// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2013 Christian Seiler <christian@iwakd.de> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_CXX11META_H #define EIGEN_CXX11META_H #include <vector> #include "EmulateArray.h" // Emulate the cxx11 functionality that we need if the compiler doesn't support it. // Visual studio 2015 doesn't advertise itself as cxx11 compliant, although it // supports enough of the standard for our needs #if __cplusplus > 199711L || EIGEN_COMP_MSVC >= 1900 #include "CXX11Workarounds.h" namespace Eigen { namespace internal { /** \internal * \file CXX11/util/CXX11Meta.h * This file contains generic metaprogramming classes which are not specifically related to Eigen. * This file expands upon Core/util/Meta.h and adds support for C++11 specific features. */ template<typename... tt> struct type_list { constexpr static int count = sizeof...(tt); }; template<typename t, typename... tt> struct type_list<t, tt...> { constexpr static int count = sizeof...(tt) + 1; typedef t first_type; }; template<typename T, T... nn> struct numeric_list { constexpr static std::size_t count = sizeof...(nn); }; template<typename T, T n, T... nn> struct numeric_list<T, n, nn...> { constexpr static std::size_t count = sizeof...(nn) + 1; constexpr static T first_value = n; }; /* numeric list constructors * * equivalencies: * constructor result * typename gen_numeric_list<int, 5>::type numeric_list<int, 0,1,2,3,4> * typename gen_numeric_list_reversed<int, 5>::type numeric_list<int, 4,3,2,1,0> * typename gen_numeric_list_swapped_pair<int, 5,1,2>::type numeric_list<int, 0,2,1,3,4> * typename gen_numeric_list_repeated<int, 0, 5>::type numeric_list<int, 0,0,0,0,0> */ template<typename T, std::size_t n, T start = 0, T... ii> struct gen_numeric_list : gen_numeric_list<T, n-1, start, start + n-1, ii...> {}; template<typename T, T start, T... ii> struct gen_numeric_list<T, 0, start, ii...> { typedef numeric_list<T, ii...> type; }; template<typename T, std::size_t n, T start = 0, T... ii> struct gen_numeric_list_reversed : gen_numeric_list_reversed<T, n-1, start, ii..., start + n-1> {}; template<typename T, T start, T... ii> struct gen_numeric_list_reversed<T, 0, start, ii...> { typedef numeric_list<T, ii...> type; }; template<typename T, std::size_t n, T a, T b, T start = 0, T... ii> struct gen_numeric_list_swapped_pair : gen_numeric_list_swapped_pair<T, n-1, a, b, start, (start + n-1) == a ? b : ((start + n-1) == b ? a : (start + n-1)), ii...> {}; template<typename T, T a, T b, T start, T... ii> struct gen_numeric_list_swapped_pair<T, 0, a, b, start, ii...> { typedef numeric_list<T, ii...> type; }; template<typename T, std::size_t n, T V, T... nn> struct gen_numeric_list_repeated : gen_numeric_list_repeated<T, n-1, V, V, nn...> {}; template<typename T, T V, T... nn> struct gen_numeric_list_repeated<T, 0, V, nn...> { typedef numeric_list<T, nn...> type; }; /* list manipulation: concatenate */ template<class a, class b> struct concat; template<typename... as, typename... bs> struct concat<type_list<as...>, type_list<bs...>> { typedef type_list<as..., bs...> type; }; template<typename T, T... as, T... bs> struct concat<numeric_list<T, as...>, numeric_list<T, bs...> > { typedef numeric_list<T, as..., bs...> type; }; template<typename... p> struct mconcat; template<typename a> struct mconcat<a> { typedef a type; }; template<typename a, typename b> struct mconcat<a, b> : concat<a, b> {}; template<typename a, typename b, typename... cs> struct mconcat<a, b, cs...> : concat<a, typename mconcat<b, cs...>::type> {}; /* list manipulation: extract slices */ template<int n, typename x> struct take; template<int n, typename a, typename... as> struct take<n, type_list<a, as...>> : concat<type_list<a>, typename take<n-1, type_list<as...>>::type> {}; template<int n> struct take<n, type_list<>> { typedef type_list<> type; }; template<typename a, typename... as> struct take<0, type_list<a, as...>> { typedef type_list<> type; }; template<> struct take<0, type_list<>> { typedef type_list<> type; }; template<typename T, int n, T a, T... as> struct take<n, numeric_list<T, a, as...