// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #include <sstream> #include "main.h" #include <Eigen/src/Core/arch/CUDA/Half.h> // Make sure it's possible to forward declare Eigen::half namespace Eigen { struct half; } using Eigen::half; void test_conversion() { using Eigen::half_impl::__half; // Conversion from float. VERIFY_IS_EQUAL(half(1.0f).x, 0x3c00); VERIFY_IS_EQUAL(half(0.5f).x, 0x3800); VERIFY_IS_EQUAL(half(0.33333f).x, 0x3555); VERIFY_IS_EQUAL(half(0.0f).x, 0x0000); VERIFY_IS_EQUAL(half(-0.0f).x, 0x8000); VERIFY_IS_EQUAL(half(65504.0f).x, 0x7bff); VERIFY_IS_EQUAL(half(65536.0f).x, 0x7c00); // Becomes infinity. // Denormals. VERIFY_IS_EQUAL(half(-5.96046e-08f).x, 0x8001); VERIFY_IS_EQUAL(half(5.96046e-08f).x, 0x0001); VERIFY_IS_EQUAL(half(1.19209e-07f).x, 0x0002); // Verify round-to-nearest-even behavior. float val1 = float(half(__half(0x3c00))); float val2 = float(half(__half(0x3c01))); float val3 = float(half(__half(0x3c02))); VERIFY_IS_EQUAL(half(0.5f * (val1 + val2)).x, 0x3c00); VERIFY_IS_EQUAL(half(0.5f * (val2 + val3)).x, 0x3c02); // Conversion from int. VERIFY_IS_EQUAL(half(-1).x, 0xbc00); VERIFY_IS_EQUAL(half(0).x, 0x0000); VERIFY_IS_EQUAL(half(1).x, 0x3c00); VERIFY_IS_EQUAL(half(2).x, 0x4000); VERIFY_IS_EQUAL(half(3).x, 0x4200); // Conversion from bool. VERIFY_IS_EQUAL(half(false).x, 0x0000); VERIFY_IS_EQUAL(half(true).x, 0x3c00); // Conversion to float. VERIFY_IS_EQUAL(float(half(__half(0x0000))), 0.0f); VERIFY_IS_EQUAL(float(half(__half(0x3c00))), 1.0f); // Denormals. VERIFY_IS_APPROX(float(half(__half(0x8001))), -5.96046e-08f); VERIFY_IS_APPROX(float(half(__half(0x0001))), 5.96046e-08f); VERIFY_IS_APPROX(float(half(__half(0x0002))), 1.19209e-07f); // NaNs and infinities. VERIFY(!(numext::isinf)(float(half(65504.0f)))); // Largest finite number. VERIFY(!(numext::isnan)(float(half(0.0f)))); VERIFY((numext::isinf)(float(half(__half(0xfc00))))); VERIFY((numext::isnan)(float(half(__half(0xfc01))))); VERIFY((numext::isinf)(float(half(__half(0x7c00))))); VERIFY((numext::isnan)(float(half(__half(0x7c01))))); #if !EIGEN_COMP_MSVC // Visual Studio errors out on divisions by 0 VERIFY((numext::isnan)(float(half(0.0 / 0.0)))); VERIFY((numext::isinf)(float(half(1.0 / 0.0)))); VERIFY((numext::isinf)(float(half(-1.0 / 0.0)))); #endif // Exactly same checks as above, just directly on the half representation. VERIFY(!(numext::isinf)(half(__half(0x7bff)))); VERIFY(!(numext::isnan)(half(__half(0x0000)))); VERIFY((numext::isinf)(half(__half(0xfc00)))); VERIFY((numext::isnan)(half(__half(0xfc01)))); VERIFY((numext::isinf)(half(__half(0x7c00)))); VERIFY((numext::isnan)(half(__half(0x7c01)))); #if !EIGEN_COMP_MSVC // Visual Studio errors out on divisions by 0 VERIFY((numext::isnan)(half(0.0 / 0.0))); VERIFY((numext::isinf)(half(1.0 / 0.0))); VERIFY((numext::isinf)(half(-1.0 / 0.0))); #endif } void test_numtraits() { std::cout << "epsilon = " << NumTraits<half>::epsilon() << " (0x" << std::hex << NumTraits<half>::epsilon().x << ")" << std::endl; std::cout << "highest = " << NumTraits<half>::highest() << " (0x" << std::hex << NumTraits<half>::highest().x << ")" << std::endl; std::cout << "lowest = " << NumTraits<half>::lowest() << " (0x" << std::hex << NumTraits<half>::lowest().x << ")" << std::endl; std::cout << "min = " << (std::numeric_limits<half>::min)() << " (0x" << std::hex << half((std::numeric_limits<half>::min)()).x << ")" << std::endl; std::cout << "denorm min = " << (std::numeric_limits<half>::denorm_min)() << " (0x" << std::hex << half((std::numeric_limits<half>::denorm_min)()).x << ")" << std::endl; std::cout << "infinity = " << NumTraits<half>::infinity() << " (0x" << std::hex << NumTraits<half>::infinity().x << ")" << std::endl; std::cout << "quiet nan = " << NumTraits<half>::quiet_NaN() << " (0x" << std::hex << NumTraits<half>::quiet_NaN().x << ")" << std::endl; std::cout << "signaling nan = " << std::numeric_limits<half>::signaling_NaN() << " (0x" << std::hex << std::numeric_limits<half>::signaling_NaN().x << ")" << std::endl; VERIFY(NumTraits<half>::IsSigned); VERIFY_IS_EQUAL( std::numeric_limits<half>::infinity().x, half(std::numeric_limits<float>::infinity()).x ); VERIFY_IS_EQUAL( std::numeric_limits<half>::quiet_NaN().x, half(std::numeric_limits<float>::quiet_NaN()).x ); VERIFY_IS_EQUAL( std::numeric_limits<half>::signaling_NaN().x, half(std::numeric_limits<float>::signaling_NaN()).x ); VERIFY( (std::numeric_limits<half>::min)() > half(0.f) ); VERIFY( (std::numeric_limits<half>::denorm_min)() > half(0.f) ); VERIFY( (std::numeric_limits<half>::min)()/half(2) > half(0.f) ); VERIFY_IS_EQUAL( (std::numeric_limits<half>::denorm_min)()/half(2), half(0.f) ); } void test_arithmetic() { VERIFY_IS_EQUAL(float(half(2) + half(2)), 4); VERIFY_IS_EQUAL(float(half(2) + half(-2)), 0); VERIFY_IS_APPROX(float(half(0.33333f) + half(0.66667f)), 1.0f); VERIFY_IS_EQUAL(float(half(2.0f) * half(-5.5f)), -11.0f); VERIFY_IS_APPROX(float(half(1.0f) / half(3.0f)), 0.33333f); VERIFY_IS_EQUAL(float(-half(4096.0f)), -4096.0f); VERIFY_IS_EQUAL(float(-half(-4096.0f)), 4096.0f); } void test_comparison() { VERIFY(half(1.0f) > half(0.5f)); VERIFY(half(0.5f) < half(1.0f)); VERIFY(!(half(1.0f) < half(0.5f))); VERIFY(!(half(0.5f) > half(1.0f))); VERIFY(!(half(4.0f) > half(4.0f))); VERIFY(!(half(4.0f) < half(4.0f))); VERIFY(!(half(0.0f) < half(-0.0f))); VERIFY(!(half(-0.0f) < half(0.0f))); VERIFY(!(half(0.0f) > half(-0.0f))); VERIFY(!(half(-0.0f) > half(0.0f))); VERIFY(half(0.2f) > half(-1.0f)); VERIFY(half(-1.0f) < half(0.2f)); VERIFY(half(-16.0f) < half(-15.0f)); VERIFY(half(1.0f) == half(1.0f)); VERIFY(half(1.0f) != half(2.0f)); // Comparisons with NaNs and infinities. #if !EIGEN_COMP_MSVC // Visual Studio errors out on divisions by 0 VERIFY(!(half(0.0 / 0.0) == half(0.0 / 0.0))); VERIFY(half(0.0 / 0.0) != half(0.0 / 0.0)); VERIFY(!(half(1.0) == half(0.0 / 0.0))); VERIFY(!(half(1.0) < half(0.0 / 0.0))); VERIFY(!(half(1.0) > half(0.0 / 0.0))); VERIFY(half(1.0) != half(0.0 / 0.0)); VERIFY(half(1.0) < half(1.0 / 0.0)); VERIFY(half(1.0) > half(-1.0 / 0.0)); #endif } void test_basic_functions() { VERIFY_IS_EQUAL(float(numext::abs(half(3.5f))), 3.5f); VERIFY_IS_EQUAL(float(abs(half(3.5f))), 3.5f); VERIFY_IS_EQUAL(float(numext::abs(half(-3.5f))), 3.5f); VERIFY_IS_EQUAL(float(abs(half(-3.5f))), 3.5f); VERIFY_IS_EQUAL(float(numext::floor(half(3.5f))), 3.0f); VERIFY_IS_EQUAL(float(floor(half(3.5f))), 3.0f); VERIFY_IS_EQUAL(float(numext::floor(half(-3.5f))), -4.0f); VERIFY_IS_EQUAL(float(floor(half(-3.5f))), -4.0f); VERIFY_IS_EQUAL(float(numext::ceil(half(3.5f))), 4.0f); VERIFY_IS_EQUAL(float(ceil(half(3.5f))), 