/*
 *  Copyright 2011 The LibYuv Project Authors. All rights reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS. All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#include <stdlib.h>
#include <time.h>

#include "libyuv/basic_types.h"
#include "libyuv/compare.h"
#include "libyuv/convert.h"
#include "libyuv/convert_argb.h"
#include "libyuv/convert_from.h"
#include "libyuv/convert_from_argb.h"
#include "libyuv/cpu_id.h"
#ifdef HAVE_JPEG
#include "libyuv/mjpeg_decoder.h"
#endif
#include "../unit_test/unit_test.h"
#include "libyuv/planar_functions.h"
#include "libyuv/rotate.h"
#include "libyuv/video_common.h"

namespace libyuv {

#define SUBSAMPLE(v, a) ((((v) + (a)-1)) / (a))

#define TESTPLANARTOPI(SRC_FMT_PLANAR, SRC_SUBSAMP_X, SRC_SUBSAMP_Y,          \
                       FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, W1280, N, NEG, OFF)  \
  TEST_F(LibYUVConvertTest, SRC_FMT_PLANAR##To##FMT_PLANAR##N) {              \
    const int kWidth = ((W1280) > 0) ? (W1280) : 1;                           \
    const int kHeight = benchmark_height_;                                    \
    align_buffer_page_end(src_y, kWidth* kHeight + OFF);                      \
    align_buffer_page_end(src_u, SUBSAMPLE(kWidth, SRC_SUBSAMP_X) *           \
                                         SUBSAMPLE(kHeight, SRC_SUBSAMP_Y) +  \
                                     OFF);                                    \
    align_buffer_page_end(src_v, SUBSAMPLE(kWidth, SRC_SUBSAMP_X) *           \
                                         SUBSAMPLE(kHeight, SRC_SUBSAMP_Y) +  \
                                     OFF);                                    \
    align_buffer_page_end(dst_y_c, kWidth* kHeight);                          \
    align_buffer_page_end(dst_u_c, SUBSAMPLE(kWidth, SUBSAMP_X) *             \
                                       SUBSAMPLE(kHeight, SUBSAMP_Y));        \
    align_buffer_page_end(dst_v_c, SUBSAMPLE(kWidth, SUBSAMP_X) *             \
                                       SUBSAMPLE(kHeight, SUBSAMP_Y));        \
    align_buffer_page_end(dst_y_opt, kWidth* kHeight);                        \
    align_buffer_page_end(dst_u_opt, SUBSAMPLE(kWidth, SUBSAMP_X) *           \
                                         SUBSAMPLE(kHeight, SUBSAMP_Y));      \
    align_buffer_page_end(dst_v_opt, SUBSAMPLE(kWidth, SUBSAMP_X) *           \
                                         SUBSAMPLE(kHeight, SUBSAMP_Y));      \
    for (int i = 0; i < kHeight; ++i)                                         \
      for (int j = 0; j < kWidth; ++j)                                        \
        src_y[i * kWidth + j + OFF] = (fastrand() & 0xff);                    \
    for (int i = 0; i < SUBSAMPLE(kHeight, SRC_SUBSAMP_Y); ++i) {             \
      for (int j = 0; j < SUBSAMPLE(kWidth, SRC_SUBSAMP_X); ++j) {            \
        src_u[(i * SUBSAMPLE(kWidth, SRC_SUBSAMP_X)) + j + OFF] =             \
            (fastrand() & 0xff);                                              \
        src_v[(i * SUBSAMPLE(kWidth, SRC_SUBSAMP_X)) + j + OFF] =             \
            (fastrand() & 0xff);                                              \
      }                                                                       \
    }                                                                         \
    memset(dst_y_c, 1, kWidth* kHeight);                                      \
    memset(dst_u_c, 2,                                                        \
           SUBSAMPLE(kWidth, SUBSAMP_X) * SUBSAMPLE(kHeight, SUBSAMP_Y));     \
    memset(dst_v_c, 3,                                                        \
           SUBSAMPLE(kWidth, SUBSAMP_X) * SUBSAMPLE(kHeight, SUBSAMP_Y));     \
    memset(dst_y_opt, 101, kWidth* kHeight);                                  \
    memset(dst_u_opt, 102,                                                    \
           SUBSAMPLE(kWidth, SUBSAMP_X) * SUBSAMPLE(kHeight, SUBSAMP_Y));     \
    memset(dst_v_opt, 103,                                                    \
           SUBSAMPLE(kWidth, SUBSAMP_X) * SUBSAMPLE(kHeight, SUBSAMP_Y));     \
    MaskCpuFlags(disable_cpu_flags_);                                         \
    SRC_FMT_PLANAR##To##FMT_PLANAR(                                           \
        src_y + OFF, kWidth, src_u + OFF, SUBSAMPLE(kWidth, SRC_SUBSAMP_X),   \
        src_v + OFF, SUBSAMPLE(kWidth, SRC_SUBSAMP_X), dst_y_c, kWidth,       \
        dst_u_c, SUBSAMPLE(kWidth, SUBSAMP_X), dst_v_c,                       \
        SUBSAMPLE(kWidth, SUBSAMP_X), kWidth, NEG kHeight);                   \
    MaskCpuFlags(benchmark_cpu_info_);                                        \
    for (int i = 0; i < benchmark_iterations_; ++i) {                         \
      SRC_FMT_PLANAR##To##FMT_PLANAR(                                         \
          src_y + OFF, kWidth, src_u + OFF, SUBSAMPLE(kWidth, SRC_SUBSAMP_X), \
          src_v + OFF, SUBSAMPLE(kWidth, SRC_SUBSAMP_X), dst_y_opt, kWidth,   \
          dst_u_opt, SUBSAMPLE(kWidth, SUBSAMP_X), dst_v_opt,                 \
          SUBSAMPLE(kWidth, SUBSAMP_X), kWidth, NEG kHeight);                 \
    }                                                                         \
    int max_diff = 0;                                                         \
    for (int i = 0; i < kHeight; ++i) {                                       \
      for (int j = 0; j < kWidth; ++j) {                                      \
        int abs_diff = abs(static_cast<int>(dst_y_c[i * kWidth + j]) -        \
                           static_cast<int>(dst_y_opt[i * kWidth + j]));      \
        if (abs_diff > max_diff) {                                            \
          max_diff = abs_diff;                                                \
        }                                                                     \
      }                                                                       \
    }                                                                         \
    EXPECT_EQ(0, max_diff);                                                   \
    for (int i = 0; i < SUBSAMPLE(kHeight, SUBSAMP_Y); ++i) {                 \
      for (int j = 0; j < SUBSAMPLE(kWidth, SUBSAMP_X); ++j) {                \
        int abs_diff = abs(                                                   \
            static_cast<int>(dst_u_c[i * SUBSAMPLE(kWidth, SUBSAMP_X) + j]) - \
            static_cast<int>(                                                 \
                dst_u_opt[i * SUBSAMPLE(kWidth, SUBSAMP_X) + j]));            \
        if (abs_diff > max_diff) {                                            \
          max_diff = abs_diff;                                                \
        }                                                                     \
      }                                                                       \
    }                                                                         \
    EXPECT_LE(max_diff, 3);                                                   \
    for (int i = 0; i < SUBSAMPLE(kHeight, SUBSAMP_Y); ++i) {                 \
      for (int j = 0; j < SUBSAMPLE(kWidth, SUBSAMP_X); ++j) {                \
        int abs_diff = abs(                                                   \
            static_cast<int>(dst_v_c[i * SUBSAMPLE(kWidth, SUBSAMP_X) + j]) - \
            static_cast<int>(                                                 \
                dst_v_opt[i * SUBSAMPLE(kWidth, SUBSAMP_X) + j]));            \
        if (abs_diff > max_diff) {                                            \
          max_diff = abs_diff;                                                \
        }                                                                     \
      }                                                                       \
    }                                                                         \
    EXPECT_LE(max_diff, 3);                                                   \
    free_aligned_buffer_page_end(dst_y_c);                                    \
    free_aligned_buffer_page_end(dst_u_c);                                    \
    free_aligned_buffer_page_end(dst_v_c);                                    \
    free_aligned_buffer_page_end(dst_y_opt);                                  \
    free_aligned_buffer_page_end(dst_u_opt);                                  \
    free_aligned_buffer_page_end(dst_v_opt);                                  \
    free_aligned_buffer_page_end(src_y);                                      \
    free_aligned_buffer_page_end(src_u);                                      \
    free_aligned_buffer_page_end(src_v);                                      \
  }