>> : concat<numeric_list<T, a>, typename take<n-1, numeric_list<T, as...>>::type> {}; template<typename T, int n> struct take<n, numeric_list<T>> { typedef numeric_list<T> type; }; template<typename T, T a, T... as> struct take<0, numeric_list<T, a, as...>> { typedef numeric_list<T> type; }; template<typename T> struct take<0, numeric_list<T>> { typedef numeric_list<T> type; }; template<typename T, int n, T... ii> struct h_skip_helper_numeric; template<typename T, int n, T i, T... ii> struct h_skip_helper_numeric<T, n, i, ii...> : h_skip_helper_numeric<T, n-1, ii...> {}; template<typename T, T i, T... ii> struct h_skip_helper_numeric<T, 0, i, ii...> { typedef numeric_list<T, i, ii...> type; }; template<typename T, int n> struct h_skip_helper_numeric<T, n> { typedef numeric_list<T> type; }; template<typename T> struct h_skip_helper_numeric<T, 0> { typedef numeric_list<T> type; }; template<int n, typename... tt> struct h_skip_helper_type; template<int n, typename t, typename... tt> struct h_skip_helper_type<n, t, tt...> : h_skip_helper_type<n-1, tt...> {}; template<typename t, typename... tt> struct h_skip_helper_type<0, t, tt...> { typedef type_list<t, tt...> type; }; template<int n> struct h_skip_helper_type<n> { typedef type_list<> type; }; template<> struct h_skip_helper_type<0> { typedef type_list<> type; }; template<int n> struct h_skip { template<typename T, T... ii> constexpr static inline typename h_skip_helper_numeric<T, n, ii...>::type helper(numeric_list<T, ii...>) { return typename h_skip_helper_numeric<T, n, ii...>::type(); } template<typename... tt> constexpr static inline typename h_skip_helper_type<n, tt...>::type helper(type_list<tt...>) { return typename h_skip_helper_type<n, tt...>::type(); } }; template<int n, typename a> struct skip { typedef decltype(h_skip<n>::helper(a())) type; }; template<int start, int count, typename a> struct slice : take<count, typename skip<start, a>::type> {}; /* list manipulation: retrieve single element from list */ template<int n, typename x> struct get; template<int n, typename a, typename... as> struct get<n, type_list<a, as...>> : get<n-1, type_list<as...>> {}; template<typename a, typename... as> struct get<0, type_list<a, as...>> { typedef a type; }; template<typename T, int n, T a, T... as> struct get<n, numeric_list<T, a, as...>> : get<n-1, numeric_list<T, as...>> {}; template<typename T, T a, T... as> struct get<0, numeric_list<T, a, as...>> { constexpr static T value = a; }; /* always get type, regardless of dummy; good for parameter pack expansion */ template<typename T, T dummy, typename t> struct id_numeric { typedef t type; }; template<typename dummy, typename t> struct id_type { typedef t type; }; /* equality checking, flagged version */ template<typename a, typename b> struct is_same_gf : is_same<a, b> { constexpr static int global_flags = 0; }; /* apply_op to list */ template< bool from_left, // false template<typename, typename> class op, typename additional_param, typename... values > struct h_apply_op_helper { typedef type_list<typename op<values, additional_param>::type...> type; }; template< template<typename, typename> class op, typename additional_param, typename... values > struct h_apply_op_helper<true, op, additional_param, values...> { typedef type_list<typename op<additional_param, values>::type...> type; }; template< bool from_left, template<typename, typename> class op, typename additional_param > struct h_apply_op { template<typename... values> constexpr static typename h_apply_op_helper<from_left, op, additional_param, values...>::type helper(type_list<values...>) { return typename h_apply_op_helper<from_left, op, additional_param, values...>::type(); } }; template< template<typename, typename> class op, typename additional_param, typename a > struct apply_op_from_left { typedef decltype(h_apply_op<true, op, additional_param>::helper(a())) type; }; template< template<typename, typename> class op, typename additional_param, typename a > struct apply_op_from_right { typedef decltype(h_apply_op<false, op, additional_param>::helper(a())) type; }; /* see if an element is in a list */ template< template<typename, typename> class test, typename check_against, typename h_list, bool last_check_positive = false > struct contained_in_list; template< template<typename, typename> class test, typename check_against, typename h_list > struct contained_in_list<test, check_against, h_list, true> { constexpr static bool value = true; }; template< template<typename, typename> class test, typename check_against, typename a, typename... as > struct contained_in_list<test, check_against, type_list<a, as...