// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #include "sparse.h" template<typename Scalar,typename StorageIndex> void sparse_vector(int rows, int cols) { double densityMat = (std::max)(8./(rows*cols), 0.01); double densityVec = (std::max)(8./(rows), 0.1); typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix; typedef Matrix<Scalar,Dynamic,1> DenseVector; typedef SparseVector<Scalar,0,StorageIndex> SparseVectorType; typedef SparseMatrix<Scalar,0,StorageIndex> SparseMatrixType; Scalar eps = 1e-6; SparseMatrixType m1(rows,rows); SparseVectorType v1(rows), v2(rows), v3(rows); DenseMatrix refM1 = DenseMatrix::Zero(rows, rows); DenseVector refV1 = DenseVector::Random(rows), refV2 = DenseVector::Random(rows), refV3 = DenseVector::Random(rows); std::vector<int> zerocoords, nonzerocoords; initSparse<Scalar>(densityVec, refV1, v1, &zerocoords, &nonzerocoords); initSparse<Scalar>(densityMat, refM1, m1); initSparse<Scalar>(densityVec, refV2, v2); initSparse<Scalar>(densityVec, refV3, v3); Scalar s1 = internal::random<Scalar>(); // test coeff and coeffRef for (unsigned int i=0; i<zerocoords.size(); ++i) { VERIFY_IS_MUCH_SMALLER_THAN( v1.coeff(zerocoords[i]), eps ); //VERIFY_RAISES_ASSERT( v1.coeffRef(zerocoords[i]) = 5 ); } { VERIFY(int(nonzerocoords.size()) == v1.nonZeros()); int j=0; for (typename SparseVectorType::InnerIterator it(v1); it; ++it,++j) { VERIFY(nonzerocoords[j]==it.index()); VERIFY(it.value()==v1.coeff(it.index())); VERIFY(it.value()==refV1.coeff(it.index())); } } VERIFY_IS_APPROX(v1, refV1); // test coeffRef with reallocation { SparseVectorType v4(rows); DenseVector v5 = DenseVector::Zero(rows); for(int k=0; k<rows; ++k) { int i = internal::random<int>(0,rows-1); Scalar v = internal::random<Scalar>(); v4.coeffRef(i) += v; v5.coeffRef(i) += v; } VERIFY_IS_APPROX(v4,v5); } v1.coeffRef(nonzerocoords[0]) = Scalar(5); refV1.coeffRef(nonzerocoords[0]) = Scalar(5); VERIFY_IS_APPROX(v1, refV1); VERIFY_IS_APPROX(v1+v2, refV1+refV2); VERIFY_IS_APPROX(v1+v2+v3, refV1+refV2+refV3); VERIFY_IS_APPROX(v1*s1-v2, refV1*s1-refV2); VERIFY_IS_APPROX(v1*=s1, refV1*=s1); VERIFY_IS_APPROX(v1/=s1, refV1/=s1); VERIFY_IS_APPROX(v1+=v2, refV1+=refV2); VERIFY_IS_APPROX(v1-=v2, refV1-=refV2); VERIFY_IS_APPROX(v1.dot(v2), refV1.dot(refV2)); VERIFY_IS_APPROX(v1.dot(refV2), refV1.dot(refV2)); VERIFY_IS_APPROX(m1*v2, refM1*refV2); VERIFY_IS_APPROX(v1.dot(m1*v2), refV1.dot(refM1*refV2)); { int i = internal::random<int>(0,rows-1); VERIFY_IS_APPROX(v1.dot(m1.col(i)), refV1.dot(refM1.col(i))); } VERIFY_IS_APPROX(v1.squaredNorm(), refV1.squaredNorm()); VERIFY_IS_APPROX(v1.blueNorm(), refV1.blueNorm()); // test aliasing VERIFY_IS_APPROX((v1 = -v1), (refV1 = -refV1)); VERIFY_IS_APPROX((v1 = v1.transpose()), (refV1 = refV1.transpose().eval())); VERIFY_IS_APPROX((v1 += -v1), (refV1 += -refV1)); // sparse matrix to sparse vector SparseMatrixType mv1; VERIFY_IS_APPROX((mv1=v1),v1); VERIFY_IS_APPROX(mv1,(v1=mv1)); VERIFY_IS_APPROX(mv1,(v1=mv1.transpose())); // check copy to dense vector with transpose refV3.resize(0); VERIFY_IS_APPROX(refV3 = v1.transpose(),v1.toDense()); VERIFY_IS_APPROX(DenseVector(v1),v1.toDense()); // test conservative resize { std::vector<StorageIndex> inc; if(rows > 3) inc.push_back(-3); inc.push_back(0); inc.push_back(3); inc.push_back(1); inc.push_back(10); for(std::size_t i = 0; i< inc.size(); i++) { StorageIndex incRows = inc[i]; SparseVectorType vec1(rows); DenseVector refVec1 = DenseVector::Zero(rows); initSparse<Scalar>(densityVec, refVec1, vec1); vec1.conservativeResize(rows+incRows); refVec1.conservativeResize(rows+incRows); if (incRows > 0) refVec1.tail(incRows).setZero(); VERIFY_IS_APPROX(vec1, refVec1); // Insert new values if (incRows > 0) vec1.insert(vec1.rows()-1) = refVec1(refVec1.rows()-1) = 1; VERIFY_IS_APPROX(vec1, refVec1); } } } void test_sparse_vector() { for(int i = 0; i < g_repeat; i++) { int r = Eigen::internal::random<int>(1,500), c = Eigen::internal::random<int>(1,500); if(Eigen::internal::random<int>(0,4) == 0) { r = c; // check square matrices in 25% of tries } EIGEN_UNUSED_VARIABLE(r+c); CALL_SUBTEST_1(( sparse_vector<double,int>(8, 8) )); CALL_SUBTEST_2(( sparse_vector<std::complex<double>, int>(r, c) )); CALL_SUBTEST_1(( sparse_vector<double,long int>(r, c) )); CALL_SUBTEST_1(( sparse_vector<double,short>(r, c) )); } }