#define TESTPLANARTOP(SRC_FMT_PLANAR, SRC_SUBSAMP_X, SRC_SUBSAMP_Y,        \
                      FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y)                    \
  TESTPLANARTOPI(SRC_FMT_PLANAR, SRC_SUBSAMP_X, SRC_SUBSAMP_Y, FMT_PLANAR, \
                 SUBSAMP_X, SUBSAMP_Y, benchmark_width_ - 4, _Any, +, 0)   \
  TESTPLANARTOPI(SRC_FMT_PLANAR, SRC_SUBSAMP_X, SRC_SUBSAMP_Y, FMT_PLANAR, \
                 SUBSAMP_X, SUBSAMP_Y, benchmark_width_, _Unaligned, +, 1) \
  TESTPLANARTOPI(SRC_FMT_PLANAR, SRC_SUBSAMP_X, SRC_SUBSAMP_Y, FMT_PLANAR, \
                 SUBSAMP_X, SUBSAMP_Y, benchmark_width_, _Invert, -, 0)    \
  TESTPLANARTOPI(SRC_FMT_PLANAR, SRC_SUBSAMP_X, SRC_SUBSAMP_Y, FMT_PLANAR, \
                 SUBSAMP_X, SUBSAMP_Y, benchmark_width_, _Opt, +, 0)

TESTPLANARTOP(I420, 2, 2, I420, 2, 2)
TESTPLANARTOP(I422, 2, 1, I420, 2, 2)
TESTPLANARTOP(I444, 1, 1, I420, 2, 2)
TESTPLANARTOP(I420, 2, 2, I422, 2, 1)
TESTPLANARTOP(I420, 2, 2, I444, 1, 1)
TESTPLANARTOP(I420, 2, 2, I420Mirror, 2, 2)
TESTPLANARTOP(I422, 2, 1, I422, 2, 1)
TESTPLANARTOP(I444, 1, 1, I444, 1, 1)

