#include "benchmark/benchmark.h" #include <assert.h> #include <math.h> #include <stdint.h> #include <chrono> #include <cstdlib> #include <iostream> #include <limits> #include <list> #include <map> #include <mutex> #include <set> #include <sstream> #include <string> #include <thread> #include <utility> #include <vector> #if defined(__GNUC__) #define BENCHMARK_NOINLINE __attribute__((noinline)) #else #define BENCHMARK_NOINLINE #endif namespace { int BENCHMARK_NOINLINE Factorial(uint32_t n) { return (n == 1) ? 1 : n * Factorial(n - 1); } double CalculatePi(int depth) { double pi = 0.0; for (int i = 0; i < depth; ++i) { double numerator = static_cast<double>(((i % 2) * 2) - 1); double denominator = static_cast<double>((2 * i) - 1); pi += numerator / denominator; } return (pi - 1.0) * 4; } std::set<int> ConstructRandomSet(int size) { std::set<int> s; for (int i = 0; i < size; ++i) s.insert(s.end(), i); return s; } std::mutex test_vector_mu; std::vector<int>* test_vector = nullptr; } // end namespace static void BM_Factorial(benchmark::State& state) { int fac_42 = 0; for (auto _ : state) fac_42 = Factorial(8); // Prevent compiler optimizations std::stringstream ss; ss << fac_42; state.SetLabel(ss.str()); } BENCHMARK(BM_Factorial); BENCHMARK(BM_Factorial)->UseRealTime(); static void BM_CalculatePiRange(benchmark::State& state) { double pi = 0.0; for (auto _ : state) pi = CalculatePi(state.range(0)); std::stringstream ss; ss << pi; state.SetLabel(ss.str()); } BENCHMARK_RANGE(BM_CalculatePiRange, 1, 1024 * 1024); static void BM_CalculatePi(benchmark::State& state) { static const int depth = 1024; for (auto _ : state) { benchmark::DoNotOptimize(CalculatePi(depth)); } } BENCHMARK(BM_CalculatePi)->Threads(8); BENCHMARK(BM_CalculatePi)->ThreadRange(1, 32); BENCHMARK(BM_CalculatePi)->ThreadPerCpu(); static void BM_SetInsert(benchmark::State& state) { std::set<int> data; for (auto _ : state) { state.PauseTiming(); data = ConstructRandomSet(state.range(0)); state.ResumeTiming(); for (int j = 0; j < state.range(1); ++j) data.insert(rand()); } state.SetItemsProcessed(state.iterations() * state.range(1)); state.SetBytesProcessed(state.iterations() * state.range(1) * sizeof(int)); } // Test many inserts at once to reduce the total iterations needed. Otherwise, the slower, // non-timed part of each iteration will make the benchmark take forever. BENCHMARK(BM_SetInsert)->Ranges({{1 << 10, 8 << 10}, {128, 512}}); template <typename Container, typename ValueType = typename Container::value_type> static void BM_Sequential(benchmark::State& state) { ValueType v = 42; for (auto _ : state) { Container c; for (int i = state.range(0); --i;) c.push_back(v); } const size_t items_processed = state.iterations() * state.range(0); state.SetItemsProcessed(items_processed); state.SetBytesProcessed(items_processed * sizeof(v)); } BENCHMARK_TEMPLATE2(BM_Sequential, std::vector<int>, int) ->Range(1 << 0, 1 << 10); BENCHMARK_TEMPLATE(BM_Sequential, std::list<int>)->Range(1 << 0, 1 << 10); // Test the variadic version of BENCHMARK_TEMPLATE in C++11 and beyond. #ifdef BENCHMARK_HAS_CXX11 BENCHMARK_TEMPLATE(BM_Sequential, std::vector<int>, int)->Arg(512); #endif static void BM_StringCompare(benchmark::State& state) { std::string s1(state.range(0), '-'); std::string s2(state.range(0), '-'); for (auto _ : state) benchmark::DoNotOptimize(s1.compare(s2)); } BENCHMARK(BM_StringCompare)->Range(1, 1 << 20); static void BM_SetupTeardown(benchmark::State& state) { if (state.thread_index == 0) { // No need to lock test_vector_mu here as this is running single-threaded. test_vector = new std::vector<int>(); } int i = 0; for (auto _ : state) { std::lock_guard<std::mutex> l(test_vector_mu); if (i % 2 == 0) test_vector->push_back(i); else test_vector->pop_back(); ++i; } if (state.thread_index == 0) { delete test_vector; } } BENCHMARK(BM_SetupTeardown)->ThreadPerCpu(); static void BM_LongTest(benchmark::State& state) { double tracker = 0.0; for (auto _ : state) { for (int i = 0; i < state.range(0); ++i) benchmark::DoNotOptimize(tracker += i); } } BENCHMARK(BM_LongTest)->Range(1 << 16, 1 << 28); static void BM_ParallelMemset(benchmark::State& state) { int size = state.range(0) / static_cast<int>(sizeof(int)); int thread_size = size / state.threads; int from = thread_size * state.thread_index; int to = from + thread_size; if (state.thread_index == 0) { test_vector = new std::vector<int>(size); } for (auto _ : state) { for (int i = from; i < to; i++) { // No need to lock test_vector_mu as ranges // do not overlap between threads. benchmark::DoNotOptimize(test_vector->at(i) = 1); } } if (state.thread_index == 0) { delete test_vector; } } BENCHMARK(BM_ParallelMemset)->Arg(10 << 20)->ThreadRange(1, 4); static void BM_ManualTiming(benchmark::State& state) { size_t slept_for = 0; int microseconds = state.range(0); std::chrono::duration<double, std::micro> sleep_duration{ static_cast<double>(microseconds)}; for (auto _ : state) { auto start = std::chrono::high_resolution_clock::now(); // Simulate some useful workload with a sleep std::this_thread::sleep_for( std::chrono::duration_cast<std::chrono::nanoseconds>(sleep_duration)); auto end = std::chrono::high_resolution_clock::now(); auto elapsed = std::chrono::duration_cast<std::chrono::duration<double>>(end - start); state.SetIterationTime(elapsed.count()); slept_for += microseconds; } state.SetItemsProcessed(slept_for); } BENCHMARK(BM_ManualTiming)->Range(1, 1 << 14)->UseRealTime(); BENCHMARK(BM_ManualTiming)->Range(1, 1 << 14)->UseManualTime(); #ifdef BENCHMARK_HAS_CXX11 template <class... Args> void BM_with_args(benchmark::State& state, Args&&...) { for (auto _ : state) { } } BENCHMARK_CAPTURE(BM_with_args, int_test, 42, 43, 44); BENCHMARK_CAPTURE(BM_with_args, string_and_pair_test, std::string("abc"), std::pair<int, double>(42, 3.8)); void BM_non_template_args(benchmark::State& state, int, double) { while(state.KeepRunning()) {} } BENCHMARK_CAPTURE(BM_non_template_args, basic_test, 0, 0); #endif // BENCHMARK_HAS_CXX11 static void BM_DenseThreadRanges(benchmark::State& st) { switch (st.range(0)) { case 1: assert(st.threads == 1 || st.threads == 2 || st.threads == 3); break; case 2: assert(st.threads == 1 || st.threads == 3 || st.threads == 4); break; case 3: assert(st.threads == 5 || st.threads == 8 || st.threads == 11 || st.threads == 14); break; default: assert(false && "Invalid test case number"); } while (st.KeepRunning()) { } } BENCHMARK(BM_DenseThreadRanges)->Arg(1)->DenseThreadRange(1, 3); BENCHMARK(BM_DenseThreadRanges)->Arg(2)->DenseThreadRange(1, 4, 2); BENCHMARK(BM_DenseThreadRanges)->Arg(3)->DenseThreadRange(5, 14, 3); BENCHMARK_MAIN();