// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2013 Christian Seiler <christian@iwakd.de> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_CXX11_TENSORSYMMETRY_STATICSYMMETRY_H #define EIGEN_CXX11_TENSORSYMMETRY_STATICSYMMETRY_H namespace Eigen { namespace internal { template<typename list> struct tensor_static_symgroup_permutate; template<int... nn> struct tensor_static_symgroup_permutate<numeric_list<int, nn...>> { constexpr static std::size_t N = sizeof...(nn); template<typename T> constexpr static inline std::array<T, N> run(const std::array<T, N>& indices) { return {{indices[nn]...}}; } }; template<typename indices_, int flags_> struct tensor_static_symgroup_element { typedef indices_ indices; constexpr static int flags = flags_; }; template<typename Gen, int N> struct tensor_static_symgroup_element_ctor { typedef tensor_static_symgroup_element< typename gen_numeric_list_swapped_pair<int, N, Gen::One, Gen::Two>::type, Gen::Flags > type; }; template<int N> struct tensor_static_symgroup_identity_ctor { typedef tensor_static_symgroup_element< typename gen_numeric_list<int, N>::type, 0 > type; }; template<typename iib> struct tensor_static_symgroup_multiply_helper { template<int... iia> constexpr static inline numeric_list<int, get<iia, iib>::value...> helper(numeric_list<int, iia...>) { return numeric_list<int, get<iia, iib>::value...>(); } }; template<typename A, typename B> struct tensor_static_symgroup_multiply { private: typedef typename A::indices iia; typedef typename B::indices iib; constexpr static int ffa = A::flags; constexpr static int ffb = B::flags; public: static_assert(iia::count == iib::count, "Cannot multiply symmetry elements with different number of indices."); typedef tensor_static_symgroup_element< decltype(tensor_static_symgroup_multiply_helper<iib>::helper(iia())), ffa ^ ffb > type; }; template<typename A, typename B> struct tensor_static_symgroup_equality { typedef typename A::indices iia; typedef typename B::indices iib; constexpr static int ffa = A::flags; constexpr static int ffb = B::flags; static_assert(iia::count == iib::count, "Cannot compare symmetry elements with different number of indices."); constexpr static bool value = is_same<iia, iib>::value; private: /* this should be zero if they are identical, or else the tensor * will be forced to be pure real, pure imaginary or even pure zero */ constexpr static int flags_cmp_ = ffa ^ ffb; /* either they are not equal, then we don't care whether the flags * match, or they are equal, and then we have to check */ constexpr static bool is_zero = value && flags_cmp_ == NegationFlag; constexpr static bool is_real = value && flags_cmp_ == ConjugationFlag; constexpr static bool is_imag = value && flags_cmp_ == (NegationFlag | ConjugationFlag); public: constexpr static int global_flags = (is_real ? GlobalRealFlag : 0) | (is_imag ? GlobalImagFlag : 0) | (is_zero ? GlobalZeroFlag : 0); }; template<std::size_t NumIndices, typename... Gen> struct tensor_static_symgroup { typedef StaticSGroup<Gen...> type; constexpr static std::size_t size = type::static_size; }; template<typename Index, std::size_t N, int... ii, int... jj> constexpr static inline std::array<Index, N> tensor_static_symgroup_index_permute(std::array<Index, N> idx, internal::numeric_list<int, ii...>, internal::numeric_list<int, jj...>) { return {{ idx[ii]..., idx[jj]... }}; } template<typename Index, int... ii> static inline std::vector<Index> tensor_static_symgroup_index_permute(std::vector<Index> idx, internal::numeric_list<int, ii...>) { std::vector<Index> result{{ idx[ii]... }}; std::size_t target_size = idx.size(); for (std::size_t i = result.size(); i < target_size; i++) result.push_back(idx[i]); return result; } template<typename T> struct tensor_static_symgroup_do_apply; template<typename first, typename... next> struct tensor_static_symgroup_do_apply<internal::type_list<first, next...