// Test Android 420 to I420
#define TESTAPLANARTOPI(SRC_FMT_PLANAR, PIXEL_STRIDE, SRC_SUBSAMP_X,          \
                        SRC_SUBSAMP_Y, FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y,      \
                        W1280, N, NEG, OFF, PN, OFF_U, OFF_V)                 \
  TEST_F(LibYUVConvertTest, SRC_FMT_PLANAR##To##FMT_PLANAR##_##PN##N) {       \
    const int kWidth = ((W1280) > 0) ? (W1280) : 1;                           \
    const int kHeight = benchmark_height_;                                    \
    const int kSizeUV =                                                       \
        SUBSAMPLE(kWidth, SRC_SUBSAMP_X) * SUBSAMPLE(kHeight, SRC_SUBSAMP_Y); \
    align_buffer_page_end(src_y, kWidth* kHeight + OFF);                      \
    align_buffer_page_end(src_uv,                                             \
                          kSizeUV*((PIXEL_STRIDE == 3) ? 3 : 2) + OFF);       \
    align_buffer_page_end(dst_y_c, kWidth* kHeight);                          \
    align_buffer_page_end(dst_u_c, SUBSAMPLE(kWidth, SUBSAMP_X) *             \
                                       SUBSAMPLE(kHeight, SUBSAMP_Y));        \
    align_buffer_page_end(dst_v_c, SUBSAMPLE(kWidth, SUBSAMP_X) *             \
                                       SUBSAMPLE(kHeight, SUBSAMP_Y));        \
    align_buffer_page_end(dst_y_opt, kWidth* kHeight);                        \
    align_buffer_page_end(dst_u_opt, SUBSAMPLE(kWidth, SUBSAMP_X) *           \
                                         SUBSAMPLE(kHeight, SUBSAMP_Y));      \
    align_buffer_page_end(dst_v_opt, SUBSAMPLE(kWidth, SUBSAMP_X) *           \
                                         SUBSAMPLE(kHeight, SUBSAMP_Y));      \
    uint8* src_u = src_uv + OFF_U;                                            \
    uint8* src_v = src_uv + (PIXEL_STRIDE == 1 ? kSizeUV : OFF_V);            \
    int src_stride_uv = SUBSAMPLE(kWidth, SUBSAMP_X) * PIXEL_STRIDE;          \
    for (int i = 0; i < kHeight; ++i)                                         \
      for (int j = 0; j < kWidth; ++j)                                        \
        src_y[i * kWidth + j + OFF] = (fastrand() & 0xff);                    \
    for (int i = 0; i < SUBSAMPLE(kHeight, SRC_SUBSAMP_Y); ++i) {             \
      for (int j = 0; j < SUBSAMPLE(kWidth, SRC_SUBSAMP_X); ++j) {            \
        src_u[(i * src_stride_uv) + j * PIXEL_STRIDE + OFF] =                 \
            (fastrand() & 0xff);                                              \
        src_v[(i * src_stride_uv) + j * PIXEL_STRIDE + OFF] =                 \
            (fastrand() & 0xff);                                              \
      }                                                                       \
    }                                                                         \
    memset(dst_y_c, 1, kWidth* kHeight);                                      \
    memset(dst_u_c, 2,                                                        \
           SUBSAMPLE(kWidth, SUBSAMP_X) * SUBSAMPLE(kHeight, SUBSAMP_Y));     \
    memset(dst_v_c, 3,                                                        \
           SUBSAMPLE(kWidth, SUBSAMP_X) * SUBSAMPLE(kHeight, SUBSAMP_Y));     \
    memset(dst_y_opt, 101, kWidth* kHeight);                                  \
    memset(dst_u_opt, 102,                                                    \
           SUBSAMPLE(kWidth, SUBSAMP_X) * SUBSAMPLE(kHeight, SUBSAMP_Y));     \
    memset(dst_v_opt, 103,                                                    \
           SUBSAMPLE(kWidth, SUBSAMP_X) * SUBSAMPLE(kHeight, SUBSAMP_Y));     \
    MaskCpuFlags(disable_cpu_flags_);                                         \
    SRC_FMT_PLANAR##To##FMT_PLANAR(                                           \
        src_y + OFF, kWidth, src_u + OFF, SUBSAMPLE(kWidth, SRC_SUBSAMP_X),   \
        src_v + OFF, SUBSAMPLE(kWidth, SRC_SUBSAMP_X), PIXEL_STRIDE, dst_y_c, \
        kWidth, dst_u_c, SUBSAMPLE(kWidth, SUBSAMP_X), dst_v_c,               \
        SUBSAMPLE(kWidth, SUBSAMP_X), kWidth, NEG kHeight);                   \
    MaskCpuFlags(benchmark_cpu_info_);                                        \
    for (int i = 0; i < benchmark_iterations_; ++i) {                         \
      SRC_FMT_PLANAR##To##FMT_PLANAR(                                         \
          src_y + OFF, kWidth, src_u + OFF, SUBSAMPLE(kWidth, SRC_SUBSAMP_X), \
          src_v + OFF, SUBSAMPLE(kWidth, SRC_SUBSAMP_X), PIXEL_STRIDE,        \
          dst_y_opt, kWidth, dst_u_opt, SUBSAMPLE(kWidth, SUBSAMP_X),         \
          dst_v_opt, SUBSAMPLE(kWidth, SUBSAMP_X), kWidth, NEG kHeight);      \
    }                                                                         \
    int max_diff = 0;                                                         \
    for (int i = 0; i < kHeight; ++i) {                                       \
      for (int j = 0; j < kWidth; ++j) {                                      \
        int abs_diff = abs(static_cast<int>(dst_y_c[i * kWidth + j]) -        \
                           static_cast<int>(dst_y_opt[i * kWidth + j]));      \
        if (abs_diff > max_diff) {                                            \
          max_diff = abs_diff;                                                \
        }                                                                     \
      }                                                                       \
    }                                                                         \
    EXPECT_EQ(0, max_diff);                                                   \
    for (int i = 0; i < SUBSAMPLE(kHeight, SUBSAMP_Y); ++i) {                 \
      for (int j = 0; j < SUBSAMPLE(kWidth, SUBSAMP_X); ++j) {                \
        int abs_diff = abs(                                                   \
            static_cast<int>(dst_u_c[i * SUBSAMPLE(kWidth, SUBSAMP_X) + j]) - \
            static_cast<int>(                                                 \
                dst_u_opt[i * SUBSAMPLE(kWidth, SUBSAMP_X) + j]));            \
        if (abs_diff > max_diff) {                                            \
          max_diff = abs_diff;                                                \
        }                                                                     \
      }                                                                       \
    }                                                                         \
    EXPECT_LE(max_diff, 3);                                                   \
    for (int i = 0; i < SUBSAMPLE(kHeight, SUBSAMP_Y); ++i) {                 \
      for (int j = 0; j < SUBSAMPLE(kWidth, SUBSAMP_X); ++j) {                \
        int abs_diff = abs(                                                   \
            static_cast<int>(dst_v_c[i * SUBSAMPLE(kWidth, SUBSAMP_X) + j]) - \
            static_cast<int>(                                                 \
                dst_v_opt[i * SUBSAMPLE(kWidth, SUBSAMP_X) + j]));            \
        if (abs_diff > max_diff) {                                            \
          max_diff = abs_diff;                                                \
        }                                                                     \
      }                                                                       \
    }                                                                         \
    EXPECT_LE(max_diff, 3);                                                   \
    free_aligned_buffer_page_end(dst_y_c);                                    \
    free_aligned_buffer_page_end(dst_u_c);                                    \
    free_aligned_buffer_page_end(dst_v_c);                                    \
    free_aligned_buffer_page_end(dst_y_opt);                                  \
    free_aligned_buffer_page_end(dst_u_opt);                                  \
    free_aligned_buffer_page_end(dst_v_opt);                                  \
    free_aligned_buffer_page_end(src_y);                                      \
    free_aligned_buffer_page_end(src_uv);                                     \
  }

#define TESTAPLANARTOP(SRC_FMT_PLANAR, PN, PIXEL_STRIDE, OFF_U, OFF_V,         \
                       SRC_SUBSAMP_X, SRC_SUBSAMP_Y, FMT_PLANAR, SUBSAMP_X,    \
                       SUBSAMP_Y)                                              \
  TESTAPLANARTOPI(SRC_FMT_PLANAR, PIXEL_STRIDE, SRC_SUBSAMP_X, SRC_SUBSAMP_Y,  \
                  FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, benchmark_width_ - 4,      \
                  _Any, +, 0, PN, OFF_U, OFF_V)                                \
  TESTAPLANARTOPI(SRC_FMT_PLANAR, PIXEL_STRIDE, SRC_SUBSAMP_X, SRC_SUBSAMP_Y,  \
                  FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, benchmark_width_,          \
                  _Unaligned, +, 1, PN, OFF_U, OFF_V)                          \
  TESTAPLANARTOPI(SRC_FMT_PLANAR, PIXEL_STRIDE, SRC_SUBSAMP_X, SRC_SUBSAMP_Y,  \
                  FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, benchmark_width_, _Invert, \
                  -, 0, PN, OFF_U, OFF_V)                                      \
  TESTAPLANARTOPI(SRC_FMT_PLANAR, PIXEL_STRIDE, SRC_SUBSAMP_X, SRC_SUBSAMP_Y,  \
                  FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, benchmark_width_, _Opt, +, \
                  0, PN, OFF_U, OFF_V)

TESTAPLANARTOP(Android420, I420, 1, 0, 0, 2, 2, I420, 2, 2)
TESTAPLANARTOP(Android420, NV12, 2, 0, 1, 2, 2, I420, 2, 2)
TESTAPLANARTOP(Android420, NV21, 2, 1, 0, 2, 2, I420, 2, 2)

