/* * Copyright (C) 2017 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "util/math/softmax.h" #include <limits> #include "util/base/logging.h" #include "util/math/fastexp.h" namespace libtextclassifier2 { float ComputeSoftmaxProbability(const std::vector<float> &scores, int label) { if ((label < 0) || (label >= scores.size())) { TC_LOG(ERROR) << "label " << label << " outside range " << "[0, " << scores.size() << ")"; return 0.0f; } // Standard softmax formula for label's probability is // // exp(scores[label]) / sum_i exp(scores[i]) // // We compute the mathematically equivalent // // 1 / (1 + sum_{i != label} exp(scores[i] - scores[label])) // // which saves two calls to exp(). const float label_score = scores[label]; float denominator = 1.0f; // Contribution of i == label. for (int i = 0; i < scores.size(); ++i) { if (i == label) continue; const float delta_score = scores[i] - label_score; // TODO(salcianu): one can optimize the test below, to avoid any float // operation: extract exponent (via bit mask + shift) and check it's >= 4. if (fabs(delta_score) >= 16.0f) { if (delta_score > 0.0f) { // If delta_score >= 16, the denominator (e^delta_score + other positive // terms) is very big and its inverse can be approximated with 0. return 0.0f; } else { // If delta_score <= -16, then e^delta_score < 1.2e-7. Even if we have // 1000 such labels i, their sum is < 1.2e-4 (which gets summed with // 1.0f for i == label). Hence, we can approximate each such label with // 0 and skip the call to VeryFastExp and the update to denominator. continue; } } // At this point, delta_score is in (-16.0, 16.0). For such values, vfexp // works fine: no under/overflows (we have tests for that in fastexp_test). // Also, even for 1000 labels, denominator will not overflow. denominator += VeryFastExp(delta_score); } return 1.0f / denominator; } std::vector<float> ComputeSoftmax(const std::vector<float> &scores) { return ComputeSoftmax(scores.data(), scores.size()); } std::vector<float> ComputeSoftmax(const float *scores, int scores_size) { std::vector<float> softmax; std::vector<float> exp_scores; exp_scores.reserve(scores_size); softmax.reserve(scores_size); // Find max value in "scores" vector and rescale to avoid overflows. float max = std::numeric_limits<float>::min(); for (int i = 0; i < scores_size; ++i) { const float score = scores[i]; if (score > max) max = score; } float denominator = 0; for (int i = 0; i < scores_size; ++i) { const float score = scores[i]; // See comments above in ComputeSoftmaxProbability for the reasoning behind // this approximation. const float exp_score = score - max < -16.0f ? 0 : VeryFastExp(score - max); exp_scores.push_back(exp_score); denominator += exp_score; } for (int i = 0; i < scores_size; ++i) { softmax.push_back(exp_scores[i] / denominator); } return softmax; } } // namespace libtextclassifier2