>> { template<typename Op, typename RV, std::size_t SGNumIndices, typename Index, std::size_t NumIndices, typename... Args> static inline RV run(const std::array<Index, NumIndices>& idx, RV initial, Args&&... args) { static_assert(NumIndices >= SGNumIndices, "Can only apply symmetry group to objects that have at least the required amount of indices."); typedef typename internal::gen_numeric_list<int, NumIndices - SGNumIndices, SGNumIndices>::type remaining_indices; initial = Op::run(tensor_static_symgroup_index_permute(idx, typename first::indices(), remaining_indices()), first::flags, initial, std::forward<Args>(args)...); return tensor_static_symgroup_do_apply<internal::type_list<next...>>::template run<Op, RV, SGNumIndices>(idx, initial, args...); } template<typename Op, typename RV, std::size_t SGNumIndices, typename Index, typename... Args> static inline RV run(const std::vector<Index>& idx, RV initial, Args&&... args) { eigen_assert(idx.size() >= SGNumIndices && "Can only apply symmetry group to objects that have at least the required amount of indices."); initial = Op::run(tensor_static_symgroup_index_permute(idx, typename first::indices()), first::flags, initial, std::forward<Args>(args)...); return tensor_static_symgroup_do_apply<internal::type_list<next...>>::template run<Op, RV, SGNumIndices>(idx, initial, args...); } }; template<EIGEN_TPL_PP_SPEC_HACK_DEF(typename, empty)> struct tensor_static_symgroup_do_apply<internal::type_list<EIGEN_TPL_PP_SPEC_HACK_USE(empty)>> { template<typename Op, typename RV, std::size_t SGNumIndices, typename Index, std::size_t NumIndices, typename... Args> static inline RV run(const std::array<Index, NumIndices>&, RV initial, Args&&...) { // do nothing return initial; } template<typename Op, typename RV, std::size_t SGNumIndices, typename Index, typename... Args> static inline RV run(const std::vector<Index>&, RV initial, Args&&...) { // do nothing return initial; } }; } // end namespace internal template<typename... Gen> class StaticSGroup { constexpr static std::size_t NumIndices = internal::tensor_symmetry_num_indices<Gen...>::value; typedef internal::group_theory::enumerate_group_elements< internal::tensor_static_symgroup_multiply, internal::tensor_static_symgroup_equality, typename internal::tensor_static_symgroup_identity_ctor<NumIndices>::type, internal::type_list<typename internal::tensor_static_symgroup_element_ctor<Gen, NumIndices>::type...> > group_elements; typedef typename group_elements::type ge; public: constexpr inline StaticSGroup() {} constexpr inline StaticSGroup(const StaticSGroup<Gen...>&) {} constexpr inline StaticSGroup(StaticSGroup<Gen...>&&) {} template<typename Op, typename RV, typename Index, std::size_t N, typename... Args> static inline RV apply(const std::array<Index, N>& idx, RV initial, Args&&... args) { return internal::tensor_static_symgroup_do_apply<ge>::template run<Op, RV, NumIndices>(idx, initial, args...); } template<typename Op, typename RV, typename Index, typename... Args> static inline RV apply(const std::vector<Index>& idx, RV initial, Args&&... args) { eigen_assert(idx.size() == NumIndices); return internal::tensor_static_symgroup_do_apply<ge>::template run<Op, RV, NumIndices>(idx, initial, args...); } constexpr static std::size_t static_size = ge::count; constexpr static inline std::size_t size() { return ge::count; } constexpr static inline int globalFlags() { return group_elements::global_flags; } template<typename Tensor_, typename... IndexTypes> inline internal::tensor_symmetry_value_setter<Tensor_, StaticSGroup<Gen...>> operator()(Tensor_& tensor, typename Tensor_::Index firstIndex, IndexTypes... otherIndices) const { static_assert(sizeof...(otherIndices) + 1 == Tensor_::NumIndices, "Number of indices used to access a tensor coefficient must be equal to the rank of the tensor."); return operator()(tensor, std::array<typename Tensor_::Index, Tensor_::NumIndices>{{firstIndex, otherIndices...}}); } template<typename Tensor_> inline internal::tensor_symmetry_value_setter<Tensor_, StaticSGroup<Gen...>> operator()(Tensor_& tensor, std::array<typename Tensor_::Index, Tensor_::NumIndices> const& indices) const { return internal::tensor_symmetry_value_setter<Tensor_, StaticSGroup<Gen...>>(tensor, *this, indices); } }; } // end namespace Eigen #endif // EIGEN_CXX11_TENSORSYMMETRY_STATICSYMMETRY_H /* * kate: space-indent on; indent-width 2; mixedindent off; indent-mode cstyle; */