#define TESTPLANARTOBPI(SRC_FMT_PLANAR, SRC_SUBSAMP_X, SRC_SUBSAMP_Y,         \
                        FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, W1280, N, NEG, OFF) \
  TEST_F(LibYUVConvertTest, SRC_FMT_PLANAR##To##FMT_PLANAR##N) {              \
    const int kWidth = ((W1280) > 0) ? (W1280) : 1;                           \
    const int kHeight = benchmark_height_;                                    \
    align_buffer_page_end(src_y, kWidth* kHeight + OFF);                      \
    align_buffer_page_end(src_u, SUBSAMPLE(kWidth, SRC_SUBSAMP_X) *           \
                                         SUBSAMPLE(kHeight, SRC_SUBSAMP_Y) +  \
                                     OFF);                                    \
    align_buffer_page_end(src_v, SUBSAMPLE(kWidth, SRC_SUBSAMP_X) *           \
                                         SUBSAMPLE(kHeight, SRC_SUBSAMP_Y) +  \
                                     OFF);                                    \
    align_buffer_page_end(dst_y_c, kWidth* kHeight);                          \
    align_buffer_page_end(dst_uv_c, SUBSAMPLE(kWidth * 2, SUBSAMP_X) *        \
                                        SUBSAMPLE(kHeight, SUBSAMP_Y));       \
    align_buffer_page_end(dst_y_opt, kWidth* kHeight);                        \
    align_buffer_page_end(dst_uv_opt, SUBSAMPLE(kWidth * 2, SUBSAMP_X) *      \
                                          SUBSAMPLE(kHeight, SUBSAMP_Y));     \
    for (int i = 0; i < kHeight; ++i)                                         \
      for (int j = 0; j < kWidth; ++j)                                        \
        src_y[i * kWidth + j + OFF] = (fastrand() & 0xff);                    \
    for (int i = 0; i < SUBSAMPLE(kHeight, SRC_SUBSAMP_Y); ++i) {             \
      for (int j = 0; j < SUBSAMPLE(kWidth, SRC_SUBSAMP_X); ++j) {            \
        src_u[(i * SUBSAMPLE(kWidth, SRC_SUBSAMP_X)) + j + OFF] =             \
            (fastrand() & 0xff);                                              \
        src_v[(i * SUBSAMPLE(kWidth, SRC_SUBSAMP_X)) + j + OFF] =             \
            (fastrand() & 0xff);                                              \
      }                                                                       \
    }                                                                         \
    memset(dst_y_c, 1, kWidth* kHeight);                                      \
    memset(dst_uv_c, 2,                                                       \
           SUBSAMPLE(kWidth * 2, SUBSAMP_X) * SUBSAMPLE(kHeight, SUBSAMP_Y)); \
    memset(dst_y_opt, 101, kWidth* kHeight);                                  \
    memset(dst_uv_opt, 102,                                                   \
           SUBSAMPLE(kWidth * 2, SUBSAMP_X) * SUBSAMPLE(kHeight, SUBSAMP_Y)); \
    MaskCpuFlags(disable_cpu_flags_);                                         \
    SRC_FMT_PLANAR##To##FMT_PLANAR(                                           \
        src_y + OFF, kWidth, src_u + OFF, SUBSAMPLE(kWidth, SRC_SUBSAMP_X),   \
        src_v + OFF, SUBSAMPLE(kWidth, SRC_SUBSAMP_X), dst_y_c, kWidth,       \
        dst_uv_c, SUBSAMPLE(kWidth * 2, SUBSAMP_X), kWidth, NEG kHeight);     \
    MaskCpuFlags(benchmark_cpu_info_);                                        \
    for (int i = 0; i < benchmark_iterations_; ++i) {                         \
      SRC_FMT_PLANAR##To##FMT_PLANAR(                                         \
          src_y + OFF, kWidth, src_u + OFF, SUBSAMPLE(kWidth, SRC_SUBSAMP_X), \
          src_v + OFF, SUBSAMPLE(kWidth, SRC_SUBSAMP_X), dst_y_opt, kWidth,   \
          dst_uv_opt, SUBSAMPLE(kWidth * 2, SUBSAMP_X), kWidth, NEG kHeight); \
    }                                                                         \
    int max_diff = 0;                                                         \
    for (int i = 0; i < kHeight; ++i) {                                       \
      for (int j = 0; j < kWidth; ++j) {                                      \
        int abs_diff = abs(static_cast<int>(dst_y_c[i * kWidth + j]) -        \
                           static_cast<int>(dst_y_opt[i * kWidth + j]));      \
        if (abs_diff > max_diff) {                                            \
          max_diff = abs_diff;                                                \
        }                                                                     \
      }                                                                       \
    }                                                                         \
    EXPECT_LE(max_diff, 1);                                                   \
    for (int i = 0; i < SUBSAMPLE(kHeight, SUBSAMP_Y); ++i) {                 \
      for (int j = 0; j < SUBSAMPLE(kWidth * 2, SUBSAMP_X); ++j) {            \
        int abs_diff =                                                        \
            abs(static_cast<int>(                                             \
                    dst_uv_c[i * SUBSAMPLE(kWidth * 2, SUBSAMP_X) + j]) -     \
                static_cast<int>(                                             \
                    dst_uv_opt[i * SUBSAMPLE(kWidth * 2, SUBSAMP_X) + j]));   \
        if (abs_diff > max_diff) {                                            \
          max_diff = abs_diff;                                                \
        }                                                                     \
      }                                                                       \
    }                                                                         \
    EXPECT_LE(max_diff, 1);                                                   \
    free_aligned_buffer_page_end(dst_y_c);                                    \
    free_aligned_buffer_page_end(dst_uv_c);                                   \
    free_aligned_buffer_page_end(dst_y_opt);                                  \
    free_aligned_buffer_page_end(dst_uv_opt);                                 \
    free_aligned_buffer_page_end(src_y);                                      \
    free_aligned_buffer_page_end(src_u);                                      \
    free_aligned_buffer_page_end(src_v);                                      \
  }

#define TESTPLANARTOBP(SRC_FMT_PLANAR, SRC_SUBSAMP_X, SRC_SUBSAMP_Y,        \
                       FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y)                    \
  TESTPLANARTOBPI(SRC_FMT_PLANAR, SRC_SUBSAMP_X, SRC_SUBSAMP_Y, FMT_PLANAR, \
                  SUBSAMP_X, SUBSAMP_Y, benchmark_width_ - 4, _Any, +, 0)   \
  TESTPLANARTOBPI(SRC_FMT_PLANAR, SRC_SUBSAMP_X, SRC_SUBSAMP_Y, FMT_PLANAR, \
                  SUBSAMP_X, SUBSAMP_Y, benchmark_width_, _Unaligned, +, 1) \
  TESTPLANARTOBPI(SRC_FMT_PLANAR, SRC_SUBSAMP_X, SRC_SUBSAMP_Y, FMT_PLANAR, \
                  SUBSAMP_X, SUBSAMP_Y, benchmark_width_, _Invert, -, 0)    \
  TESTPLANARTOBPI(SRC_FMT_PLANAR, SRC_SUBSAMP_X, SRC_SUBSAMP_Y, FMT_PLANAR, \
                  SUBSAMP_X, SUBSAMP_Y, benchmark_width_, _Opt, +, 0)

