/*- * Copyright (c) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997 * The Regents of the University of California. All rights reserved. * * This code is derived from the Stanford/CMU enet packet filter, * (net/enet.c) distributed as part of 4.3BSD, and code contributed * to Berkeley by Steven McCanne and Van Jacobson both of Lawrence * Berkeley Laboratory. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)bpf.c 7.5 (Berkeley) 7/15/91 */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #ifdef _WIN32 #include <pcap-stdinc.h> #else /* _WIN32 */ #if HAVE_INTTYPES_H #include <inttypes.h> #elif HAVE_STDINT_H #include <stdint.h> #endif #ifdef HAVE_SYS_BITYPES_H #include <sys/bitypes.h> #endif #include <sys/param.h> #include <sys/types.h> #include <sys/time.h> #define SOLARIS (defined(sun) && (defined(__SVR4) || defined(__svr4__))) #if defined(__hpux) || SOLARIS # include <sys/sysmacros.h> # include <sys/stream.h> # define mbuf msgb # define m_next b_cont # define MLEN(m) ((m)->b_wptr - (m)->b_rptr) # define mtod(m,t) ((t)(m)->b_rptr) #else /* defined(__hpux) || SOLARIS */ # define MLEN(m) ((m)->m_len) #endif /* defined(__hpux) || SOLARIS */ #endif /* _WIN32 */ #include <pcap/bpf.h> #if !defined(KERNEL) && !defined(_KERNEL) #include <stdlib.h> #endif #define int32 bpf_int32 #define u_int32 bpf_u_int32 #ifndef LBL_ALIGN /* * XXX - IA-64? If not, this probably won't work on Win64 IA-64 * systems, unless LBL_ALIGN is defined elsewhere for them. * XXX - SuperH? If not, this probably won't work on WinCE SuperH * systems, unless LBL_ALIGN is defined elsewhere for them. */ #if defined(sparc) || defined(__sparc__) || defined(mips) || \ defined(ibm032) || defined(__alpha) || defined(__hpux) || \ defined(__arm__) #define LBL_ALIGN #endif #endif #ifndef LBL_ALIGN #ifndef _WIN32 #include <netinet/in.h> #endif #define EXTRACT_SHORT(p) ((u_short)ntohs(*(u_short *)p)) #define EXTRACT_LONG(p) (ntohl(*(u_int32 *)p)) #else #define EXTRACT_SHORT(p)\ ((u_short)\ ((u_short)*((u_char *)p+0)<<8|\ (u_short)*((u_char *)p+1)<<0)) #define EXTRACT_LONG(p)\ ((u_int32)*((u_char *)p+0)<<24|\ (u_int32)*((u_char *)p+1)<<16|\ (u_int32)*((u_char *)p+2)<<8|\ (u_int32)*((u_char *)p+3)<<0) #endif #if defined(KERNEL) || defined(_KERNEL) # if !defined(__hpux) && !SOLARIS #include <sys/mbuf.h> # endif #define MINDEX(len, _m, _k) \ { \ len = MLEN(m); \ while ((_k) >= len) { \ (_k) -= len; \ (_m) = (_m)->m_next; \ if ((_m) == 0) \ return 0; \ len = MLEN(m); \ } \ } static int m_xword(m, k, err) register struct mbuf *m; register int k, *err; { register int len; register u_char *cp, *np; register struct mbuf *m0; MINDEX(len, m, k); cp = mtod(m, u_char *) + k; if (len - k >= 4) { *err = 0; return EXTRACT_LONG(cp); } m0 = m->m_next; if (m0 == 0 || MLEN(m0) + len - k < 4) goto bad; *err = 0; np = mtod(m0, u_char *); switch (len - k) { case 1: return (cp[0] << 24) | (np[0] << 16) | (np[1] << 8) | np[2]; case 2: return (cp[0] << 24) | (cp[1] << 16) | (np[0] << 8) | np[1]; default: return (cp[0] << 24) | (cp[1] << 16) | (cp[2] << 8) | np[0]; } bad: *err = 1; return 0; } static int m_xhalf(m, k, err) register struct mbuf *m; register int k, *err; { register int len; register u_char *cp; register struct mbuf *m0; MINDEX(len, m, k); cp = mtod(m, u_char *) + k; if (len - k >= 2) { *err = 0; return EXTRACT_SHORT(cp); } m0 = m->m_next; if (m0 == 0) goto bad; *err = 0; return (cp[0] << 8) | mtod(m0, u_char *)[0]; bad: *err = 1; return 0; } #endif #ifdef __linux__ #include <linux/types.h> #include <linux/if_packet.h> #include <linux/filter.h> #endif enum { BPF_S_ANC_NONE, BPF_S_ANC_VLAN_TAG, BPF_S_ANC_VLAN_TAG_PRESENT, }; /* * Execute the filter program starting at pc on the packet p * wirelen is the length of the original packet * buflen is the amount of data present * aux_data is auxiliary data, currently used only when interpreting * filters intended for the Linux kernel in cases where the kernel * rejects the filter; it contains VLAN tag information * For the kernel, p is assumed to be a pointer to an mbuf if buflen is 0, * in all other cases, p is a pointer to a buffer and buflen is its size. * * Thanks to Ani Sinha <ani@arista.com> for providing initial implementation */ u_int bpf_filter_with_aux_data(pc, p, wirelen, buflen, aux_data) register const struct bpf_insn *pc; register const u_char *p; u_int wirelen; register u_int buflen; register const struct bpf_aux_data *aux_data; { register u_int32 A, X; register bpf_u_int32 k; u_int32 mem[BPF_MEMWORDS]; #if defined(KERNEL) || defined(_KERNEL) struct mbuf *m, *n; int merr, len; if (buflen == 0) { m = (struct mbuf *)p; p = mtod(m, u_char *); buflen = MLEN(m); } else m = NULL; #endif if (pc == 0) /* * No filter means accept all. */ return (u_int)-1; A = 0; X = 0; --pc; while (1) { ++pc; switch (pc->code) { default: #if defined(KERNEL) || defined(_KERNEL) return 0; #else abort(); #endif case BPF_RET|BPF_K: return (u_int)pc->k; case BPF_RET|BPF_A: return (u_int)A; case BPF_LD|BPF_W|BPF_ABS: k = pc->k; if (k > buflen || sizeof(int32_t) > buflen - k) { #if defined(KERNEL) || defined(_KERNEL) if (m == NULL) return 0; A = m_xword(m, k, &merr); if (merr != 0) return 0; continue; #else return 0; #endif } A = EXTRACT_LONG(&p[k]); continue; case BPF_LD|BPF_H|BPF_ABS: k = pc->k; if (k > buflen || sizeof(int16_t) > buflen - k) { #if defined(KERNEL) || defined(_KERNEL) if (m == NULL) return 0; A = m_xhalf(m, k, &merr); if (merr != 0) return 0; continue; #else return 0; #endif } A = EXTRACT_SHORT(&p[k]); continue; case BPF_LD|BPF_B|BPF_ABS: { #if defined(SKF_AD_VLAN_TAG) && defined(SKF_AD_VLAN_TAG_PRESENT) int code = BPF_S_ANC_NONE; #define ANCILLARY(CODE) case SKF_AD_OFF + SKF_AD_##CODE: \ code = BPF_S_ANC_##CODE; \ if (!aux_data) \ return 0; \ break; switch (pc->k) { ANCILLARY(VLAN_TAG); ANCILLARY(VLAN_TAG_PRESENT); default : #endif k = pc->k; if (k >= buflen) { #if defined(KERNEL) || defined(_KERNEL) if (m == NULL) return 0; n = m; MINDEX(len, n, k); A = mtod(n, u_char *)[k]; continue; #else return 0; #endif } A = p[k]; #if defined(SKF_AD_VLAN_TAG) && defined(SKF_AD_VLAN_TAG_PRESENT) } switch (code) { case BPF_S_ANC_VLAN_TAG: if (aux_data) A = aux_data->vlan_tag; break; case BPF_S_ANC_VLAN_TAG_PRESENT: if (aux_data) A = aux_data->vlan_tag_present; break; } #endif continue; } case BPF_LD|BPF_W|BPF_LEN: A = wirelen; continue; case BPF_LDX|BPF_W|BPF_LEN: X = wirelen; continue; case BPF_LD|BPF_W|BPF_IND: k = X + pc->k; if (pc->k > buflen || X > buflen - pc->k || sizeof(int32_t) > buflen - k) { #if defined(KERNEL) || defined(_KERNEL) if (m == NULL) return 0; A = m_xword(m, k, &merr); if (merr != 0) return 0; continue; #else return 0; #endif } A = EXTRACT_LONG(&p[k]); continue; case