/* * kernel_gauss_lap_pyramid.cl * input0 * input1 * output * window, pos_x, pos_y, width, height */ #ifndef PYRAMID_UV #define PYRAMID_UV 0 #endif #ifndef CL_PYRAMID_ENABLE_DUMP #define CL_PYRAMID_ENABLE_DUMP 0 #endif #ifndef ENABLE_MASK_GAUSS_SCALE #define ENABLE_MASK_GAUSS_SCALE 0 #endif #define fixed_pixels 8 #define GAUSS_V_R 2 #define GAUSS_H_R 1 #define COEFF_MID 4 #define zero8 (float8)(0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f) __constant const float coeffs[9] = {0.0f, 0.0f, 0.152f, 0.222f, 0.252f, 0.222f, 0.152f, 0.0f, 0.0f}; #define ARG_FORMAT4 "(%.1f,%.1f,%.1f,%.1f)" #define ARGS4(a) a.s0, a.s1, a.s2, a.s3 #define ARG_FORMAT8 "(%.1f,%.1f,%.1f,%.1f,%.1f,%.1f,%.1f,%.1f)" #define ARGS8(a) a.s0, a.s1, a.s2, a.s3, a.s4, a.s5, a.s6, a.s7 /* * input: RGBA-CL_UNSIGNED_INT16 * output_gauss: RGBA-CL_UNSIGNED_INT8 * output_lap:RGBA-CL_UNSIGNED_INT16 * each work-item calc 2 lines */ __kernel void kernel_gauss_scale_transform ( __read_only image2d_t input, int in_offset_x, __write_only image2d_t output_gauss #if CL_PYRAMID_ENABLE_DUMP , __write_only image2d_t dump_orig #endif ) { int g_x = get_global_id (0); int in_x = g_x + in_offset_x; int g_y = get_global_id (1) * 4; const sampler_t sampler = CLK_NORMALIZED_COORDS_FALSE | CLK_ADDRESS_CLAMP_TO_EDGE | CLK_FILTER_NEAREST; int g_out_x = get_global_id (0); int g_out_y = get_global_id (1) * 2; #if CL_PYRAMID_ENABLE_DUMP write_imageui (dump_orig, (int2)(g_x, g_y + 0), read_imageui(input, sampler, (int2)(in_x, g_y))); write_imageui (dump_orig, (int2)(g_x, g_y + 1), read_imageui(input, sampler, (int2)(in_x, g_y + 1))); write_imageui (dump_orig, (int2)(g_x, g_y + 2), read_imageui(input, sampler, (int2)(in_x, g_y + 2))); write_imageui (dump_orig, (int2)(g_x, g_y + 3), read_imageui(input, sampler, (int2)(in_x, g_y + 3))); #endif float8 result_pre[2] = {zero8, zero8}; float8 result_next[2] = {zero8, zero8}; float8 result_cur[2] = {zero8, zero8}; float4 final_g[2]; float8 tmp_data; int i_ver; #pragma unroll for (i_ver = -GAUSS_V_R; i_ver <= GAUSS_V_R + 2; i_ver++) { int cur_g_y = g_y + i_ver; float coeff0 = coeffs[i_ver + COEFF_MID]; float coeff1 = coeffs[i_ver + COEFF_MID - 2]; tmp_data = convert_float8(as_uchar8(convert_ushort4(read_imageui(input, sampler, (int2)(in_x - 1, cur_g_y))))); result_pre[0] += tmp_data * coeff0; result_pre[1] += tmp_data * coeff1; tmp_data = convert_float8(as_uchar8(convert_ushort4(read_imageui(input, sampler, (int2)(in_x, cur_g_y))))); result_cur[0] += tmp_data * coeff0; result_cur[1] += tmp_data * coeff1; tmp_data = convert_float8(as_uchar8(convert_ushort4(read_imageui(input, sampler, (int2)(in_x + 1, cur_g_y))))); result_next[1] += tmp_data * coeff1; result_next[0] += tmp_data * coeff0; } int i_line; #pragma unroll for (i_line = 0; i_line < 2; ++i_line) { #if !PYRAMID_UV final_g[i_line] = result_cur[i_line].even * coeffs[COEFF_MID] + (float4)(result_pre[i_line].s7, result_cur[i_line].s135) * coeffs[COEFF_MID + 1] + (float4)(result_pre[i_line].s6, result_cur[i_line].s024) * coeffs[COEFF_MID + 2] + (float4)(result_cur[i_line].s1357) * coeffs[COEFF_MID + 1] + (float4)(result_cur[i_line].s246, result_next[i_line].s0) * coeffs[COEFF_MID + 2]; #else final_g[i_line] = result_cur[i_line].s0145 * coeffs[COEFF_MID] + (float4)(result_pre[i_line].s67, result_cur[i_line].s23) * coeffs[COEFF_MID + 1] + (float4)(result_pre[i_line].s45, result_cur[i_line].s01) * coeffs[COEFF_MID + 2] + (float4)(result_cur[i_line].s2367) * coeffs[COEFF_MID + 1] + (float4)(result_cur[i_line].s45, result_next[i_line].s01) * coeffs[COEFF_MID + 2]; #endif final_g[i_line] = clamp (final_g[i_line] + 0.5f, 0.0f, 255.0f); write_imageui (output_gauss, (int2)(g_out_x, g_out_y + i_line), convert_uint4(final_g[i_line])); } } inline float8 read_scale_y (__read_only image2d_t input, const sampler_t sampler, float2 pos_start, float step_x) { float8 data; data.s0 = read_imagef (input, sampler, pos_start).x; pos_start.x += step_x; data.s1 = read_imagef (input, sampler, pos_start).x; pos_start.x += step_x; data.s2 = read_imagef (input, sampler, pos_start).x; pos_start.x += step_x; data.s3 = read_imagef (input, sampler, pos_start).x; pos_start.x += step_x; data.s4 = read_imagef (input, sampler, pos_start).x; pos_start.x += step_x; data.s5 = read_imagef (input, sampler, pos_start).x; pos_start.x += step_x; data.s6 = read_imagef (input, sampler, pos_start).x; pos_start.x += step_x; data.s7 = read_imagef (input, sampler, pos_start).x; return data; } inline float8 read_scale_uv (__read_only image2d_t input, const sampler_t sampler, float2 pos_start, float step_x) { float8 data; data.s01 = read_imagef (input, sampler, pos_start).xy; pos_start.x += step_x; data.s23 = read_imagef (input, sampler, pos_start).xy; pos_start.x += step_x; data.s45 = read_imagef (input, sampler, pos_start).xy; pos_start.x += step_x; data.s67 = read_imagef (input, sampler, pos_start).xy; return data; } /* * input_gauss: RGBA-CL_UNSIGNED_INT18 * input_lap: RGBA-CL_UNSIGNED_INT16 * output: RGBA-CL_UNSIGNED_INT16 * each work-item calc 2 lines */ __kernel void kernel_gauss_lap_reconstruct ( __read_only image2d_t input_gauss, float in_sampler_offset_x, float in_sampler_offset_y, __read_only image2d_t input_lap, __write_only image2d_t output, int out_offset_x, float out_width, float out_height #if CL_PYRAMID_ENABLE_DUMP , __write_only image2d_t dump_resize, __write_only image2d_t dump_final #endif ) { int g_x = get_global_id (0); int g_y = get_global_id (1); const sampler_t lap_sampler = CLK_NORMALIZED_COORDS_FALSE | CLK_ADDRESS_CLAMP_TO_EDGE | CLK_FILTER_NEAREST; const sampler_t gauss_sampler = CLK_NORMALIZED_COORDS_TRUE | CLK_ADDRESS_CLAMP_TO_EDGE | CLK_FILTER_LINEAR; //if (g_x > out_width + 0.9f || g_y > out_height + 0.5f) // return; float8 lap = convert_float8(as_uchar8(convert_ushort4(read_imageui(input_lap, lap_sampler, (int2)(g_x, g_y))))); lap = (lap - 128.0f) * 2.0f; float8 data_g; float2 input_gauss_pos; float step_x; input_gauss_pos.x = g_x / out_width + in_sampler_offset_x; input_gauss_pos.y = g_y / out_height + in_sampler_offset_y; #if !PYRAMID_UV step_x = 0.125f / out_width; data_g = read_scale_y (input_gauss, gauss_sampler, input_gauss_pos, step_x) * 256.0f; #else step_x = 0.25f / out_width; data_g = read_scale_uv (input_gauss, gauss_sampler, input_gauss_pos, step_x) * 256.0f; #endif #if CL_PYRAMID_ENABLE_DUMP write_imageui (dump_resize, (int2)(g_x, g_y), convert_uint4(as_ushort4(convert_uchar8(data_g)))); #endif data_g += lap + 0.5f; data_g = clamp (data_g, 0.0f, 255.0f); write_imageui (output, (int2)(g_x + out_offset_x, g_y), convert_uint4(as_ushort4(convert_uchar8(data_g)))); #if CL_PYRAMID_ENABLE_DUMP write_imageui (dump_final, (int2)(g_x, g_y), convert_uint4(as_ushort4(convert_uchar8(data_g)))); #endif } __kernel void kernel_pyramid_blend ( __read_only image2d_t input0, __read_only image2d_t input1, #if !PYRAMID_UV __global const float8 *input0_mask, #else __global const float4 *input0_mask, #endif __write_only image2d_t output) { sampler_t sampler = CLK_NORMALIZED_COORDS_FALSE | CLK_ADDRESS_CLAMP_TO_EDGE | CLK_FILTER_NEAREST; const int g_x = get_global_id (0); const int g_y = get_global_id (1); int2 pos = (int2) (g_x, g_y); float8 data0 = convert_float8(as_uchar8(convert_ushort4(read_imageui(input0, sampler, pos)))); float8 data1 = convert_float8(as_uchar8(convert_ushort4(read_imageui(input1, sampler, pos)))); float8 out_data; #if !PYRAMID_UV out_data = (data0 - data1) * input0_mask[g_x] + data1; #else float8 coeff; coeff.even = input0_mask[g_x]; coeff.odd = coeff.even; out_data = (data0 - data1) * coeff + data1; #endif out_data = clamp (out_data + 0.5f, 0.0f, 255.0f); write_imageui(output, pos, convert_uint4(as_ushort4(convert_uchar8(out_data)))); } __kernel void kernel_pyramid_scale ( __read_only image2d_t input, __write_only image2d_t output, int out_offset_x, int output_width, int output_height) { const sampler_t sampler = CLK_NORMALIZED_COORDS_TRUE | CLK_ADDRESS_CLAMP_TO_EDGE | CLK_FILTER_LINEAR; int g_x = get_global_id (0); int g_y = get_global_id (1); float2 normCoor = (float2)(g_x, g_y) / (float2)(output_width, output_height); float8 out_data; float step_x; #if !PYRAMID_UV step_x = 0.125f / output_width; out_data = read_scale_y (input, sampler, normCoor, step_x) * 255.0f; #else step_x = 0.25f / output_width; out_data = read_scale_uv (input, sampler, normCoor, step_x) * 255.0f; #endif out_data = clamp (out_data + 0.5f, 0.0f, 255.0f); write_imageui (output, (int2)(g_x + out_offset_x, g_y), convert_uint4(as_ushort4(convert_uchar8(out_data)))); } __kernel void kernel_pyramid_copy ( __read_only image2d_t input, int in_offset_x, __write_only image2d_t output, int out_offset_x, int max_g_x, int max_g_y) { sampler_t sampler = CLK_NORMALIZED_COORDS_FALSE | CLK_ADDRESS_CLAMP_TO_EDGE | CLK_FILTER_NEAREST; const int g_x = get_global_id (0); const int g_y = get_global_id (1); if (g_x >= max_g_x || g_y >= max_g_y) return; uint4 data = read_imageui (input, sampler, (int2)(g_x + in_offset_x, g_y)); write_imageui (output, (int2)(g_x + out_offset_x, g_y), data); } /* * input_gauss: RGBA-CL_UNSIGNED_INT18 * input_lap: RGBA-CL_UNSIGNED_INT16 * output: RGBA-CL_UNSIGNED_INT16 * each work-item calc 2 lines */ __kernel void