TESTPLANARTOBP(I420, 2, 2, NV12, 2, 2)
TESTPLANARTOBP(I420, 2, 2, NV21, 2, 2)

#define TESTBIPLANARTOPI(SRC_FMT_PLANAR, SRC_SUBSAMP_X, SRC_SUBSAMP_Y,         \
                         FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, W1280, N, NEG, OFF, \
                         DOY)                                                  \
  TEST_F(LibYUVConvertTest, SRC_FMT_PLANAR##To##FMT_PLANAR##N) {               \
    const int kWidth = ((W1280) > 0) ? (W1280) : 1;                            \
    const int kHeight = benchmark_height_;                                     \
    align_buffer_page_end(src_y, kWidth* kHeight + OFF);                       \
    align_buffer_page_end(src_uv, 2 * SUBSAMPLE(kWidth, SRC_SUBSAMP_X) *       \
                                          SUBSAMPLE(kHeight, SRC_SUBSAMP_Y) +  \
                                      OFF);                                    \
    align_buffer_page_end(dst_y_c, kWidth* kHeight);                           \
    align_buffer_page_end(dst_u_c, SUBSAMPLE(kWidth, SUBSAMP_X) *              \
                                       SUBSAMPLE(kHeight, SUBSAMP_Y));         \
    align_buffer_page_end(dst_v_c, SUBSAMPLE(kWidth, SUBSAMP_X) *              \
                                       SUBSAMPLE(kHeight, SUBSAMP_Y));         \
    align_buffer_page_end(dst_y_opt, kWidth* kHeight);                         \
    align_buffer_page_end(dst_u_opt, SUBSAMPLE(kWidth, SUBSAMP_X) *            \
                                         SUBSAMPLE(kHeight, SUBSAMP_Y));       \
    align_buffer_page_end(dst_v_opt, SUBSAMPLE(kWidth, SUBSAMP_X) *            \
                                         SUBSAMPLE(kHeight, SUBSAMP_Y));       \
    for (int i = 0; i < kHeight; ++i)                                          \
      for (int j = 0; j < kWidth; ++j)                                         \
        src_y[i * kWidth + j + OFF] = (fastrand() & 0xff);                     \
    for (int i = 0; i < SUBSAMPLE(kHeight, SRC_SUBSAMP_Y); ++i) {              \
      for (int j = 0; j < 2 * SUBSAMPLE(kWidth, SRC_SUBSAMP_X); ++j) {         \
        src_uv[(i * 2 * SUBSAMPLE(kWidth, SRC_SUBSAMP_X)) + j + OFF] =         \
            (fastrand() & 0xff);                                               \
      }                                                                        \
    }                                                                          \
    memset(dst_y_c, 1, kWidth* kHeight);                                       \
    memset(dst_u_c, 2,                                                         \
           SUBSAMPLE(kWidth, SUBSAMP_X) * SUBSAMPLE(kHeight, SUBSAMP_Y));      \
    memset(dst_v_c, 3,                                                         \
           SUBSAMPLE(kWidth, SUBSAMP_X) * SUBSAMPLE(kHeight, SUBSAMP_Y));      \
    memset(dst_y_opt, 101, kWidth* kHeight);                                   \
    memset(dst_u_opt, 102,                                                     \
           SUBSAMPLE(kWidth, SUBSAMP_X) * SUBSAMPLE(kHeight, SUBSAMP_Y));      \
    memset(dst_v_opt, 103,                                                     \
           SUBSAMPLE(kWidth, SUBSAMP_X) * SUBSAMPLE(kHeight, SUBSAMP_Y));      \
    MaskCpuFlags(disable_cpu_flags_);                                          \
    SRC_FMT_PLANAR##To##FMT_PLANAR(                                            \
        src_y + OFF, kWidth, src_uv + OFF,                                     \
        2 * SUBSAMPLE(kWidth, SRC_SUBSAMP_X), DOY ? dst_y_c : NULL, kWidth,    \
        dst_u_c, SUBSAMPLE(kWidth, SUBSAMP_X), dst_v_c,                        \
        SUBSAMPLE(kWidth, SUBSAMP_X), kWidth, NEG kHeight);                    \
    MaskCpuFlags(benchmark_cpu_info_);                                         \
    for (int i = 0; i < benchmark_iterations_; ++i) {                          \
      SRC_FMT_PLANAR##To##FMT_PLANAR(                                          \
          src_y + OFF, kWidth, src_uv + OFF,                                   \
          2 * SUBSAMPLE(kWidth, SRC_SUBSAMP_X), DOY ? dst_y_opt : NULL,        \
          kWidth, dst_u_opt, SUBSAMPLE(kWidth, SUBSAMP_X), dst_v_opt,          \
          SUBSAMPLE(kWidth, SUBSAMP_X), kWidth, NEG kHeight);                  \
    }                                                                          \
    int max_diff = 0;                                                          \
    if (DOY) {                                                                 \
      for (int i = 0; i < kHeight; ++i) {                                      \
        for (int j = 0; j < kWidth; ++j) {                                     \
          int abs_diff = abs(static_cast<int>(dst_y_c[i * kWidth + j]) -       \
                             static_cast<int>(dst_y_opt[i * kWidth + j]));     \
          if (abs_diff > max_diff) {                                           \
            max_diff = abs_diff;                                               \
          }                                                                    \
        }                                                                      \
      }                                                                        \
      EXPECT_LE(max_diff, 1);                                                  \
    }                                                                          \
    for (int i = 0; i < SUBSAMPLE(kHeight, SUBSAMP_Y); ++i) {                  \
      for (int j = 0; j < SUBSAMPLE(kWidth, SUBSAMP_X); ++j) {                 \
        int abs_diff = abs(                                                    \
            static_cast<int>(dst_u_c[i * SUBSAMPLE(kWidth, SUBSAMP_X) + j]) -  \
            static_cast<int>(                                                  \
                dst_u_opt[i * SUBSAMPLE(kWidth, SUBSAMP_X) + j]));             \
        if (abs_diff > max_diff) {                                             \
          max_diff = abs_diff;                                                 \
        }                                                                      \
      }                                                                        \
    }                                                                          \
    EXPECT_LE(max_diff, 1);                                                    \
    for (int i = 0; i < SUBSAMPLE(kHeight, SUBSAMP_Y); ++i) {                  \
      for (int j = 0; j < SUBSAMPLE(kWidth, SUBSAMP_X); ++j) {                 \
        int abs_diff = abs(                                                    \
            static_cast<int>(dst_v_c[i * SUBSAMPLE(kWidth, SUBSAMP_X) + j]) -  \
            static_cast<int>(                                                  \
                dst_v_opt[i * SUBSAMPLE(kWidth, SUBSAMP_X) + j]));             \
        if (abs_diff > max_diff) {                                             \
          max_diff = abs_diff;                                                 \
        }                                                                      \
      }                                                                        \
    }                                                                          \
    EXPECT_LE(max_diff, 1);                                                    \
    free_aligned_buffer_page_end(dst_y_c);                                     \
    free_aligned_buffer_page_end(dst_u_c);                                     \
    free_aligned_buffer_page_end(dst_v_c);                                     \
    free_aligned_buffer_page_end(dst_y_opt);                                   \
    free_aligned_buffer_page_end(dst_u_opt);                                   \
    free_aligned_buffer_page_end(dst_v_opt);                                   \
    free_aligned_buffer_page_end(src_y);                                       \
    free_aligned_buffer_page_end(src_uv);                                      \
  }

