHandle, double User_Info [UMFPACK_INFO]) { double& mx_real = numext::real_ref(*Mx); return umfpack_zi_get_determinant(&mx_real,0,Ex,NumericHandle,User_Info); } /** \ingroup UmfPackSupport_Module * \brief A sparse LU factorization and solver based on UmfPack * * This class allows to solve for A.X = B sparse linear problems via a LU factorization * using the UmfPack library. The sparse matrix A must be squared and full rank. * The vectors or matrices X and B can be either dense or sparse. * * \warning The input matrix A should be in a \b compressed and \b column-major form. * Otherwise an expensive copy will be made. You can call the inexpensive makeCompressed() to get a compressed matrix. * \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<> * * \implsparsesolverconcept * * \sa \ref TutorialSparseSolverConcept, class SparseLU */ template<typename _MatrixType> class UmfPackLU : public SparseSolverBase<UmfPackLU<_MatrixType> > { protected: typedef SparseSolverBase<UmfPackLU<_MatrixType> > Base; using Base::m_isInitialized; public: using Base::_solve_impl; typedef _MatrixType MatrixType; typedef typename MatrixType::Scalar Scalar; typedef typename MatrixType::RealScalar RealScalar; typedef typename MatrixType::StorageIndex StorageIndex; typedef Matrix<Scalar,Dynamic,1> Vector; typedef Matrix<int, 1, MatrixType::ColsAtCompileTime> IntRowVectorType; typedef Matrix<int, MatrixType::RowsAtCompileTime, 1> IntColVectorType; typedef SparseMatrix<Scalar> LUMatrixType; typedef SparseMatrix<Scalar,ColMajor,int> UmfpackMatrixType; typedef Ref<const UmfpackMatrixType, StandardCompressedFormat> UmfpackMatrixRef; enum { ColsAtCompileTime = MatrixType::ColsAtCompileTime, MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime }; public: typedef Array<double, UMFPACK_CONTROL, 1> UmfpackControl; typedef Array<double, UMFPACK_INFO, 1> UmfpackInfo; UmfPackLU() : m_dummy(0,0), mp_matrix(m_dummy) { init(); } template<typename InputMatrixType> explicit UmfPackLU(const InputMatrixType& matrix) : mp_matrix(matrix) { init(); compute(matrix); } ~UmfPackLU() { if(m_symbolic) umfpack_free_symbolic(&m_symbolic,Scalar()); if(m_numeric) umfpack_free_numeric(&m_numeric,Scalar()); } inline Index rows() const { return mp_matrix.rows(); } inline Index cols() const { return mp_matrix.cols(); } /** \brief Reports whether previous computation was successful. * * \returns \c Success if computation was succesful, * \c NumericalIssue if the matrix.appears to be negative. */ ComputationInfo info() const { eigen_assert(m_isInitialized && "Decomposition is not initialized."); return m_info; } inline const LUMatrixType& matrixL() const { if (m_extractedDataAreDirty) extractData(); return m_l; } inline const LUMatrixType& matrixU() const { if (m_extractedDataAreDirty) extractData(); return m_u; } inline const IntColVectorType& permutationP() const { if (m_extractedDataAreDirty) extractData(); return m_p; } inline const IntRowVectorType& permutationQ() const { if (m_extractedDataAreDirty) extractData(); return m_q; } /** Computes the sparse Cholesky decomposition of \a matrix * Note that the matrix should be column-major, and in compressed format for best performance. * \sa SparseMatrix::makeCompressed(). */ template<typename InputMatrixType> void compute(const InputMatrixType& matrix) { if(m_symbolic) umfpack_free_symbolic(&m_symbolic,Scalar()); if(m_numeric) umfpack_free_numeric(&m_numeric,Scalar()); grab(matrix.derived()); analyzePattern_impl(); factorize_impl(); } /** Performs a symbolic decomposition on the sparcity of \a matrix. * * This function is particularly useful when solving for several problems having the same structure. * * \sa factorize(), compute() */ template<typename InputMatrixType> void analyzePattern(const InputMatrixType& matrix) { if(m_symbolic) umfpack_free_symbolic(&m_symbolic,Scalar()); if(m_numeric) umfpack_free_numeric(&m_numeric,Scalar()); grab(matrix.derived()); analyzePattern_impl(); } /** Provides the return status code returned by UmfPack during the numeric * factorization. * * \sa factorize(), compute() */ inline int umfpackFactorizeReturncode() const { eigen_assert(m_numeric && "UmfPackLU: you must first call factorize()"); return m_fact_errorCode; } /** Provides access to the control settings array used by UmfPack. * * If this array contains NaN's, the default values are used. * * See UMFPACK documentation for details. */ inline const UmfpackControl& umfpackControl() const { return m_control; } /** Provides access to the control settings array used by UmfPack. * * If this array contains NaN's, the default values are used. * * See UMFPACK documentation for details. */ inline UmfpackControl& umfpackControl() { return m_control; } /** Performs a numeric decomposition of \a matrix * * The given matrix must has the same sparcity than the matrix on which the pattern anylysis has been performed. * * \sa analyzePattern(), compute() */ template<typename