kernel_lap_transform ( __read_only image2d_t input_gauss0, int gauss0_offset_x, __read_only image2d_t input_gauss1, float gauss1_sampler_offset_x, float gauss1_sampler_offset_y, __write_only image2d_t output, int lap_offset_x, float out_width, float out_height) { int g_x = get_global_id (0); int g_y = get_global_id (1); const sampler_t gauss0_sampler = CLK_NORMALIZED_COORDS_FALSE | CLK_ADDRESS_CLAMP_TO_EDGE | CLK_FILTER_NEAREST; const sampler_t gauss1_sampler = CLK_NORMALIZED_COORDS_TRUE | CLK_ADDRESS_CLAMP_TO_EDGE | CLK_FILTER_LINEAR; float8 orig = convert_float8(as_uchar8(convert_ushort4( read_imageui(input_gauss0, gauss0_sampler, (int2)(g_x + gauss0_offset_x, g_y))))); float8 zoom_in; float2 gauss1_pos; float sampler_step; gauss1_pos.y = (g_y / out_height) + gauss1_sampler_offset_y; gauss1_pos.x = (g_x / out_width) + gauss1_sampler_offset_x; #if !PYRAMID_UV sampler_step = 0.125f / out_width; zoom_in.s0 = read_imagef (input_gauss1, gauss1_sampler, gauss1_pos).x; gauss1_pos.x += sampler_step; zoom_in.s1 = read_imagef (input_gauss1, gauss1_sampler, gauss1_pos).x; gauss1_pos.x += sampler_step; zoom_in.s2 = read_imagef (input_gauss1, gauss1_sampler, gauss1_pos).x; gauss1_pos.x += sampler_step; zoom_in.s3 = read_imagef (input_gauss1, gauss1_sampler, gauss1_pos).x; gauss1_pos.x += sampler_step; zoom_in.s4 = read_imagef (input_gauss1, gauss1_sampler, gauss1_pos).x; gauss1_pos.x += sampler_step; zoom_in.s5 = read_imagef (input_gauss1, gauss1_sampler, gauss1_pos).x; gauss1_pos.x += sampler_step; zoom_in.s6 = read_imagef (input_gauss1, gauss1_sampler, gauss1_pos).x; gauss1_pos.x += sampler_step; zoom_in.s7 = read_imagef (input_gauss1, gauss1_sampler, gauss1_pos).x; #else sampler_step = 0.25f / out_width; zoom_in.s01 = read_imagef (input_gauss1, gauss1_sampler, gauss1_pos).xy; gauss1_pos.x += sampler_step; zoom_in.s23 = read_imagef (input_gauss1, gauss1_sampler, gauss1_pos).xy; gauss1_pos.x += sampler_step; zoom_in.s45 = read_imagef (input_gauss1, gauss1_sampler, gauss1_pos).xy; gauss1_pos.x += sampler_step; zoom_in.s67 = read_imagef (input_gauss1, gauss1_sampler, gauss1_pos).xy; #endif float8 lap = (orig - zoom_in * 256.0f) * 0.5f + 128.0f + 0.5f; lap = clamp (lap, 0.0f, 255.0f); write_imageui (output, (int2)(g_x + lap_offset_x, g_y), convert_uint4(as_ushort4(convert_uchar8(lap)))); } /* * input0: RGBA-CL_UNSIGNED_INT16 * input1: RGBA-CL_UNSIGNED_INT16 * out_diff: RGBA-CL_UNSIGNED_INT16 */ __kernel void kernel_image_diff ( __read_only image2d_t input0, int offset0, __read_only image2d_t input1, int offset1, __write_only image2d_t out_diff) { int g_x = get_global_id (0); int g_y = get_global_id (1); const sampler_t sampler = CLK_NORMALIZED_COORDS_FALSE | CLK_ADDRESS_CLAMP_TO_EDGE | CLK_FILTER_NEAREST; int8 data0 = convert_int8(as_uchar8(convert_ushort4(read_imageui(input0, sampler, (int2)(g_x + offset0, g_y))))); int8 data1 = convert_int8(as_uchar8(convert_ushort4(read_imageui(input1, sampler, (int2)(g_x + offset1, g_y))))); uint8 diff = abs_diff (data0, data1); write_imageui (out_diff, (int2)(g_x, g_y), convert_uint4(as_ushort4(convert_uchar8(diff)))); } /* * input0: RGBA-CL_UNSIGNED_INT16 */ #define LEFT_POS (int)(-1) #define MID_POS (int)(0) #define RIGHT_POS (int)(1) __inline int pos_buf_index (int x, int y, int stride) { return mad24 (stride, y, x); } __kernel void kernel_seam_dp ( __read_only image2d_t image, __global short *pos_buf, __global float *sum_buf, int offset_x, int valid_width, int max_pos, int seam_height, int seam_stride) { int l_x = get_local_id (0); int group_id = get_group_id (0); if (l_x >= valid_width) return; // group0 fill first half slice image curve y = [0, seam_height/2 - 1] // group1 fill send half slice image curve = [seam_height - 1, seam_height/2] int first_slice_h = seam_height / 2; int group_h = (group_id == 0 ? first_slice_h : seam_height - first_slice_h); __local float slm_sum[4096]; float mid, left, right, cur; int slm_idx; int default_pos; int x = l_x + offset_x; const sampler_t sampler = CLK_NORMALIZED_COORDS_FALSE | CLK_ADDRESS_CLAMP_TO_EDGE | CLK_FILTER_NEAREST; int y = (group_id == 0 ? 0 : seam_height - 1); float sum = convert_float(read_imageui(image, sampler, (int2)(x, y)).x); default_pos = x; slm_sum[l_x] = sum; barrier (CLK_LOCAL_MEM_FENCE); pos_buf[pos_buf_index(x, y, seam_stride)] = convert_short(default_pos); for (int i = 0; i < group_h; ++i) { y = (group_id == 0 ? i : seam_height - i - 1); slm_idx = l_x - 1; slm_idx = (slm_idx > 0 ? slm_idx : 0); left = slm_sum[slm_idx]; slm_idx = l_x + 1; slm_idx = (slm_idx < valid_width ? slm_idx : valid_width - 1); right = slm_sum[slm_idx]; cur = convert_float(read_imageui(image, sampler, (int2)(x, y)).x); left = left + cur; right = right + cur; mid = sum + cur; int pos; pos = (left < mid) ? LEFT_POS : MID_POS; sum = min (left, mid); pos = (sum < right) ? pos : RIGHT_POS; sum = min (sum, right); slm_sum[l_x] = sum; barrier (CLK_LOCAL_MEM_FENCE); pos += default_pos; pos = clamp (pos, offset_x, max_pos); //if (l_x == 3) // printf ("s:%f, pos:%d, mid:%f, offset_x:%d\n", sum.s0, pos.s0, mid.s0, offset_x); pos_buf[pos_buf_index(x, y, seam_stride)] = convert_short(pos); } sum_buf[group_id * seam_stride + x] = sum; //printf ("sum(x):%f(x:%d)\n", sum_buf[x].s0, x); } __kernel void kernel_seam_mask_blend ( __read_only image2d_t input0, __read_only image2d_t input1, __read_only image2d_t seam_mask, __write_only image2d_t output) { sampler_t sampler = CLK_NORMALIZED_COORDS_FALSE | CLK_ADDRESS_CLAMP_TO_EDGE | CLK_FILTER_NEAREST; const int g_x = get_global_id (0); const int g_y = get_global_id (1); int2 pos = (int2) (g_x, g_y); float8 data0 = convert_float8(as_uchar8(convert_ushort4(read_imageui(input0, sampler, pos)))); float8 data1 = convert_float8(as_uchar8(convert_ushort4(read_imageui(input1, sampler, pos)))); float8 coeff0 = convert_float8(as_uchar8(convert_ushort4(read_imageui(seam_mask, sampler, pos)))) / 255.0f; float8 out_data; #if !PYRAMID_UV out_data = (data0 - data1) * coeff0 + data1; #else coeff0.even = (coeff0.even + coeff0.odd) * 0.5f; coeff0.odd = coeff0.even; out_data = (data0 - data1) * coeff0 + data1; #endif out_data = clamp (out_data + 0.5f, 0.0f, 