#define TESTBIPLANARTOP(SRC_FMT_PLANAR, SRC_SUBSAMP_X, SRC_SUBSAMP_Y,         \
                        FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y)                     \
  TESTBIPLANARTOPI(SRC_FMT_PLANAR, SRC_SUBSAMP_X, SRC_SUBSAMP_Y, FMT_PLANAR,  \
                   SUBSAMP_X, SUBSAMP_Y, benchmark_width_ - 4, _Any, +, 0, 1) \
  TESTBIPLANARTOPI(SRC_FMT_PLANAR, SRC_SUBSAMP_X, SRC_SUBSAMP_Y, FMT_PLANAR,  \
                   SUBSAMP_X, SUBSAMP_Y, benchmark_width_, _Unaligned, +, 1,  \
                   1)                                                         \
  TESTBIPLANARTOPI(SRC_FMT_PLANAR, SRC_SUBSAMP_X, SRC_SUBSAMP_Y, FMT_PLANAR,  \
                   SUBSAMP_X, SUBSAMP_Y, benchmark_width_, _Invert, -, 0, 1)  \
  TESTBIPLANARTOPI(SRC_FMT_PLANAR, SRC_SUBSAMP_X, SRC_SUBSAMP_Y, FMT_PLANAR,  \
                   SUBSAMP_X, SUBSAMP_Y, benchmark_width_, _Opt, +, 0, 1)     \
  TESTBIPLANARTOPI(SRC_FMT_PLANAR, SRC_SUBSAMP_X, SRC_SUBSAMP_Y, FMT_PLANAR,  \
                   SUBSAMP_X, SUBSAMP_Y, benchmark_width_, _NullY, +, 0, 0)

TESTBIPLANARTOP(NV12, 2, 2, I420, 2, 2)
TESTBIPLANARTOP(NV21, 2, 2, I420, 2, 2)

#define ALIGNINT(V, ALIGN) (((V) + (ALIGN)-1) / (ALIGN) * (ALIGN))

#define TESTPLANARTOBI(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, BPP_B, ALIGN,  \
                       YALIGN, W1280, DIFF, N, NEG, OFF, FMT_C, BPP_C)         \
  TEST_F(LibYUVConvertTest, FMT_PLANAR##To##FMT_B##N) {                        \
    const int kWidth = ((W1280) > 0) ? (W1280) : 1;                            \
    const int kHeight = ALIGNINT(benchmark_height_, YALIGN);                   \
    const int kStrideB = ALIGNINT(kWidth * BPP_B, ALIGN);                      \
    const int kStrideUV = SUBSAMPLE(kWidth, SUBSAMP_X);                        \
    const int kSizeUV = kStrideUV * SUBSAMPLE(kHeight, SUBSAMP_Y);             \
    align_buffer_page_end(src_y, kWidth* kHeight + OFF);                       \
    align_buffer_page_end(src_u, kSizeUV + OFF);                               \
    align_buffer_page_end(src_v, kSizeUV + OFF);                               \
    align_buffer_page_end(dst_argb_c, kStrideB* kHeight + OFF);                \
    align_buffer_page_end(dst_argb_opt, kStrideB* kHeight + OFF);              \
    for (int i = 0; i < kWidth * kHeight; ++i) {                               \
      src_y[i + OFF] = (fastrand() & 0xff);                                    \
    }                                                                          \
    for (int i = 0; i < kSizeUV; ++i) {                                        \
      src_u[i + OFF] = (fastrand() & 0xff);                                    \
      src_v[i + OFF] = (fastrand() & 0xff);                                    \
    }                                                                          \
    memset(dst_argb_c + OFF, 1, kStrideB * kHeight);                           \
    memset(dst_argb_opt + OFF, 101, kStrideB * kHeight);                       \
    MaskCpuFlags(disable_cpu_flags_);                                          \
    FMT_PLANAR##To##FMT_B(src_y + OFF, kWidth, src_u + OFF, kStrideUV,         \
                          src_v + OFF, kStrideUV, dst_argb_c + OFF, kStrideB,  \
                          kWidth, NEG kHeight);                                \
    MaskCpuFlags(benchmark_cpu_info_);                                         \
    for (int i = 0; i < benchmark_iterations_; ++i) {                          \
      FMT_PLANAR##To##FMT_B(src_y + OFF, kWidth, src_u + OFF, kStrideUV,       \
                            src_v + OFF, kStrideUV, dst_argb_opt + OFF,        \
                            kStrideB, kWidth, NEG kHeight);                    \
    }                                                                          \
    int max_diff = 0;                                                          \
    /* Convert to ARGB so 565 is expanded to bytes that can be compared. */    \
    align_buffer_page_end(dst_argb32_c, kWidth* BPP_C* kHeight);               \
    align_buffer_page_end(dst_argb32_opt, kWidth* BPP_C* kHeight);             \
    memset(dst_argb32_c, 2, kWidth* BPP_C* kHeight);                           \
    memset(dst_argb32_opt, 102, kWidth* BPP_C* kHeight);                       \
    FMT_B##To##FMT_C(dst_argb_c + OFF, kStrideB, dst_argb32_c, kWidth * BPP_C, \
                     kWidth, kHeight);                                         \
    FMT_B##To##FMT_C(dst_argb_opt + OFF, kStrideB, dst_argb32_opt,             \
                     kWidth * BPP_C, kWidth, kHeight);                         \
    for (int i = 0; i < kWidth * BPP_C * kHeight; ++i) {                       \
      int abs_diff = abs(static_cast<int>(dst_argb32_c[i]) -                   \
                         static_cast<int>(dst_argb32_opt[i]));                 \
      if (abs_diff > max_diff) {                                               \
        max_diff = abs_diff;                                                   \
      }                                                                        \
    }                                                                          \
    EXPECT_LE(max_diff, DIFF);                                                 \
    free_aligned_buffer_page_end(src_y);                                       \
    free_aligned_buffer_page_end(src_u);                                       \
    free_aligned_buffer_page_end(src_v);                                       \
    free_aligned_buffer_page_end(dst_argb_c);                                  \
    free_aligned_buffer_page_end(dst_argb_opt);                                \
    free_aligned_buffer_page_end(dst_argb32_c);                                \
    free_aligned_buffer_page_end(dst_argb32_opt);                              \
  }