>, false> : contained_in_list<test, check_against, type_list<as...>, test<check_against, a>::value> {}; template< template<typename, typename> class test, typename check_against EIGEN_TPL_PP_SPEC_HACK_DEFC(typename, empty) > struct contained_in_list<test, check_against, type_list<EIGEN_TPL_PP_SPEC_HACK_USE(empty)>, false> { constexpr static bool value = false; }; /* see if an element is in a list and check for global flags */ template< template<typename, typename> class test, typename check_against, typename h_list, int default_flags = 0, bool last_check_positive = false, int last_check_flags = default_flags > struct contained_in_list_gf; template< template<typename, typename> class test, typename check_against, typename h_list, int default_flags, int last_check_flags > struct contained_in_list_gf<test, check_against, h_list, default_flags, true, last_check_flags> { constexpr static bool value = true; constexpr static int global_flags = last_check_flags; }; template< template<typename, typename> class test, typename check_against, typename a, typename... as, int default_flags, int last_check_flags > struct contained_in_list_gf<test, check_against, type_list<a, as...>, default_flags, false, last_check_flags> : contained_in_list_gf<test, check_against, type_list<as...>, default_flags, test<check_against, a>::value, test<check_against, a>::global_flags> {}; template< template<typename, typename> class test, typename check_against EIGEN_TPL_PP_SPEC_HACK_DEFC(typename, empty), int default_flags, int last_check_flags > struct contained_in_list_gf<test, check_against, type_list<EIGEN_TPL_PP_SPEC_HACK_USE(empty)>, default_flags, false, last_check_flags> { constexpr static bool value = false; constexpr static int global_flags = default_flags; }; /* generic reductions */ template< typename Reducer, typename... Ts > struct reduce; template< typename Reducer > struct reduce<Reducer> { constexpr static inline int run() { return Reducer::Identity; } }; template< typename Reducer, typename A > struct reduce<Reducer, A> { constexpr static inline A run(A a) { return a; } }; template< typename Reducer, typename A, typename... Ts > struct reduce<Reducer, A, Ts...> { constexpr static inline auto run(A a, Ts... ts) -> decltype(Reducer::run(a, reduce<Reducer, Ts...>::run(ts...))) { return Reducer::run(a, reduce<Reducer, Ts...>::run(ts...)); } }; /* generic binary operations */ struct sum_op { template<typename A, typename B> EIGEN_DEVICE_FUNC constexpr static inline auto run(A a, B b) -> decltype(a + b) { return a + b; } static constexpr int Identity = 0; }; struct product_op { template<typename A, typename B> EIGEN_DEVICE_FUNC constexpr static inline auto run(A a, B b) -> decltype(a * b) { return a * b; } static constexpr int Identity = 1; }; struct logical_and_op { template<typename A, typename B> constexpr static inline auto run(A a, B b) -> decltype(a && b) { return a && b; } }; struct logical_or_op { template<typename A, typename B> constexpr static inline auto run(A a, B b) -> decltype(a || b) { return a || b; } }; struct equal_op { template<typename A, typename B> constexpr static inline auto run(A a, B b) -> decltype(a == b) { return a == b; } }; struct not_equal_op { template<typename A, typename B> constexpr static inline auto run(A a, B b) -> decltype(a != b) { return a != b; } }; struct lesser_op { template<typename A, typename B> constexpr static inline auto run(A a, B b) -> decltype(a < b) { return a < b; } }; struct lesser_equal_op { template<typename A, typename B> constexpr static inline auto run(A a, B b) -> decltype(a <= b) { return a <= b; } }; struct greater_op { template<typename A, typename B> constexpr static inline auto