BPF_LD|BPF_H|BPF_IND: k = X + pc->k; if (X > buflen || pc->k > buflen - X || sizeof(int16_t) > buflen - k) { #if defined(KERNEL) || defined(_KERNEL) if (m == NULL) return 0; A = m_xhalf(m, k, &merr); if (merr != 0) return 0; continue; #else return 0; #endif } A = EXTRACT_SHORT(&p[k]); continue; case BPF_LD|BPF_B|BPF_IND: k = X + pc->k; if (pc->k >= buflen || X >= buflen - pc->k) { #if defined(KERNEL) || defined(_KERNEL) if (m == NULL) return 0; n = m; MINDEX(len, n, k); A = mtod(n, u_char *)[k]; continue; #else return 0; #endif } A = p[k]; continue; case BPF_LDX|BPF_MSH|BPF_B: k = pc->k; if (k >= buflen) { #if defined(KERNEL) || defined(_KERNEL) if (m == NULL) return 0; n = m; MINDEX(len, n, k); X = (mtod(n, char *)[k] & 0xf) << 2; continue; #else return 0; #endif } X = (p[pc->k] & 0xf) << 2; continue; case BPF_LD|BPF_IMM: A = pc->k; continue; case BPF_LDX|BPF_IMM: X = pc->k; continue; case BPF_LD|BPF_MEM: A = mem[pc->k]; continue; case BPF_LDX|BPF_MEM: X = mem[pc->k]; continue; case BPF_ST: mem[pc->k] = A; continue; case BPF_STX: mem[pc->k] = X; continue; case BPF_JMP|BPF_JA: #if defined(KERNEL) || defined(_KERNEL) /* * No backward jumps allowed. */ pc += pc->k; #else /* * XXX - we currently implement "ip6 protochain" * with backward jumps, so sign-extend pc->k. */ pc += (bpf_int32)pc->k; #endif continue; case BPF_JMP|BPF_JGT|BPF_K: pc += (A > pc->k) ? pc->jt : pc->jf; continue; case BPF_JMP|BPF_JGE|BPF_K: pc += (A >= pc->k) ? pc->jt : pc->jf; continue; case BPF_JMP|BPF_JEQ|BPF_K: pc += (A == pc->k) ? pc->jt : pc->jf; continue; case BPF_JMP|BPF_JSET|BPF_K: pc += (A & pc->k) ? pc->jt : pc->jf; continue; case BPF_JMP|BPF_JGT|BPF_X: pc += (A > X) ? pc->jt : pc->jf; continue; case BPF_JMP|BPF_JGE|BPF_X: pc += (A >= X) ? pc->jt : pc->jf; continue; case BPF_JMP|BPF_JEQ|BPF_X: pc += (A == X) ? pc->jt : pc->jf; continue; case BPF_JMP|BPF_JSET|BPF_X: pc += (A & X) ? pc->jt : pc->jf; continue; case BPF_ALU|BPF_ADD|BPF_X: A += X; continue; case BPF_ALU|BPF_SUB|BPF_X: A -= X; continue; case BPF_ALU|BPF_MUL|BPF_X: A *= X; continue; case BPF_ALU|BPF_DIV|BPF_X: if (X == 0) return 0; A /= X; continue; case BPF_ALU|BPF_MOD|BPF_X: if (X == 0) return 0; A %= X; continue; case BPF_ALU|BPF_AND|BPF_X: A &= X; continue; case BPF_ALU|BPF_OR|BPF_X: A |= X; continue; case BPF_ALU|BPF_XOR|BPF_X: A ^= X; continue; case BPF_ALU|BPF_LSH|BPF_X: A <<= X; continue; case BPF_ALU|BPF_RSH|BPF_X: A >>= X; continue; case BPF_ALU|BPF_ADD|BPF_K: A += pc->k; continue; case BPF_ALU|BPF_SUB|BPF_K: A -= pc->k; continue; case BPF_ALU|BPF_MUL|BPF_K: A *= pc->k; continue; case BPF_ALU|BPF_DIV|BPF_K: A /= pc->k; continue; case BPF_ALU|BPF_MOD|BPF_K: A %= pc->k; continue; case BPF_ALU|BPF_AND|BPF_K: A &= pc->k; continue; case BPF_ALU|BPF_OR|BPF_K: A |= pc->k; continue; case BPF_ALU|BPF_XOR|BPF_K: A ^= pc->k; continue; case BPF_ALU|BPF_LSH|BPF_K: A <<= pc->k; continue; case BPF_ALU|BPF_RSH|BPF_K: A >>= pc->k; continue; case BPF_ALU|BPF_NEG: /* * Most BPF arithmetic is unsigned, but negation * can't be unsigned; throw some casts to * specify what we're trying to do. */ A = (u_int32)(-(int32)A); continue; case BPF_MISC|BPF_TAX: X = A; continue; case BPF_MISC|BPF_TXA: A = X; continue; } } } u_int bpf_filter(pc, p, wirelen, buflen) register const struct bpf_insn *pc; register const u_char *p; u_int wirelen; register u_int