#define TESTPLANARTOB(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, BPP_B, ALIGN,   \
                      YALIGN, DIFF, FMT_C, BPP_C)                              \
  TESTPLANARTOBI(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, BPP_B, ALIGN,        \
                 YALIGN, benchmark_width_ - 4, DIFF, _Any, +, 0, FMT_C, BPP_C) \
  TESTPLANARTOBI(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, BPP_B, ALIGN,        \
                 YALIGN, benchmark_width_, DIFF, _Unaligned, +, 1, FMT_C,      \
                 BPP_C)                                                        \
  TESTPLANARTOBI(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, BPP_B, ALIGN,        \
                 YALIGN, benchmark_width_, DIFF, _Invert, -, 0, FMT_C, BPP_C)  \
  TESTPLANARTOBI(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, BPP_B, ALIGN,        \
                 YALIGN, benchmark_width_, DIFF, _Opt, +, 0, FMT_C, BPP_C)

TESTPLANARTOB(I420, 2, 2, ARGB, 4, 4, 1, 2, ARGB, 4)
TESTPLANARTOB(J420, 2, 2, ARGB, 4, 4, 1, 2, ARGB, 4)
TESTPLANARTOB(J420, 2, 2, ABGR, 4, 4, 1, 2, ARGB, 4)
TESTPLANARTOB(H420, 2, 2, ARGB, 4, 4, 1, 2, ARGB, 4)
TESTPLANARTOB(H420, 2, 2, ABGR, 4, 4, 1, 2, ARGB, 4)
TESTPLANARTOB(I420, 2, 2, BGRA, 4, 4, 1, 2, ARGB, 4)
TESTPLANARTOB(I420, 2, 2, ABGR, 4, 4, 1, 2, ARGB, 4)
TESTPLANARTOB(I420, 2, 2, RGBA, 4, 4, 1, 2, ARGB, 4)
TESTPLANARTOB(I420, 2, 2, RAW, 3, 3, 1, 2, ARGB, 4)
TESTPLANARTOB(I420, 2, 2, RGB24, 3, 3, 1, 2, ARGB, 4)
TESTPLANARTOB(I420, 2, 2, RGB565, 2, 2, 1, 9, ARGB, 4)
TESTPLANARTOB(I420, 2, 2, ARGB1555, 2, 2, 1, 9, ARGB, 4)
TESTPLANARTOB(I420, 2, 2, ARGB4444, 2, 2, 1, 17, ARGB, 4)
TESTPLANARTOB(I422, 2, 1, ARGB, 4, 4, 1, 2, ARGB, 4)
TESTPLANARTOB(I422, 2, 1, RGB565, 2, 2, 1, 9, ARGB, 4)
TESTPLANARTOB(J422, 2, 1, ARGB, 4, 4, 1, 2, ARGB, 4)
TESTPLANARTOB(J422, 2, 1, ABGR, 4, 4, 1, 2, ARGB, 4)
TESTPLANARTOB(H422, 2, 1, ARGB, 4, 4, 1, 2, ARGB, 4)
TESTPLANARTOB(H422, 2, 1, ABGR, 4, 4, 1, 2, ARGB, 4)
TESTPLANARTOB(I422, 2, 1, BGRA, 4, 4, 1, 2, ARGB, 4)
TESTPLANARTOB(I422, 2, 1, ABGR, 4, 4, 1, 2, ARGB, 4)
TESTPLANARTOB(I422, 2, 1, RGBA, 4, 4, 1, 2, ARGB, 4)
TESTPLANARTOB(I444, 1, 1, ARGB, 4, 4, 1, 2, ARGB, 4)
TESTPLANARTOB(J444, 1, 1, ARGB, 4, 4, 1, 2, ARGB, 4)
TESTPLANARTOB(I444, 1, 1, ABGR, 4, 4, 1, 2, ARGB, 4)
TESTPLANARTOB(I420, 2, 2, YUY2, 2, 4, 1, 1, ARGB, 4)
TESTPLANARTOB(I420, 2, 2, UYVY, 2, 4, 1, 1, ARGB, 4)
TESTPLANARTOB(I422, 2, 1, YUY2, 2, 4, 1, 0, ARGB, 4)
TESTPLANARTOB(I422, 2, 1, UYVY, 2, 4, 1, 0, ARGB, 4)
TESTPLANARTOB(I420, 2, 2, I400, 1, 1, 1, 0, ARGB, 4)
TESTPLANARTOB(J420, 2, 2, J400, 1, 1, 1, 0, ARGB, 4)

#define TESTQPLANARTOBI(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, BPP_B, ALIGN, \
                        YALIGN, W1280, DIFF, N, NEG, OFF, ATTEN)               \
  TEST_F(LibYUVConvertTest, FMT_PLANAR##To##FMT_B##N) {                        \
    const int kWidth = ((W1280) > 0) ? (W1280) : 1;                            \
    const int kHeight = ALIGNINT(benchmark_height_, YALIGN);                   \
    const int kStrideB = ALIGNINT(kWidth * BPP_B, ALIGN);                      \
    const int kStrideUV = SUBSAMPLE(kWidth, SUBSAMP_X);                        \
    const int kSizeUV = kStrideUV * SUBSAMPLE(kHeight, SUBSAMP_Y);             \
    align_buffer_page_end(src_y, kWidth* kHeight + OFF);                       \
    align_buffer_page_end(src_u, kSizeUV + OFF);                               \
    align_buffer_page_end(src_v, kSizeUV + OFF);                               \
    align_buffer_page_end(src_a, kWidth* kHeight + OFF);                       \
    align_buffer_page_end(dst_argb_c, kStrideB* kHeight + OFF);                \
    align_buffer_page_end(dst_argb_opt, kStrideB* kHeight + OFF);              \
    for (int i = 0; i < kWidth * kHeight; ++i) {                               \
      src_y[i + OFF] = (fastrand() & 0xff);                                    \
      src_a[i + OFF] = (fastrand() & 0xff);                                    \
    }                                                                          \
    for (int i = 0; i < kSizeUV; ++i) {                                        \
      src_u[i + OFF] = (fastrand() & 0xff);                                    \
      src_v[i + OFF] = (fastrand() & 0xff);                                    \
    }                                                                          \
    memset(dst_argb_c + OFF, 1, kStrideB * kHeight);                           \
    memset(dst_argb_opt + OFF, 101, kStrideB * kHeight);                       \
    MaskCpuFlags(disable_cpu_flags_);                                          \
    FMT_PLANAR##To##FMT_B(src_y + OFF, kWidth, src_u + OFF, kStrideUV,         \
                          src_v + OFF, kStrideUV, src_a + OFF, kWidth,         \
                          dst_argb_c + OFF, kStrideB, kWidth, NEG kHeight,     \
                          ATTEN);                                              \
    MaskCpuFlags(benchmark_cpu_info_);                                         \
    for (int i = 0; i < benchmark_iterations_; ++i) {                          \
      FMT_PLANAR##To##FMT_B(src_y + OFF, kWidth, src_u + OFF, kStrideUV,       \
                            src_v + OFF, kStrideUV, src_a + OFF, kWidth,       \
                            dst_argb_opt + OFF, kStrideB, kWidth, NEG kHeight, \
                            ATTEN);                                            \
    }                                                                          \
    int max_diff = 0;                                                          \
    for (int i = 0; i < kWidth * BPP_B * kHeight; ++i) {                       \
      int abs_diff = abs(static_cast<int>(dst_argb_c[i + OFF]) -               \
                         static_cast<int>(dst_argb_opt[i + OFF]));             \
      if (abs_diff > max_diff) {                                               \
        max_diff = abs_diff;                                                   \
      }                                                                        \
    }                                                                          \
    EXPECT_LE(max_diff, DIFF);                                                 \
    free_aligned_buffer_page_end(src_y);                                       \
    free_aligned_buffer_page_end(src_u);                                       \
    free_aligned_buffer_page_end(src_v);                                       \
    free_aligned_buffer_page_end(src_a);                                       \
    free_aligned_buffer_page_end(dst_argb_c);                                  \
    free_aligned_buffer_page_end(dst_argb_opt);                                \
  }

