#include "main.h" namespace Eigen { template<typename Lhs,typename Rhs> const Product<Lhs,Rhs> prod(const Lhs& lhs, const Rhs& rhs) { return Product<Lhs,Rhs>(lhs,rhs); } template<typename Lhs,typename Rhs> const Product<Lhs,Rhs,LazyProduct> lazyprod(const Lhs& lhs, const Rhs& rhs) { return Product<Lhs,Rhs,LazyProduct>(lhs,rhs); } template<typename DstXprType, typename SrcXprType> EIGEN_STRONG_INLINE DstXprType& copy_using_evaluator(const EigenBase<DstXprType> &dst, const SrcXprType &src) { call_assignment(dst.const_cast_derived(), src.derived(), internal::assign_op<typename DstXprType::Scalar,typename SrcXprType::Scalar>()); return dst.const_cast_derived(); } template<typename DstXprType, template <typename> class StorageBase, typename SrcXprType> EIGEN_STRONG_INLINE const DstXprType& copy_using_evaluator(const NoAlias<DstXprType, StorageBase>& dst, const SrcXprType &src) { call_assignment(dst, src.derived(), internal::assign_op<typename DstXprType::Scalar,typename SrcXprType::Scalar>()); return dst.expression(); } template<typename DstXprType, typename SrcXprType> EIGEN_STRONG_INLINE DstXprType& copy_using_evaluator(const PlainObjectBase<DstXprType> &dst, const SrcXprType &src) { #ifdef EIGEN_NO_AUTOMATIC_RESIZING eigen_assert((dst.size()==0 || (IsVectorAtCompileTime ? (dst.size() == src.size()) : (dst.rows() == src.rows() && dst.cols() == src.cols()))) && "Size mismatch. Automatic resizing is disabled because EIGEN_NO_AUTOMATIC_RESIZING is defined"); #else dst.const_cast_derived().resizeLike(src.derived()); #endif call_assignment(dst.const_cast_derived(), src.derived(), internal::assign_op<typename DstXprType::Scalar,typename SrcXprType::Scalar>()); return dst.const_cast_derived(); } template<typename DstXprType, typename SrcXprType> void add_assign_using_evaluator(const DstXprType& dst, const SrcXprType& src) { typedef typename DstXprType::Scalar Scalar; call_assignment(const_cast<DstXprType&>(dst), src.derived(), internal::add_assign_op<Scalar,typename SrcXprType::Scalar>()); } template<typename DstXprType, typename SrcXprType> void subtract_assign_using_evaluator(const DstXprType& dst, const SrcXprType& src) { typedef typename DstXprType::Scalar Scalar; call_assignment(const_cast<DstXprType&>(dst), src.derived(), internal::sub_assign_op<Scalar,typename SrcXprType::Scalar>()); } template<typename DstXprType, typename SrcXprType> void multiply_assign_using_evaluator(const DstXprType& dst, const SrcXprType& src) { typedef typename DstXprType::Scalar Scalar; call_assignment(dst.const_cast_derived(), src.derived(), internal::mul_assign_op<Scalar,typename SrcXprType::Scalar>()); } template<typename DstXprType, typename SrcXprType> void divide_assign_using_evaluator(const DstXprType& dst, const SrcXprType& src) { typedef typename DstXprType::Scalar Scalar; call_assignment(dst.const_cast_derived(), src.derived(), internal::div_assign_op<Scalar,typename SrcXprType::Scalar>()); } template<typename DstXprType, typename SrcXprType> void