run(A a, B b) -> decltype(a > b) { return a > b; } }; struct greater_equal_op { template<typename A, typename B> constexpr static inline auto run(A a, B b) -> decltype(a >= b) { return a >= b; } }; /* generic unary operations */ struct not_op { template<typename A> constexpr static inline auto run(A a) -> decltype(!a) { return !a; } }; struct negation_op { template<typename A> constexpr static inline auto run(A a) -> decltype(-a) { return -a; } }; struct greater_equal_zero_op { template<typename A> constexpr static inline auto run(A a) -> decltype(a >= 0) { return a >= 0; } }; /* reductions for lists */ // using auto -> return value spec makes ICC 13.0 and 13.1 crash here, so we have to hack it // together in front... (13.0 doesn't work with array_prod/array_reduce/... anyway, but 13.1 // does... template<typename... Ts> constexpr inline decltype(reduce<product_op, Ts...>::run((*((Ts*)0))...)) arg_prod(Ts... ts) { return reduce<product_op, Ts...>::run(ts...); } template<typename... Ts> constexpr inline decltype(reduce<sum_op, Ts...>::run((*((Ts*)0))...)) arg_sum(Ts... ts) { return reduce<sum_op, Ts...>::run(ts...); } /* reverse arrays */ template<typename Array, int... n> constexpr inline Array h_array_reverse(Array arr, numeric_list<int, n...>) { return {{array_get<sizeof...(n) - n - 1>(arr)...}}; } template<typename T, std::size_t N> constexpr inline array<T, N> array_reverse(array<T, N> arr) { return h_array_reverse(arr, typename gen_numeric_list<int, N>::type()); } /* generic array reductions */ // can't reuse standard reduce() interface above because Intel's Compiler // *really* doesn't like it, so we just reimplement the stuff // (start from N - 1 and work down to 0 because specialization for // n == N - 1 also doesn't work in Intel's compiler, so it goes into // an infinite loop) template<typename Reducer, typename T, std::size_t N, std::size_t n = N - 1> struct h_array_reduce { EIGEN_DEVICE_FUNC constexpr static inline auto run(array<T, N> arr, T identity) -> decltype(Reducer::run(h_array_reduce<Reducer, T, N, n - 1>::run(arr, identity), array_get<n>(arr))) { return Reducer::run(h_array_reduce<Reducer, T, N, n - 1>::run(arr, identity), array_get<n>(arr)); } }; template<typename Reducer, typename T, std::size_t N> struct h_array_reduce<Reducer, T, N, 0> { EIGEN_DEVICE_FUNC constexpr static inline T run(const array<T, N>& arr, T) { return array_get<0>(arr); } }; template<typename Reducer, typename T> struct h_array_reduce<Reducer, T, 0> { EIGEN_DEVICE_FUNC constexpr static inline T run(const array<T, 0>&, T identity) { return identity; } }; template<typename Reducer, typename T, std::size_t N> EIGEN_DEVICE_FUNC constexpr inline auto array_reduce(const array<T, N>& arr, T identity) -> decltype(h_array_reduce<Reducer, T, N>::run(arr, identity)) { return h_array_reduce<Reducer, T, N>::run(arr, identity); } /* standard array reductions */ template<typename T, std::size_t N> EIGEN_DEVICE_FUNC constexpr inline auto array_sum(const array<T, N>& arr) -> decltype(array_reduce<sum_op, T, N>(arr, static_cast<T>(0))) { return array_reduce<sum_op, T, N>(arr, static_cast<T>(0)); } template<typename T, std::size_t N> EIGEN_DEVICE_FUNC constexpr inline auto array_prod(const array<T, N>& arr) -> decltype(array_reduce<product_op, T, N>(arr, static_cast<T>(1))) { return array_reduce<product_op, T, N>(arr, static_cast<T>(1)); } template<typename t> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE t array_prod(const std::vector<t>& a) { eigen_assert(a.size() > 0); t prod = 1; for (size_t i = 0; i < a.size(); ++i) { prod *= a[i]; } return prod; } /* zip an array */ template<typename Op, typename A, typename B, std::size_t N, int... n> constexpr inline array<decltype(Op::run(A(), B())),N> h_array_zip(array<A, N> a, array<B, N> b, numeric_list<int, n...>) { return array<decltype(Op::run(A(), B())),N>{{ Op::run(array_get<n>(a), array_get<n>(b))... }}; } template<typename Op, typename A, typename B, std::size_t N> constexpr inline array<decltype(Op::run(A(), B())),N> array_zip(array<A, N> a, array<B, N> b) { return h_array_zip<Op>(a, b, typename gen_numeric_list<int, N>::type()); } /* zip an array and reduce the result */ template<typename Reducer, typename Op, typename A, typename B, std::size_t N, int... n> constexpr inline auto h_array_zip_and_reduce(array<A, N> a, array<B, N> b, numeric_list<int, n...