255.0f); write_imageui(output, pos, convert_uint4(as_ushort4(convert_uchar8(out_data)))); } #define MASK_GAUSS_R 4 #define MASK_COEFF_MID 7 __constant const float mask_coeffs[] = {0.0f, 0.0f, 0.0f, 0.082f, 0.102f, 0.119f, 0.130f, 0.134f, 0.130f, 0.119f, 0.102f, 0.082f, 0.0f, 0.0f, 0.0f}; /* * input: RGBA-CL_UNSIGNED_INT16 * output_gauss: RGBA-CL_UNSIGNED_INT8 ? * output_lap:RGBA-CL_UNSIGNED_INT16 * each work-item calc 2 lines */ __kernel void kernel_mask_gauss_scale_slm ( __read_only image2d_t input, __write_only image2d_t output_gauss, int image_width #if ENABLE_MASK_GAUSS_SCALE , __write_only image2d_t output_scale #endif ) { #define WI_LINES 2 // input image width MUST < MASK_GAUSS_SLM_WIDTH*4 #define MASK_GAUSS_SLM_WIDTH 256 #define CONV_COEFF 128.0f int g_x = get_global_id (0); int g_y = get_global_id (1) * WI_LINES; const sampler_t sampler = CLK_NORMALIZED_COORDS_FALSE | CLK_ADDRESS_CLAMP_TO_EDGE | CLK_FILTER_NEAREST; __local ushort4 slm_gauss_y[WI_LINES][MASK_GAUSS_SLM_WIDTH]; float8 result_cur[WI_LINES] = {zero8, zero8}; float8 tmp_data; int i_line; int cur_g_y; #pragma unroll for (i_line = -MASK_GAUSS_R; i_line <= MASK_GAUSS_R + 1; i_line++) { cur_g_y = g_y + i_line; tmp_data = convert_float8(as_uchar8(convert_ushort4(read_imageui(input, sampler, (int2)(g_x, cur_g_y))))); result_cur[0] += tmp_data * mask_coeffs[i_line + MASK_COEFF_MID]; result_cur[1] += tmp_data * mask_coeffs[i_line + MASK_COEFF_MID - 1]; } ((__local ushort8*)(slm_gauss_y[0]))[g_x] = convert_ushort8(result_cur[0] * CONV_COEFF); ((__local ushort8*)(slm_gauss_y[1]))[g_x] = convert_ushort8(result_cur[1] * CONV_COEFF); barrier (CLK_LOCAL_MEM_FENCE); float8 final_g[WI_LINES]; float4 result_pre; float4 result_next; #pragma unroll for (i_line = 0; i_line < WI_LINES; ++i_line) { result_pre = convert_float4(slm_gauss_y[i_line][clamp (g_x * 2 - 1, 0, image_width * 2)]) / CONV_COEFF; result_next = convert_float4(slm_gauss_y[i_line][clamp (g_x * 2 + 2, 0, image_width * 2)]) / CONV_COEFF; final_g[i_line] = result_cur[i_line] * mask_coeffs[MASK_COEFF_MID] + (float8)(result_pre.s3, result_cur[i_line].s0123, result_cur[i_line].s456) * mask_coeffs[MASK_COEFF_MID + 1] + (float8)(result_cur[i_line].s1234, result_cur[i_line].s567, result_next.s0) * mask_coeffs[MASK_COEFF_MID + 1] + (float8)(result_pre.s23, result_cur[i_line].s0123, result_cur[i_line].s45) * mask_coeffs[MASK_COEFF_MID + 2] + (float8)(result_cur[i_line].s2345, result_cur[i_line].s67, result_next.s01) * mask_coeffs[MASK_COEFF_MID + 2] + (float8)(result_pre.s123, result_cur[i_line].s0123, result_cur[i_line].s4) * mask_coeffs[MASK_COEFF_MID + 3] + (float8)(result_cur[i_line].s3456, result_cur[i_line].s7, result_next.s012) * mask_coeffs[MASK_COEFF_MID + 3] + (float8)(result_pre.s0123, result_cur[i_line].s0123) * mask_coeffs[MASK_COEFF_MID + 4] + (float8)(result_cur[i_line].s4567, result_next.s0123) * mask_coeffs[MASK_COEFF_MID + 4]; final_g[i_line] = clamp (final_g[i_line] + 0.5f, 0.0f, 255.0f); //if ((g_x == 9 || g_x == 8) && g_y == 0) { // printf ("(x:%d, y:0), pre:" ARG_FORMAT4 "cur" ARG_FORMAT8 "next" ARG_FORMAT4 "final:" ARG_FORMAT8 "\n", // g_x, ARGS4(result_pre), ARGS8(result_cur[i_line]), ARGS4(result_next), ARGS8(final_g[i_line])); //} write_imageui (output_gauss, (int2)(g_x, g_y + i_line), convert_uint4(as_ushort4(convert_uchar8(final_g[i_line])))); } #if ENABLE_MASK_GAUSS_SCALE write_imageui (output_scale, (int2)(g_x, get_global_id (1)), convert_uint4(final_g[0].even)); #endif } __kernel void kernel_mask_gauss_scale ( __read_only image2d_t input, __write_only image2d_t output_gauss #if ENABLE_MASK_GAUSS_SCALE , __write_only image2d_t output_scale #endif ) { int g_x = get_global_id (0); int in_x = g_x; int g_y = get_global_id (1) * 2; const sampler_t sampler = CLK_NORMALIZED_COORDS_FALSE | CLK_ADDRESS_CLAMP_TO_EDGE | CLK_FILTER_NEAREST; float8 result_pre[2] = {zero8, zero8}; float8 result_next[2] = {zero8, zero8}; float8 result_cur[2] = {zero8, zero8}; float8 final_g[2]; float8 tmp_data; int i_line; int cur_g_y; float coeff0, coeff1; #pragma unroll for (i_line = -MASK_GAUSS_R; i_line <= MASK_GAUSS_R + 1; i_line++) { cur_g_y = g_y + i_line; coeff0 = mask_coeffs[i_line + MASK_COEFF_MID]; coeff1 = mask_coeffs[i_line + MASK_COEFF_MID - 1]; tmp_data = convert_float8(as_uchar8(convert_ushort4(read_imageui(input, sampler, (int2)(in_x - 1, cur_g_y))))); result_pre[0] += tmp_data * coeff0; result_pre[1] += tmp_data * coeff1; tmp_data = convert_float8(as_uchar8(convert_ushort4(read_imageui(input, sampler, (int2)(in_x, cur_g_y))))); result_cur[0] += tmp_data * coeff0; result_cur[1] += tmp_data * coeff1; tmp_data = convert_float8(as_uchar8(convert_ushort4(read_imageui(input, sampler, (int2)(in_x + 1, cur_g_y))))); result_next[1] += tmp_data * coeff1; result_next[0] += tmp_data * coeff0; } #pragma unroll for (i_line = 0; i_line < 2; ++i_line) { final_g[i_line] = result_cur[i_line] * mask_coeffs[MASK_COEFF_MID] + (float8)(result_pre[i_line].s7, result_cur[i_line].s0123, result_cur[i_line].s456) * mask_coeffs[MASK_COEFF_MID + 1] + (float8)(result_cur[i_line].s1234, result_cur[i_line].s567, result_next[i_line].s0) * mask_coeffs[MASK_COEFF_MID + 1] + (float8)(result_pre[i_line].s67, result_cur[i_line].s0123, result_cur[i_line].s45) * mask_coeffs[MASK_COEFF_MID + 2] + (float8)(result_cur[i_line].s2345, result_cur[i_line].s67, result_next[i_line].s01) * mask_coeffs[MASK_COEFF_MID + 2] + (float8)(result_pre[i_line].s567, result_cur[i_line].s0123, result_cur[i_line].s4) * mask_coeffs[MASK_COEFF_MID + 3] + (float8)(result_cur[i_line].s3456,result_cur[i_line].s7, result_next[i_line].s012) * mask_coeffs[MASK_COEFF_MID + 3] + (float8)(result_pre[i_line].s4567, result_cur[i_line].s0123) * mask_coeffs[MASK_COEFF_MID + 4] + (float8)(result_cur[i_line].s4567, result_next[i_line].s0123) * mask_coeffs[MASK_COEFF_MID + 4]; final_g[i_line] = clamp (final_g[i_line] + 0.5f, 0.0f, 255.0f); write_imageui (output_gauss, (int2)(g_x, g_y + i_line), convert_uint4(as_ushort4(convert_uchar8(final_g[i_line])))); } #if ENABLE_MASK_GAUSS_SCALE write_imageui (output_scale, (int2)(g_x, get_global_id (1)), convert_uint4(final_g[0].even)); #endif }