swap_using_evaluator(const DstXprType& dst, const SrcXprType& src) { typedef typename DstXprType::Scalar Scalar; call_assignment(dst.const_cast_derived(), src.const_cast_derived(), internal::swap_assign_op<Scalar>()); } namespace internal { template<typename Dst, template <typename> class StorageBase, typename Src, typename Func> EIGEN_DEVICE_FUNC void call_assignment(const NoAlias<Dst,StorageBase>& dst, const Src& src, const Func& func) { call_assignment_no_alias(dst.expression(), src, func); } } } template<typename XprType> long get_cost(const XprType& ) { return Eigen::internal::evaluator<XprType>::CoeffReadCost; } using namespace std; #define VERIFY_IS_APPROX_EVALUATOR(DEST,EXPR) VERIFY_IS_APPROX(copy_using_evaluator(DEST,(EXPR)), (EXPR).eval()); #define VERIFY_IS_APPROX_EVALUATOR2(DEST,EXPR,REF) VERIFY_IS_APPROX(copy_using_evaluator(DEST,(EXPR)), (REF).eval()); void test_evaluators() { // Testing Matrix evaluator and Transpose Vector2d v = Vector2d::Random(); const Vector2d v_const(v); Vector2d v2; RowVector2d w; VERIFY_IS_APPROX_EVALUATOR(v2, v); VERIFY_IS_APPROX_EVALUATOR(v2, v_const); // Testing Transpose VERIFY_IS_APPROX_EVALUATOR(w, v.transpose()); // Transpose as rvalue VERIFY_IS_APPROX_EVALUATOR(w, v_const.transpose()); copy_using_evaluator(w.transpose(), v); // Transpose as lvalue VERIFY_IS_APPROX(w,v.transpose().eval()); copy_using_evaluator(w.transpose(), v_const); VERIFY_IS_APPROX(w,v_const.transpose().eval()); // Testing Array evaluator { ArrayXXf a(2,3); ArrayXXf b(3,2); a << 1,2,3, 4,5,6; const ArrayXXf a_const(a); VERIFY_IS_APPROX_EVALUATOR(b, a.transpose()); VERIFY_IS_APPROX_EVALUATOR(b, a_const.transpose()); // Testing CwiseNullaryOp evaluator copy_using_evaluator(w, RowVector2d::Random()); VERIFY((w.array() >= -1).all() && (w.array() <= 1).all()); // not easy to test ... VERIFY_IS_APPROX_EVALUATOR(w, RowVector2d::Zero()); VERIFY_IS_APPROX_EVALUATOR(w, RowVector2d::Constant(3)); // mix CwiseNullaryOp and transpose VERIFY_IS_APPROX_EVALUATOR(w, Vector2d::Zero().transpose()); } { // test product expressions int s = internal::random<int>(1,100); MatrixXf a(s,s), b(s,s), c(s,s), d(s,s); a.setRandom(); b.setRandom(); c.setRandom(); d.setRandom(); VERIFY_IS_APPROX_EVALUATOR(d, (a + b)); VERIFY_IS_APPROX_EVALUATOR(d, (a + b).transpose()); VERIFY_IS_APPROX_EVALUATOR2(d, prod(a,b), a*b); VERIFY_IS_APPROX_EVALUATOR2(d.noalias(), prod(a,b), a*b); VERIFY_IS_APPROX_EVALUATOR2(d, prod(a,b) + c, a*b + c); VERIFY_IS_APPROX_EVALUATOR2(d, s * prod(a,b), s * a*b); VERIFY_IS_APPROX_EVALUATOR2(d, prod(a,b).transpose(), (a*b).transpose()); VERIFY_IS_APPROX_EVALUATOR2(d, prod(a,b) + prod(b,c), a*b + b*c); // check that prod works even with aliasing present c = a*a; copy_using_evaluator(a, prod(a,a)); VERIFY_IS_APPROX(a,c); // check compound assignment of products d = c; add_assign_using_evaluator(c.noalias(), prod(a,b)); d.noalias() += a*b; VERIFY_IS_APPROX(c, d); d = c; subtract_assign_using_evaluator(c.noalias(), prod(a,b)); d.noalias() -= a*b; VERIFY_IS_APPROX(c, d); } { // test