>) -> decltype(reduce<Reducer, typename id_numeric<int,n,decltype(Op::run(A(), B()))>::type...>::run(Op::run(array_get<n>(a), array_get<n>(b))...)) { return reduce<Reducer, typename id_numeric<int,n,decltype(Op::run(A(), B()))>::type...>::run(Op::run(array_get<n>(a), array_get<n>(b))...); } template<typename Reducer, typename Op, typename A, typename B, std::size_t N> constexpr inline auto array_zip_and_reduce(array<A, N> a, array<B, N> b) -> decltype(h_array_zip_and_reduce<Reducer, Op, A, B, N>(a, b, typename gen_numeric_list<int, N>::type())) { return h_array_zip_and_reduce<Reducer, Op, A, B, N>(a, b, typename gen_numeric_list<int, N>::type()); } /* apply stuff to an array */ template<typename Op, typename A, std::size_t N, int... n> constexpr inline array<decltype(Op::run(A())),N> h_array_apply(array<A, N> a, numeric_list<int, n...>) { return array<decltype(Op::run(A())),N>{{ Op::run(array_get<n>(a))... }}; } template<typename Op, typename A, std::size_t N> constexpr inline array<decltype(Op::run(A())),N> array_apply(array<A, N> a) { return h_array_apply<Op>(a, typename gen_numeric_list<int, N>::type()); } /* apply stuff to an array and reduce */ template<typename Reducer, typename Op, typename A, std::size_t N, int... n> constexpr inline auto h_array_apply_and_reduce(array<A, N> arr, numeric_list<int, n...>) -> decltype(reduce<Reducer, typename id_numeric<int,n,decltype(Op::run(A()))>::type...>::run(Op::run(array_get<n>(arr))...)) { return reduce<Reducer, typename id_numeric<int,n,decltype(Op::run(A()))>::type...>::run(Op::run(array_get<n>(arr))...); } template<typename Reducer, typename Op, typename A, std::size_t N> constexpr inline auto array_apply_and_reduce(array<A, N> a) -> decltype(h_array_apply_and_reduce<Reducer, Op, A, N>(a, typename gen_numeric_list<int, N>::type())) { return h_array_apply_and_reduce<Reducer, Op, A, N>(a, typename gen_numeric_list<int, N>::type()); } /* repeat a value n times (and make an array out of it * usage: * array<int, 16> = repeat<16>(42); */ template<int n> struct h_repeat { template<typename t, int... ii> constexpr static inline array<t, n> run(t v, numeric_list<int, ii...>) { return {{ typename id_numeric<int, ii, t>::type(v)... }}; } }; template<int n, typename t> constexpr array<t, n> repeat(t v) { return h_repeat<n>::run(v, typename gen_numeric_list<int, n>::type()); } /* instantiate a class by a C-style array */ template<class InstType, typename ArrType, std::size_t N, bool Reverse, typename... Ps> struct h_instantiate_by_c_array; template<class InstType, typename ArrType, std::size_t N, typename... Ps> struct h_instantiate_by_c_array<InstType, ArrType, N, false, Ps...> { static InstType run(ArrType* arr, Ps... args) { return h_instantiate_by_c_array<InstType, ArrType, N - 1, false, Ps..., ArrType>::run(arr + 1, args..., arr[0]); } }; template<class InstType, typename ArrType, std::size_t N, typename... Ps> struct h_instantiate_by_c_array<InstType, ArrType, N, true, Ps...> { static InstType run(ArrType* arr, Ps... args) { return h_instantiate_by_c_array<InstType, ArrType, N - 1, false, ArrType, Ps...>::run(arr + 1, arr[0], args...); } }; template<class InstType, typename ArrType, typename... Ps> struct h_instantiate_by_c_array<InstType, ArrType, 0, false, Ps...> { static InstType run(ArrType* arr, Ps... args) { (void)arr; return InstType(args...); } }; template<class InstType, typename ArrType, typename... Ps> struct h_instantiate_by_c_array<InstType, ArrType, 0, true, Ps...> { static InstType run(ArrType* arr, Ps... args) { (void)arr; return InstType(args...); } }; template<class InstType, typename ArrType, std::size_t N, bool Reverse = false> InstType instantiate_by_c_array(ArrType* arr) { return h_instantiate_by_c_array<InstType, ArrType, N, Reverse>::run(arr); } } // end namespace internal } // end namespace Eigen #else // Non C++11, fallback to emulation mode #include "EmulateCXX11Meta.h" #endif #endif // EIGEN_CXX11META_H