4.0f); VERIFY_IS_EQUAL(float(numext::ceil(half(-3.5f))), -3.0f); VERIFY_IS_EQUAL(float(ceil(half(-3.5f))), -3.0f); VERIFY_IS_APPROX(float(numext::sqrt(half(0.0f))), 0.0f); VERIFY_IS_APPROX(float(sqrt(half(0.0f))), 0.0f); VERIFY_IS_APPROX(float(numext::sqrt(half(4.0f))), 2.0f); VERIFY_IS_APPROX(float(sqrt(half(4.0f))), 2.0f); VERIFY_IS_APPROX(float(numext::pow(half(0.0f), half(1.0f))), 0.0f); VERIFY_IS_APPROX(float(pow(half(0.0f), half(1.0f))), 0.0f); VERIFY_IS_APPROX(float(numext::pow(half(2.0f), half(2.0f))), 4.0f); VERIFY_IS_APPROX(float(pow(half(2.0f), half(2.0f))), 4.0f); VERIFY_IS_EQUAL(float(numext::exp(half(0.0f))), 1.0f); VERIFY_IS_EQUAL(float(exp(half(0.0f))), 1.0f); VERIFY_IS_APPROX(float(numext::exp(half(EIGEN_PI))), 20.f + float(EIGEN_PI)); VERIFY_IS_APPROX(float(exp(half(EIGEN_PI))), 20.f + float(EIGEN_PI)); VERIFY_IS_EQUAL(float(numext::log(half(1.0f))), 0.0f); VERIFY_IS_EQUAL(float(log(half(1.0f))), 0.0f); VERIFY_IS_APPROX(float(numext::log(half(10.0f))), 2.30273f); VERIFY_IS_APPROX(float(log(half(10.0f))), 2.30273f); VERIFY_IS_EQUAL(float(numext::log1p(half(0.0f))), 0.0f); VERIFY_IS_EQUAL(float(log1p(half(0.0f))), 0.0f); VERIFY_IS_APPROX(float(numext::log1p(half(10.0f))), 2.3978953f); VERIFY_IS_APPROX(float(log1p(half(10.0f))), 2.3978953f); } void test_trigonometric_functions() { VERIFY_IS_APPROX(numext::cos(half(0.0f)), half(cosf(0.0f))); VERIFY_IS_APPROX(cos(half(0.0f)), half(cosf(0.0f))); VERIFY_IS_APPROX(numext::cos(half(EIGEN_PI)), half(cosf(EIGEN_PI))); //VERIFY_IS_APPROX(numext::cos(half(EIGEN_PI/2)), half(cosf(EIGEN_PI/2))); //VERIFY_IS_APPROX(numext::cos(half(3*EIGEN_PI/2)), half(cosf(3*EIGEN_PI/2))); VERIFY_IS_APPROX(numext::cos(half(3.5f)), half(cosf(3.5f))); VERIFY_IS_APPROX(numext::sin(half(0.0f)), half(sinf(0.0f))); VERIFY_IS_APPROX(sin(half(0.0f)), half(sinf(0.0f))); // VERIFY_IS_APPROX(numext::sin(half(EIGEN_PI)), half(sinf(EIGEN_PI))); VERIFY_IS_APPROX(numext::sin(half(EIGEN_PI/2)), half(sinf(EIGEN_PI/2))); VERIFY_IS_APPROX(numext::sin(half(3*EIGEN_PI/2)), half(sinf(3*EIGEN_PI/2))); VERIFY_IS_APPROX(numext::sin(half(3.5f)), half(sinf(3.5f))); VERIFY_IS_APPROX(numext::tan(half(0.0f)), half(tanf(0.0f))); VERIFY_IS_APPROX(tan(half(0.0f)), half(tanf(0.0f))); // VERIFY_IS_APPROX(numext::tan(half(EIGEN_PI)), half(tanf(EIGEN_PI))); // VERIFY_IS_APPROX(numext::tan(half(EIGEN_PI/2)), half(tanf(EIGEN_PI/2))); //VERIFY_IS_APPROX(numext::tan(half(3*EIGEN_PI/2)), half(tanf(3*EIGEN_PI/2))); VERIFY_IS_APPROX(numext::tan(half(3.5f)), half(tanf(3.5f))); } void test_array() { typedef Array<half,1,Dynamic> ArrayXh; Index size = internal::random<Index>(1,10); Index i = internal::random<Index>(0,size-1); ArrayXh a1 = ArrayXh::Random(size), a2 = ArrayXh::Random(size); VERIFY_IS_APPROX( a1+a1, half(2)*a1 ); VERIFY( (a1.abs() >= half(0)).all() ); VERIFY_IS_APPROX( (a1*a1).sqrt(), a1.abs() ); VERIFY( ((a1.min)(a2) <= (a1.max)(a2)).all() ); a1(i) = half(-10.); VERIFY_IS_EQUAL( a1.minCoeff(), half(-10.) ); a1(i) = half(10.); VERIFY_IS_EQUAL( a1.maxCoeff(), half(10.) ); std::stringstream ss; ss << a1; } void test_half_float() { CALL_SUBTEST(test_conversion()); CALL_SUBTEST(test_numtraits()); CALL_SUBTEST(test_arithmetic()); CALL_SUBTEST(test_comparison()); CALL_SUBTEST(test_basic_functions()); CALL_SUBTEST(test_trigonometric_functions()); CALL_SUBTEST(test_array()); }