product with all possible sizes int s = internal::random<int>(1,100); Matrix<float, 1, 1> m11, res11; m11.setRandom(1,1); Matrix<float, 1, 4> m14, res14; m14.setRandom(1,4); Matrix<float, 1,Dynamic> m1X, res1X; m1X.setRandom(1,s); Matrix<float, 4, 1> m41, res41; m41.setRandom(4,1); Matrix<float, 4, 4> m44, res44; m44.setRandom(4,4); Matrix<float, 4,Dynamic> m4X, res4X; m4X.setRandom(4,s); Matrix<float,Dynamic, 1> mX1, resX1; mX1.setRandom(s,1); Matrix<float,Dynamic, 4> mX4, resX4; mX4.setRandom(s,4); Matrix<float,Dynamic,Dynamic> mXX, resXX; mXX.setRandom(s,s); VERIFY_IS_APPROX_EVALUATOR2(res11, prod(m11,m11), m11*m11); VERIFY_IS_APPROX_EVALUATOR2(res11, prod(m14,m41), m14*m41); VERIFY_IS_APPROX_EVALUATOR2(res11, prod(m1X,mX1), m1X*mX1); VERIFY_IS_APPROX_EVALUATOR2(res14, prod(m11,m14), m11*m14); VERIFY_IS_APPROX_EVALUATOR2(res14, prod(m14,m44), m14*m44); VERIFY_IS_APPROX_EVALUATOR2(res14, prod(m1X,mX4), m1X*mX4); VERIFY_IS_APPROX_EVALUATOR2(res1X, prod(m11,m1X), m11*m1X); VERIFY_IS_APPROX_EVALUATOR2(res1X, prod(m14,m4X), m14*m4X); VERIFY_IS_APPROX_EVALUATOR2(res1X, prod(m1X,mXX), m1X*mXX); VERIFY_IS_APPROX_EVALUATOR2(res41, prod(m41,m11), m41*m11); VERIFY_IS_APPROX_EVALUATOR2(res41, prod(m44,m41), m44*m41); VERIFY_IS_APPROX_EVALUATOR2(res41, prod(m4X,mX1), m4X*mX1); VERIFY_IS_APPROX_EVALUATOR2(res44, prod(m41,m14), m41*m14); VERIFY_IS_APPROX_EVALUATOR2(res44, prod(m44,m44), m44*m44); VERIFY_IS_APPROX_EVALUATOR2(res44, prod(m4X,mX4), m4X*mX4); VERIFY_IS_APPROX_EVALUATOR2(res4X, prod(m41,m1X), m41*m1X); VERIFY_IS_APPROX_EVALUATOR2(res4X, prod(m44,m4X), m44*m4X); VERIFY_IS_APPROX_EVALUATOR2(res4X, prod(m4X,mXX), m4X*mXX); VERIFY_IS_APPROX_EVALUATOR2(resX1, prod(mX1,m11), mX1*m11); VERIFY_IS_APPROX_EVALUATOR2(resX1, prod(mX4,m41), mX4*m41); VERIFY_IS_APPROX_EVALUATOR2(resX1, prod(mXX,mX1), mXX*mX1); VERIFY_IS_APPROX_EVALUATOR2(resX4, prod(mX1,m14), mX1*m14); VERIFY_IS_APPROX_EVALUATOR2(resX4, prod(mX4,m44), mX4*m44); VERIFY_IS_APPROX_EVALUATOR2(resX4, prod(mXX,mX4), mXX*mX4); VERIFY_IS_APPROX_EVALUATOR2(resXX, prod(mX1,m1X), mX1*m1X); VERIFY_IS_APPROX_EVALUATOR2(resXX, prod(mX4,m4X), mX4*m4X); VERIFY_IS_APPROX_EVALUATOR2(resXX, prod(mXX,mXX), mXX*mXX); } { ArrayXXf a(2,3); ArrayXXf b(3,2); a << 1,2,3, 4,5,6; const ArrayXXf a_const(a); // this does not work because Random is eval-before-nested: // copy_using_evaluator(w, Vector2d::Random().transpose()); // test CwiseUnaryOp VERIFY_IS_APPROX_EVALUATOR(v2, 3 * v); VERIFY_IS_APPROX_EVALUATOR(w, (3 * v).transpose()); VERIFY_IS_APPROX_EVALUATOR(b, (a + 3).transpose()); VERIFY_IS_APPROX_EVALUATOR(b, (2 * a_const + 3).transpose()); // test CwiseBinaryOp VERIFY_IS_APPROX_EVALUATOR(v2, v + Vector2d::Ones()); VERIFY_IS_APPROX_EVALUATOR(w, (v + Vector2d::Ones()).transpose().cwiseProduct(RowVector2d::Constant(3))); // dynamic matrices and arrays MatrixXd mat1(6,6), mat2(6,6); VERIFY_IS_APPROX_EVALUATOR(mat1, MatrixXd::Identity(6,6)); VERIFY_IS_APPROX_EVALUATOR(mat2, mat1); copy_using_evaluator(mat2.transpose(), mat1); VERIFY_IS_APPROX(mat2.transpose(), mat1); ArrayXXd