// Copyright 2016 Ismael Jimenez Martinez. All rights reserved. // Copyright 2017 Roman Lebedev. All rights reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "benchmark/benchmark.h" #include <algorithm> #include <cmath> #include <string> #include <vector> #include <numeric> #include "check.h" #include "statistics.h" namespace benchmark { auto StatisticsSum = [](const std::vector<double>& v) { return std::accumulate(v.begin(), v.end(), 0.0); }; double StatisticsMean(const std::vector<double>& v) { if (v.size() == 0) return 0.0; return StatisticsSum(v) * (1.0 / v.size()); } double StatisticsMedian(const std::vector<double>& v) { if (v.size() < 3) return StatisticsMean(v); std::vector<double> partial; // we need roundDown(count/2)+1 slots partial.resize(1 + (v.size() / 2)); std::partial_sort_copy(v.begin(), v.end(), partial.begin(), partial.end()); // did we have odd number of samples? // if yes, then the last element of partially-sorted vector is the median // it no, then the average of the last two elements is the median if(v.size() % 2 == 1) return partial.back(); return (partial[partial.size() - 2] + partial[partial.size() - 1]) / 2.0; } // Return the sum of the squares of this sample set auto SumSquares = [](const std::vector<double>& v) { return std::inner_product(v.begin(), v.end(), v.begin(), 0.0); }; auto Sqr = [](const double dat) { return dat * dat; }; auto Sqrt = [](const double dat) { // Avoid NaN due to imprecision in the calculations if (dat < 0.0) return 0.0; return std::sqrt(dat); }; double StatisticsStdDev(const std::vector<double>& v) { const auto mean = StatisticsMean(v); if (v.size() == 0) return mean; // Sample standard deviation is undefined for n = 1 if (v.size() == 1) return 0.0; const double avg_squares = SumSquares(v) * (1.0 / v.size()); return Sqrt(v.size() / (v.size() - 1.0) * (avg_squares - Sqr(mean))); } std::vector<BenchmarkReporter::Run> ComputeStats( const std::vector<BenchmarkReporter::Run>& reports) { typedef BenchmarkReporter::Run Run; std::vector<Run> results; auto error_count = std::count_if(reports.begin(), reports.end(), [](Run const& run) { return run.error_occurred; }); if (reports.size() - error_count < 2) { // We don't report aggregated data if there was a single run. return results; } // Accumulators. std::vector<double> real_accumulated_time_stat; std::vector<double> cpu_accumulated_time_stat; std::vector<double> bytes_per_second_stat; std::vector<double> items_per_second_stat; real_accumulated_time_stat.reserve(reports.size()); cpu_accumulated_time_stat.reserve(reports.size()); bytes_per_second_stat.reserve(reports.size()); items_per_second_stat.reserve(reports.size()); // All repetitions should be run with the same number of iterations so we // can take this information from the first benchmark. int64_t const run_iterations = reports.front().iterations; // create stats for user counters struct CounterStat { Counter c; std::vector<double> s; }; std::map< std::string, CounterStat > counter_stats; for(Run const& r : reports) { for(auto const& cnt : r.counters) { auto it = counter_stats.find(cnt.first); if(it == counter_stats.end()) { counter_stats.insert({cnt.first, {cnt.second, std::vector<double>{}}}); it = counter_stats.find(cnt.first); it->second.s.reserve(reports.size()); } else { CHECK_EQ(counter_stats[cnt.first].c.flags, cnt.second.flags); } } } // Populate the accumulators. for (Run const& run : reports) { CHECK_EQ(reports[0].benchmark_name, run.benchmark_name); CHECK_EQ(run_iterations, run.iterations); if (run.error_occurred) continue; real_accumulated_time_stat.emplace_back(run.real_accumulated_time); cpu_accumulated_time_stat.emplace_back(run.cpu_accumulated_time); items_per_second_stat.emplace_back(run.items_per_second); bytes_per_second_stat.emplace_back(run.bytes_per_second); // user counters for(auto const& cnt : run.counters) { auto it = counter_stats.find(cnt.first); CHECK_NE(it, counter_stats.end()); it->second.s.emplace_back(cnt.second); } } // Only add label if it is same for all runs std::string report_label = reports[0].report_label; for (std::size_t i = 1; i < reports.size(); i++) { if (reports[i].report_label != report_label) { report_label = ""; break; } } for(const auto& Stat : *reports[0].statistics) { // Get the data from the accumulator to BenchmarkReporter::Run's. Run data; data.benchmark_name = reports[0].benchmark_name + "_" + Stat.name_; data.report_label = report_label; data.iterations = run_iterations; data.real_accumulated_time = Stat.compute_(real_accumulated_time_stat); data.cpu_accumulated_time = Stat.compute_(cpu_accumulated_time_stat); data.bytes_per_second = Stat.compute_(bytes_per_second_stat); data.items_per_second = Stat.compute_(items_per_second_stat); data.time_unit = reports[0].time_unit; // user counters for(auto const& kv : counter_stats) { const auto uc_stat = Stat.compute_(kv.second.s); auto c = Counter(uc_stat, counter_stats[kv.first].c.flags); data.counters[kv.first] = c; } results.push_back(data); } return results; } } // end namespace benchmark