buflen; { return bpf_filter_with_aux_data(pc, p, wirelen, buflen, NULL); } /* * Return true if the 'fcode' is a valid filter program. * The constraints are that each jump be forward and to a valid * code, that memory accesses are within valid ranges (to the * extent that this can be checked statically; loads of packet * data have to be, and are, also checked at run time), and that * the code terminates with either an accept or reject. * * The kernel needs to be able to verify an application's filter code. * Otherwise, a bogus program could easily crash the system. */ int bpf_validate(f, len) const struct bpf_insn *f; int len; { u_int i, from; const struct bpf_insn *p; if (len < 1) return 0; /* * There's no maximum program length in userland. */ #if defined(KERNEL) || defined(_KERNEL) if (len > BPF_MAXINSNS) return 0; #endif for (i = 0; i < (u_int)len; ++i) { p = &f[i]; switch (BPF_CLASS(p->code)) { /* * Check that memory operations use valid addresses. */ case BPF_LD: case BPF_LDX: switch (BPF_MODE(p->code)) { case BPF_IMM: break; case BPF_ABS: case BPF_IND: case BPF_MSH: /* * There's no maximum packet data size * in userland. The runtime packet length * check suffices. */ #if defined(KERNEL) || defined(_KERNEL) /* * More strict check with actual packet length * is done runtime. */ if (p->k >= bpf_maxbufsize) return 0; #endif break; case BPF_MEM: if (p->k >= BPF_MEMWORDS) return 0; break; case BPF_LEN: break; default: return 0; } break; case BPF_ST: case BPF_STX: if (p->k >= BPF_MEMWORDS) return 0; break; case BPF_ALU: switch (BPF_OP(p->code)) { case BPF_ADD: case BPF_SUB: case BPF_MUL: case BPF_OR: case BPF_AND: case BPF_XOR: case BPF_LSH: case BPF_RSH: case BPF_NEG: break; case BPF_DIV: case BPF_MOD: /* * Check for constant division or modulus * by 0. */ if (BPF_SRC(p->code) == BPF_K && p->k == 0) return 0; break; default: return 0; } break; case BPF_JMP: /* * Check that jumps are within the code block, * and that unconditional branches don't go * backwards as a result of an overflow. * Unconditional branches have a 32-bit offset, * so they could overflow; we check to make * sure they don't. Conditional branches have * an 8-bit offset, and the from address is <= * BPF_MAXINSNS, and we assume that BPF_MAXINSNS * is sufficiently small that adding 255 to it * won't overflow. * * We know that len is <= BPF_MAXINSNS, and we * assume that BPF_MAXINSNS is < the maximum size * of a u_int, so that i + 1 doesn't overflow. * * For userland, we don't know that the from * or len are <= BPF_MAXINSNS, but we know that * from <= len, and, except on a 64-bit system, * it's unlikely that len, if it truly reflects * the size of the program we've been handed, * will be anywhere near the maximum size of * a u_int. We also don't check for backward * branches, as we currently support them in * userland for the protochain operation. */ from = i + 1; switch (BPF_OP(p->code)) { case BPF_JA: #if defined(KERNEL) || defined(_KERNEL) if (from + p->k < from || from + p->k >= len) #else if (from + p->k >= (u_int)len) #endif return 0; break; case BPF_JEQ: case BPF_JGT: case BPF_JGE: case BPF_JSET: if (from + p->jt >= (u_int)len || from + p->jf >= (u_int)len) return 0; break; default: return 0; } break; case BPF_RET: break; case BPF_MISC: break; default: return 0; } } return BPF_CLASS(f[len - 1].code) == BPF_RET; }