arr1(6,6), arr2(6,6); VERIFY_IS_APPROX_EVALUATOR(arr1, ArrayXXd::Constant(6,6, 3.0)); VERIFY_IS_APPROX_EVALUATOR(arr2, arr1); // test automatic resizing mat2.resize(3,3); VERIFY_IS_APPROX_EVALUATOR(mat2, mat1); arr2.resize(9,9); VERIFY_IS_APPROX_EVALUATOR(arr2, arr1); // test direct traversal Matrix3f m3; Array33f a3; VERIFY_IS_APPROX_EVALUATOR(m3, Matrix3f::Identity()); // matrix, nullary // TODO: find a way to test direct traversal with array VERIFY_IS_APPROX_EVALUATOR(m3.transpose(), Matrix3f::Identity().transpose()); // transpose VERIFY_IS_APPROX_EVALUATOR(m3, 2 * Matrix3f::Identity()); // unary VERIFY_IS_APPROX_EVALUATOR(m3, Matrix3f::Identity() + Matrix3f::Zero()); // binary VERIFY_IS_APPROX_EVALUATOR(m3.block(0,0,2,2), Matrix3f::Identity().block(1,1,2,2)); // block // test linear traversal VERIFY_IS_APPROX_EVALUATOR(m3, Matrix3f::Zero()); // matrix, nullary VERIFY_IS_APPROX_EVALUATOR(a3, Array33f::Zero()); // array VERIFY_IS_APPROX_EVALUATOR(m3.transpose(), Matrix3f::Zero().transpose()); // transpose VERIFY_IS_APPROX_EVALUATOR(m3, 2 * Matrix3f::Zero()); // unary VERIFY_IS_APPROX_EVALUATOR(m3, Matrix3f::Zero() + m3); // binary // test inner vectorization Matrix4f m4, m4src = Matrix4f::Random(); Array44f a4, a4src = Matrix4f::Random(); VERIFY_IS_APPROX_EVALUATOR(m4, m4src); // matrix VERIFY_IS_APPROX_EVALUATOR(a4, a4src); // array VERIFY_IS_APPROX_EVALUATOR(m4.transpose(), m4src.transpose()); // transpose // TODO: find out why Matrix4f::Zero() does not allow inner vectorization VERIFY_IS_APPROX_EVALUATOR(m4, 2 * m4src); // unary VERIFY_IS_APPROX_EVALUATOR(m4, m4src + m4src); // binary // test linear vectorization MatrixXf mX(6,6), mXsrc = MatrixXf::Random(6,6); ArrayXXf aX(6,6), aXsrc = ArrayXXf::Random(6,6); VERIFY_IS_APPROX_EVALUATOR(mX, mXsrc); // matrix VERIFY_IS_APPROX_EVALUATOR(aX, aXsrc); // array VERIFY_IS_APPROX_EVALUATOR(mX.transpose(), mXsrc.transpose()); // transpose VERIFY_IS_APPROX_EVALUATOR(mX, MatrixXf::Zero(6,6)); // nullary VERIFY_IS_APPROX_EVALUATOR(mX, 2 * mXsrc); // unary VERIFY_IS_APPROX_EVALUATOR(mX, mXsrc + mXsrc); // binary // test blocks and slice vectorization VERIFY_IS_APPROX_EVALUATOR(m4, (mXsrc.block<4,4>(1,0))); VERIFY_IS_APPROX_EVALUATOR(aX, ArrayXXf::Constant(10, 10, 3.0).block(2, 3, 6, 6)); Matrix4f m4ref = m4; copy_using_evaluator(m4.block(1, 1, 2, 3), m3.bottomRows(2)); m4ref.block(1, 1, 2, 3) = m3.bottomRows(2); VERIFY_IS_APPROX(m4, m4ref); mX.setIdentity(20,20); MatrixXf mXref = MatrixXf::Identity(20,20); mXsrc = MatrixXf::Random(9,12); copy_using_evaluator(mX.block(4, 4, 9, 12), mXsrc); mXref.block(4, 4, 9, 12) = mXsrc; VERIFY_IS_APPROX(mX, mXref); // test Map const float raw[3] = {1,2,3}; float buffer[3] = {0,0,0}; Vector3f v3; Array3f a3f; VERIFY_IS_APPROX_EVALUATOR(v3, Map<const Vector3f>(raw)); VERIFY_IS_APPROX_EVALUATOR(a3f, Map<const Array3f>(raw)); Vector3f::Map(buffer) = 2*v3; VERIFY(buffer[0] == 