InputMatrixType> void factorize(const InputMatrixType& matrix) { eigen_assert(m_analysisIsOk && "UmfPackLU: you must first call analyzePattern()"); if(m_numeric) umfpack_free_numeric(&m_numeric,Scalar()); grab(matrix.derived()); factorize_impl(); } /** Prints the current UmfPack control settings. * * \sa umfpackControl() */ void umfpackReportControl() { umfpack_report_control(m_control.data(), Scalar()); } /** Prints statistics collected by UmfPack. * * \sa analyzePattern(), compute() */ void umfpackReportInfo() { eigen_assert(m_analysisIsOk && "UmfPackLU: you must first call analyzePattern()"); umfpack_report_info(m_control.data(), m_umfpackInfo.data(), Scalar()); } /** Prints the status of the previous factorization operation performed by UmfPack (symbolic or numerical factorization). * * \sa analyzePattern(), compute() */ void umfpackReportStatus() { eigen_assert(m_analysisIsOk && "UmfPackLU: you must first call analyzePattern()"); umfpack_report_status(m_control.data(), m_fact_errorCode, Scalar()); } /** \internal */ template<typename BDerived,typename XDerived> bool _solve_impl(const MatrixBase<BDerived> &b, MatrixBase<XDerived> &x) const; Scalar determinant() const; void extractData() const; protected: void init() { m_info = InvalidInput; m_isInitialized = false; m_numeric = 0; m_symbolic = 0; m_extractedDataAreDirty = true; umfpack_defaults(m_control.data(), Scalar()); } void analyzePattern_impl() { m_fact_errorCode = umfpack_symbolic(internal::convert_index<int>(mp_matrix.rows()), internal::convert_index<int>(mp_matrix.cols()), mp_matrix.outerIndexPtr(), mp_matrix.innerIndexPtr(), mp_matrix.valuePtr(), &m_symbolic, m_control.data(), m_umfpackInfo.data()); m_isInitialized = true; m_info = m_fact_errorCode ? InvalidInput : Success; m_analysisIsOk = true; m_factorizationIsOk = false; m_extractedDataAreDirty = true; } void factorize_impl() { m_fact_errorCode = umfpack_numeric(mp_matrix.outerIndexPtr(), mp_matrix.innerIndexPtr(), mp_matrix.valuePtr(), m_symbolic, &m_numeric, m_control.data(), m_umfpackInfo.data()); m_info = m_fact_errorCode == UMFPACK_OK ? Success : NumericalIssue; m_factorizationIsOk = true; m_extractedDataAreDirty = true; } template<typename MatrixDerived> void grab(const EigenBase<MatrixDerived> &A) { mp_matrix.~UmfpackMatrixRef(); ::new (&mp_matrix) UmfpackMatrixRef(A.derived()); } void grab(const UmfpackMatrixRef &A) { if(&(A.derived()) != &mp_matrix) { mp_matrix.~UmfpackMatrixRef(); ::new (&mp_matrix) UmfpackMatrixRef(A); } } // cached data to reduce reallocation, etc. mutable LUMatrixType m_l; int m_fact_errorCode; UmfpackControl m_control; mutable UmfpackInfo m_umfpackInfo; mutable LUMatrixType m_u; mutable IntColVectorType m_p; mutable IntRowVectorType m_q; UmfpackMatrixType m_dummy; UmfpackMatrixRef mp_matrix; void* m_numeric; void* m_symbolic; mutable ComputationInfo m_info; int m_factorizationIsOk; int m_analysisIsOk; mutable bool m_extractedDataAreDirty; private: UmfPackLU(const UmfPackLU& ) { } }; template<typename MatrixType> void UmfPackLU<MatrixType>::extractData() const { if (m_extractedDataAreDirty) { // get size of the data int lnz, unz, rows, cols, nz_udiag; umfpack_get_lunz(&lnz, &unz, &rows, &cols, &nz_udiag, m_numeric, Scalar()); // allocate data m_l.resize(rows,(std::min)(rows,cols)); m_l.resizeNonZeros(lnz); m_u.resize((std::min)(rows,cols),cols); m_u.resizeNonZeros(unz); m_p.resize(rows); m_q.resize(cols); // extract umfpack_get_numeric(m_l.outerIndexPtr(), m_l.innerIndexPtr(), m_l.valuePtr(), m_u.outerIndexPtr(), m_u.innerIndexPtr(), m_u.valuePtr(), m_p.data(), m_q.data(), 0, 0, 0, m_numeric); m_extractedDataAreDirty = false; } } template<typename MatrixType> typename UmfPackLU<MatrixType>::Scalar UmfPackLU<MatrixType>::determinant() const { Scalar det; umfpack_get_determinant(&det, 0, m_numeric, 0); return det; } template<typename MatrixType> template<typename BDerived,typename XDerived> bool UmfPackLU<MatrixType>::_solve_impl(const MatrixBase<BDerived> &b, MatrixBase<XDerived> &x) const { Index rhsCols = b.cols(); eigen_assert((BDerived::Flags&RowMajorBit)==0 && "UmfPackLU backend does not support non col-major rhs yet"); eigen_assert((XDerived::Flags&RowMajorBit)==0 && "UmfPackLU backend does not support non col-major result yet"); eigen_assert(b.derived().data() != x.derived().data() && " Umfpack does not support inplace solve"); int errorCode; Scalar* x_ptr = 0; Matrix<Scalar,Dynamic,1> x_tmp; if(x.innerStride()!=1) { x_tmp.resize(x.rows()); x_ptr = x_tmp.data(); } for (int j=0; j<rhsCols; ++j) { if(x.innerStride()==1) x_ptr = &x.col(j).coeffRef(0); errorCode = umfpack_solve(UMFPACK_A, mp_matrix.outerIndexPtr(), mp_matrix.innerIndexPtr(), mp_matrix.valuePtr(), x_ptr, &b.const_cast_derived().col(j).coeffRef(0), m_numeric, m_control.data(), m_umfpackInfo.data()); if(x.innerStride()!=1) x.col(j) = x_tmp; if (errorCode!=0) return false; } return true; } } // end namespace Eigen #endif // EIGEN_UMFPACKSUPPORT_H