#include "string_util.h" #include <array> #include <cmath> #include <cstdarg> #include <cstdio> #include <memory> #include <sstream> #include "arraysize.h" namespace benchmark { namespace { // kilo, Mega, Giga, Tera, Peta, Exa, Zetta, Yotta. const char kBigSIUnits[] = "kMGTPEZY"; // Kibi, Mebi, Gibi, Tebi, Pebi, Exbi, Zebi, Yobi. const char kBigIECUnits[] = "KMGTPEZY"; // milli, micro, nano, pico, femto, atto, zepto, yocto. const char kSmallSIUnits[] = "munpfazy"; // We require that all three arrays have the same size. static_assert(arraysize(kBigSIUnits) == arraysize(kBigIECUnits), "SI and IEC unit arrays must be the same size"); static_assert(arraysize(kSmallSIUnits) == arraysize(kBigSIUnits), "Small SI and Big SI unit arrays must be the same size"); static const int64_t kUnitsSize = arraysize(kBigSIUnits); void ToExponentAndMantissa(double val, double thresh, int precision, double one_k, std::string* mantissa, int64_t* exponent) { std::stringstream mantissa_stream; if (val < 0) { mantissa_stream << "-"; val = -val; } // Adjust threshold so that it never excludes things which can't be rendered // in 'precision' digits. const double adjusted_threshold = std::max(thresh, 1.0 / std::pow(10.0, precision)); const double big_threshold = adjusted_threshold * one_k; const double small_threshold = adjusted_threshold; // Values in ]simple_threshold,small_threshold[ will be printed as-is const double simple_threshold = 0.01; if (val > big_threshold) { // Positive powers double scaled = val; for (size_t i = 0; i < arraysize(kBigSIUnits); ++i) { scaled /= one_k; if (scaled <= big_threshold) { mantissa_stream << scaled; *exponent = i + 1; *mantissa = mantissa_stream.str(); return; } } mantissa_stream << val; *exponent = 0; } else if (val < small_threshold) { // Negative powers if (val < simple_threshold) { double scaled = val; for (size_t i = 0; i < arraysize(kSmallSIUnits); ++i) { scaled *= one_k; if (scaled >= small_threshold) { mantissa_stream << scaled; *exponent = -static_cast<int64_t>(i + 1); *mantissa = mantissa_stream.str(); return; } } } mantissa_stream << val; *exponent = 0; } else { mantissa_stream << val; *exponent = 0; } *mantissa = mantissa_stream.str(); } std::string ExponentToPrefix(int64_t exponent, bool iec) { if (exponent == 0) return ""; const int64_t index = (exponent > 0 ? exponent - 1 : -exponent - 1); if (index >= kUnitsSize) return ""; const char* array = (exponent > 0 ? (iec ? kBigIECUnits : kBigSIUnits) : kSmallSIUnits); if (iec) return array[index] + std::string("i"); else return std::string(1, array[index]); } std::string ToBinaryStringFullySpecified(double value, double threshold, int precision, double one_k = 1024.0) { std::string mantissa; int64_t exponent; ToExponentAndMantissa(value, threshold, precision, one_k, &mantissa, &exponent); return mantissa + ExponentToPrefix(exponent, false); } } // end namespace void AppendHumanReadable(int n, std::string* str) { std::stringstream ss; // Round down to the nearest SI prefix. ss << ToBinaryStringFullySpecified(n, 1.0, 0); *str += ss.str(); } std::string HumanReadableNumber(double n, double one_k) { // 1.1 means that figures up to 1.1k should be shown with the next unit down; // this softens edge effects. // 1 means that we should show one decimal place of precision. return ToBinaryStringFullySpecified(n, 1.1, 1, one_k); } std::string StringPrintFImp(const char* msg, va_list args) { // we might need a second shot at this, so pre-emptivly make a copy va_list args_cp; va_copy(args_cp, args); // TODO(ericwf): use std::array for first attempt to avoid one memory // allocation guess what the size might be std::array<char, 256> local_buff; std::size_t size = local_buff.size(); // 2015-10-08: vsnprintf is used instead of snd::vsnprintf due to a limitation // in the android-ndk auto ret = vsnprintf(local_buff.data(), size, msg, args_cp); va_end(args_cp); // handle empty expansion if (ret == 0) return std::string{}; if (static_cast<std::size_t>(ret) < size) return std::string(local_buff.data()); // we did not provide a long enough buffer on our first attempt. // add 1 to size to account for null-byte in size cast to prevent overflow size = static_cast<std::size_t>(ret) + 1; auto buff_ptr = std::unique_ptr<char[]>(new char[size]); // 2015-10-08: vsnprintf is used instead of snd::vsnprintf due to a limitation // in the android-ndk ret = vsnprintf(buff_ptr.get(), size, msg, args); return std::string(buff_ptr.get()); } std::string StringPrintF(const char* format, ...) { va_list args; va_start(args, format); std::string tmp = StringPrintFImp(format, args); va_end(args); return tmp; } void ReplaceAll(std::string* str, const std::string& from, const std::string& to) { std::size_t start = 0; while ((start = str->find(from, start)) != std::string::npos) { str->replace(start, from.length(), to); start += to.length(); } } } // end namespace benchmark