2); VERIFY(buffer[1] == 4); VERIFY(buffer[2] == 6); // test CwiseUnaryView mat1.setRandom(); mat2.setIdentity(); MatrixXcd matXcd(6,6), matXcd_ref(6,6); copy_using_evaluator(matXcd.real(), mat1); copy_using_evaluator(matXcd.imag(), mat2); matXcd_ref.real() = mat1; matXcd_ref.imag() = mat2; VERIFY_IS_APPROX(matXcd, matXcd_ref); // test Select VERIFY_IS_APPROX_EVALUATOR(aX, (aXsrc > 0).select(aXsrc, -aXsrc)); // test Replicate mXsrc = MatrixXf::Random(6, 6); VectorXf vX = VectorXf::Random(6); mX.resize(6, 6); VERIFY_IS_APPROX_EVALUATOR(mX, mXsrc.colwise() + vX); matXcd.resize(12, 12); VERIFY_IS_APPROX_EVALUATOR(matXcd, matXcd_ref.replicate(2,2)); VERIFY_IS_APPROX_EVALUATOR(matXcd, (matXcd_ref.replicate<2,2>())); // test partial reductions VectorXd vec1(6); VERIFY_IS_APPROX_EVALUATOR(vec1, mat1.rowwise().sum()); VERIFY_IS_APPROX_EVALUATOR(vec1, mat1.colwise().sum().transpose()); // test MatrixWrapper and ArrayWrapper mat1.setRandom(6,6); arr1.setRandom(6,6); VERIFY_IS_APPROX_EVALUATOR(mat2, arr1.matrix()); VERIFY_IS_APPROX_EVALUATOR(arr2, mat1.array()); VERIFY_IS_APPROX_EVALUATOR(mat2, (arr1 + 2).matrix()); VERIFY_IS_APPROX_EVALUATOR(arr2, mat1.array() + 2); mat2.array() = arr1 * arr1; VERIFY_IS_APPROX(mat2, (arr1 * arr1).matrix()); arr2.matrix() = MatrixXd::Identity(6,6); VERIFY_IS_APPROX(arr2, MatrixXd::Identity(6,6).array()); // test Reverse VERIFY_IS_APPROX_EVALUATOR(arr2, arr1.reverse()); VERIFY_IS_APPROX_EVALUATOR(arr2, arr1.colwise().reverse()); VERIFY_IS_APPROX_EVALUATOR(arr2, arr1.rowwise().reverse()); arr2.reverse() = arr1; VERIFY_IS_APPROX(arr2, arr1.reverse()); mat2.array() = mat1.array().reverse(); VERIFY_IS_APPROX(mat2.array(), mat1.array().reverse()); // test Diagonal VERIFY_IS_APPROX_EVALUATOR(vec1, mat1.diagonal()); vec1.resize(5); VERIFY_IS_APPROX_EVALUATOR(vec1, mat1.diagonal(1)); VERIFY_IS_APPROX_EVALUATOR(vec1, mat1.diagonal<-1>()); vec1.setRandom(); mat2 = mat1; copy_using_evaluator(mat1.diagonal(1), vec1); mat2.diagonal(1) = vec1; VERIFY_IS_APPROX(mat1, mat2); copy_using_evaluator(mat1.diagonal<-1>(), mat1.diagonal(1)); mat2.diagonal<-1>() = mat2.diagonal(1); VERIFY_IS_APPROX(mat1, mat2); } { // test swapping MatrixXd mat1, mat2, mat1ref, mat2ref; mat1ref = mat1 = MatrixXd::Random(6, 6); mat2ref = mat2 = 2 * mat1 + MatrixXd::Identity(6, 6); swap_using_evaluator(mat1, mat2); mat1ref.swap(mat2ref); VERIFY_IS_APPROX(mat1, mat1ref); VERIFY_IS_APPROX(mat2, mat2ref); swap_using_evaluator(mat1.block(0, 0, 3, 3), mat2.block(3, 3, 3, 3)); mat1ref.block(0, 0, 3, 3).swap(mat2ref.block(3, 3, 3, 3)); VERIFY_IS_APPROX(mat1, mat1ref); VERIFY_IS_APPROX(mat2, mat2ref); swap_using_evaluator(mat1.row(2), mat2.col(3).transpose()); mat1.row(2).swap(mat2.col(3).transpose()); VERIFY_IS_APPROX(mat1, mat1ref); VERIFY_IS_APPROX(mat2, mat2ref); } { // test compound assignment const Matrix4d mat_const = Matrix4d::Random(); Matrix4d mat, mat_ref; mat = mat_ref = Matrix4d::Identity(); add_assign_using_evaluator(mat, mat_const); mat_ref += mat_const; VERIFY_IS_APPROX(mat, mat_ref); subtract_assign_using_evaluator(mat.row(1), 2*mat.row(2)); mat_ref.row(1) -= 2*mat_ref.row(2); VERIFY_IS_APPROX(mat, mat_ref); const ArrayXXf arr_const = ArrayXXf::Random(5,3); ArrayXXf arr, arr_ref; arr = arr_ref = ArrayXXf::Constant(5, 3, 0.5); multiply_assign_using_evaluator(arr, arr_const); arr_ref *= arr_const; VERIFY_IS_APPROX(arr, arr_ref); divide_assign_using_evaluator(arr.row(1), arr.row(2) + 1); arr_ref.row(1) /= (arr_ref.row(2) + 1); VERIFY_IS_APPROX(arr, arr_ref); } { // test triangular shapes MatrixXd A = MatrixXd::Random(6,6), B(6,6), C(6,6), D(6,6); A.setRandom();B.setRandom(); VERIFY_IS_APPROX_EVALUATOR2(B, A.triangularView<Upper>(), MatrixXd(A.triangularView<Upper>())); A.setRandom();B.setRandom(); VERIFY_IS_APPROX_EVALUATOR2(B, A.triangularView<UnitLower>(), MatrixXd(A.triangularView<UnitLower>())); A.setRandom();B.setRandom(); VERIFY_IS_APPROX_EVALUATOR2(B, A.triangularView<UnitUpper>(), MatrixXd(A.triangularView<UnitUpper>())); A.setRandom();B.setRandom(); C = B; C.triangularView<Upper>() = A; copy_using_evaluator(B.triangularView<Upper>(), A); VERIFY(B.isApprox(C) && "copy_using_evaluator(B.triangularView<Upper>(), A)"); A.setRandom();B.setRandom(); C = B; C.triangularView<Lower>() = A.triangularView<Lower>(); copy_using_evaluator(B.triangularView<Lower>(), A.triangularView<Lower>()); VERIFY(B.isApprox(C) && "copy_using_evaluator(B.triangularView<Lower>(), A.triangularView<Lower>())"); A.setRandom();B.setRandom(); C = B; C.triangularView<Lower>() = A.triangularView<Upper>().transpose(); copy_using_evaluator(B.triangularView<Lower>(), A.triangularView<Upper>().transpose()); VERIFY(B.isApprox(C) && "copy_using_evaluator(B.triangularView<Lower>(), A.triangularView<Lower>().transpose())"); A.setRandom();B.setRandom(); C = B; D = A; C.triangularView<Upper>().swap(D.triangularView<Upper>()); swap_using_evaluator(B.triangularView<Upper>(), A.triangularView<Upper>()); VERIFY(B.isApprox(C) && "swap_using_evaluator(B.triangularView<Upper>(), A.triangularView<Upper>())"); VERIFY_IS_APPROX_EVALUATOR2(B, prod(A.triangularView<Upper>(),A), MatrixXd(A.triangularView<Upper>()*A)); VERIFY_IS_APPROX_EVALUATOR2(B, prod(A.selfadjointView<Upper>(),A), MatrixXd(A.selfadjointView<Upper>()*A)); } { // test diagonal shapes VectorXd d = VectorXd::Random(6); MatrixXd A = MatrixXd::Random(6,6), B(6,6); A.setRandom();B.setRandom(); VERIFY_IS_APPROX_EVALUATOR2(B, lazyprod(d.asDiagonal(),A), MatrixXd(d.asDiagonal()*A)); VERIFY_IS_APPROX_EVALUATOR2(B, lazyprod(A,d.asDiagonal()), MatrixXd(A*d.asDiagonal())); } { // test CoeffReadCost Matrix4d a, b; VERIFY_IS_EQUAL( get_cost(a), 1 ); VERIFY_IS_EQUAL( get_cost(a+b), 3); VERIFY_IS_EQUAL( get_cost(2*a+b), 4); VERIFY_IS_EQUAL( get_cost(a*b), 1); VERIFY_IS_EQUAL( get_cost(a.lazyProduct(b)), 15); VERIFY_IS_EQUAL( get_cost(a*(a*b)), 1); VERIFY_IS_EQUAL( get_cost(a.lazyProduct(a*b)), 15); VERIFY_IS_EQUAL( get_cost(a*(a+b)), 1); VERIFY_IS_EQUAL( get_cost(a.lazyProduct(a+b)), 15); } }