/* * Copyright (C) 2017 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "model-executor.h" #include "quantization.h" #include "util/base/logging.h" namespace libtextclassifier2 { namespace internal { bool FromModelSpec(const tflite::Model* model_spec, std::unique_ptr<const tflite::FlatBufferModel>* model) { *model = tflite::FlatBufferModel::BuildFromModel(model_spec); if (!(*model) || !(*model)->initialized()) { TC_LOG(ERROR) << "Could not build TFLite model from a model spec. "; return false; } return true; } } // namespace internal std::unique_ptr<tflite::Interpreter> ModelExecutor::CreateInterpreter() const { std::unique_ptr<tflite::Interpreter> interpreter; tflite::InterpreterBuilder(*model_, builtins_)(&interpreter); return interpreter; } std::unique_ptr<TFLiteEmbeddingExecutor> TFLiteEmbeddingExecutor::Instance( const flatbuffers::Vector<uint8_t>* model_spec_buffer, int embedding_size, int quantization_bits) { const tflite::Model* model_spec = flatbuffers::GetRoot<tflite::Model>(model_spec_buffer->data()); flatbuffers::Verifier verifier(model_spec_buffer->data(), model_spec_buffer->Length()); std::unique_ptr<const tflite::FlatBufferModel> model; if (!model_spec->Verify(verifier) || !internal::FromModelSpec(model_spec, &model)) { TC_LOG(ERROR) << "Could not load TFLite model."; return nullptr; } std::unique_ptr<tflite::Interpreter> interpreter; tflite::ops::builtin::BuiltinOpResolver builtins; tflite::InterpreterBuilder(*model, builtins)(&interpreter); if (!interpreter) { TC_LOG(ERROR) << "Could not build TFLite interpreter for embeddings."; return nullptr; } if (interpreter->tensors_size() != 2) { return nullptr; } const TfLiteTensor* embeddings = interpreter->tensor(0); if (embeddings->dims->size != 2) { return nullptr; } int num_buckets = embeddings->dims->data[0]; const TfLiteTensor* scales = interpreter->tensor(1); if (scales->dims->size != 2 || scales->dims->data[0] != num_buckets || scales->dims->data[1] != 1) { return nullptr; } int bytes_per_embedding = embeddings->dims->data[1]; if (!CheckQuantizationParams(bytes_per_embedding, quantization_bits, embedding_size)) { TC_LOG(ERROR) << "Mismatch in quantization parameters."; return nullptr; } return std::unique_ptr<TFLiteEmbeddingExecutor>(new TFLiteEmbeddingExecutor( std::move(model), quantization_bits, num_buckets, bytes_per_embedding, embedding_size, scales, embeddings, std::move(interpreter))); } TFLiteEmbeddingExecutor::TFLiteEmbeddingExecutor( std::unique_ptr<const tflite::FlatBufferModel> model, int quantization_bits, int num_buckets, int bytes_per_embedding, int output_embedding_size, const TfLiteTensor* scales, const TfLiteTensor* embeddings, std::unique_ptr<tflite::Interpreter> interpreter) : model_(std::move(model)), quantization_bits_(quantization_bits), num_buckets_(num_buckets), bytes_per_embedding_(bytes_per_embedding), output_embedding_size_(output_embedding_size), scales_(scales), embeddings_(embeddings), interpreter_(std::move(interpreter)) {} bool TFLiteEmbeddingExecutor::AddEmbedding( const TensorView<int>& sparse_features, float* dest, int dest_size) const { if (dest_size != output_embedding_size_) { TC_LOG(ERROR) << "Mismatching dest_size and output_embedding_size: " << dest_size << " " << output_embedding_size_; return false; } const int num_sparse_features = sparse_features.size(); for (int i = 0; i < num_sparse_features; ++i) { const int bucket_id = sparse_features.data()[i]; if (bucket_id >= num_buckets_) { return false; } if (!DequantizeAdd(scales_->data.f, embeddings_->data.uint8, bytes_per_embedding_, num_sparse_features, quantization_bits_, bucket_id, dest, dest_size)) { return false; } } return true; } TensorView<float> ComputeLogitsHelper(const int input_index_features, const int output_index_logits, const TensorView<float>& features, tflite::Interpreter* interpreter) { if (!interpreter) { return TensorView<float>::Invalid(); } interpreter->ResizeInputTensor(input_index_features, features.shape()); if (interpreter->AllocateTensors() != kTfLiteOk) { TC_VLOG(1) << "Allocation failed."; return TensorView<float>::Invalid(); } TfLiteTensor* features_tensor = interpreter->tensor(interpreter->inputs()[input_index_features]); int size = 1; for (int i = 0; i < features_tensor->dims->size; ++i) { size *= features_tensor->dims->data[i]; } features.copy_to(features_tensor->data.f, size); if (interpreter->Invoke() != kTfLiteOk) { TC_VLOG(1) << "Interpreter failed."; return TensorView<float>::Invalid(); } TfLiteTensor* logits_tensor = interpreter->tensor(interpreter->outputs()[output_index_logits]); std::vector<int> output_shape(logits_tensor->dims->size); for (int i = 0; i < logits_tensor->dims->size; ++i) { output_shape[i] = logits_tensor->dims->data[i]; } return TensorView<float>(logits_tensor->data.f, output_shape); } } // namespace libtextclassifier2