#define TESTQPLANARTOB(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, BPP_B, ALIGN, \
                       YALIGN, DIFF)                                          \
  TESTQPLANARTOBI(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, BPP_B, ALIGN,      \
                  YALIGN, benchmark_width_ - 4, DIFF, _Any, +, 0, 0)          \
  TESTQPLANARTOBI(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, BPP_B, ALIGN,      \
                  YALIGN, benchmark_width_, DIFF, _Unaligned, +, 1, 0)        \
  TESTQPLANARTOBI(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, BPP_B, ALIGN,      \
                  YALIGN, benchmark_width_, DIFF, _Invert, -, 0, 0)           \
  TESTQPLANARTOBI(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, BPP_B, ALIGN,      \
                  YALIGN, benchmark_width_, DIFF, _Opt, +, 0, 0)              \
  TESTQPLANARTOBI(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, BPP_B, ALIGN,      \
                  YALIGN, benchmark_width_, DIFF, _Premult, +, 0, 1)

TESTQPLANARTOB(I420Alpha, 2, 2, ARGB, 4, 4, 1, 2)
TESTQPLANARTOB(I420Alpha, 2, 2, ABGR, 4, 4, 1, 2)

#define TESTBIPLANARTOBI(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, BPP_B,       \
                         W1280, DIFF, N, NEG, OFF)                             \
  TEST_F(LibYUVConvertTest, FMT_PLANAR##To##FMT_B##N) {                        \
    const int kWidth = ((W1280) > 0) ? (W1280) : 1;                            \
    const int kHeight = benchmark_height_;                                     \
    const int kStrideB = kWidth * BPP_B;                                       \
    const int kStrideUV = SUBSAMPLE(kWidth, SUBSAMP_X);                        \
    align_buffer_page_end(src_y, kWidth* kHeight + OFF);                       \
    align_buffer_page_end(src_uv,                                              \
                          kStrideUV* SUBSAMPLE(kHeight, SUBSAMP_Y) * 2 + OFF); \
    align_buffer_page_end(dst_argb_c, kStrideB* kHeight);                      \
    align_buffer_page_end(dst_argb_opt, kStrideB* kHeight);                    \
    for (int i = 0; i < kHeight; ++i)                                          \
      for (int j = 0; j < kWidth; ++j)                                         \
        src_y[i * kWidth + j + OFF] = (fastrand() & 0xff);                     \
    for (int i = 0; i < SUBSAMPLE(kHeight, SUBSAMP_Y); ++i) {                  \
      for (int j = 0; j < kStrideUV * 2; ++j) {                                \
        src_uv[i * kStrideUV * 2 + j + OFF] = (fastrand() & 0xff);             \
      }                                                                        \
    }                                                                          \
    memset(dst_argb_c, 1, kStrideB* kHeight);                                  \
    memset(dst_argb_opt, 101, kStrideB* kHeight);                              \
    MaskCpuFlags(disable_cpu_flags_);                                          \
    FMT_PLANAR##To##FMT_B(src_y + OFF, kWidth, src_uv + OFF, kStrideUV * 2,    \
                          dst_argb_c, kWidth * BPP_B, kWidth, NEG kHeight);    \
    MaskCpuFlags(benchmark_cpu_info_);                                         \
    for (int i = 0; i < benchmark_iterations_; ++i) {                          \
      FMT_PLANAR##To##FMT_B(src_y + OFF, kWidth, src_uv + OFF, kStrideUV * 2,  \
                            dst_argb_opt, kWidth * BPP_B, kWidth,              \
                            NEG kHeight);                                      \
    }                                                                          \
    /* Convert to ARGB so 565 is expanded to bytes that can be compared. */    \
    align_buffer_page_end(dst_argb32_c, kWidth * 4 * kHeight);                 \
    align_buffer_page_end(dst_argb32_opt, kWidth * 4 * kHeight);               \
    memset(dst_argb32_c, 2, kWidth * 4 * kHeight);                             \
    memset(dst_argb32_opt, 102, kWidth * 4 * kHeight);                         \
    FMT_B##ToARGB(dst_argb_c, kStrideB, dst_argb32_c, kWidth * 4, kWidth,      \
                  kHeight);                                                    \
    FMT_B##ToARGB(dst_argb_opt, kStrideB, dst_argb32_opt, kWidth * 4, kWidth,  \
                  kHeight);                                                    \
    int max_diff = 0;                                                          \
    for (int i = 0; i < kHeight; ++i) {                                        \
      for (int j = 0; j < kWidth * 4; ++j) {                                   \
        int abs_diff =                                                         \
            abs(static_cast<int>(dst_argb32_c[i * kWidth * 4 + j]) -           \
                static_cast<int>(dst_argb32_opt[i * kWidth * 4 + j]));         \
        if (abs_diff > max_diff) {                                             \
          max_diff = abs_diff;                                                 \
        }                                                                      \
      }                                                                        \
    }                                                                          \
    EXPECT_LE(max_diff, DIFF);                                                 \
    free_aligned_buffer_page_end(src_y);                                       \
    free_aligned_buffer_page_end(src_uv);                                      \
    free_aligned_buffer_page_end(dst_argb_c);                                  \
    free_aligned_buffer_page_end(dst_argb_opt);                                \
    free_aligned_buffer_page_end(dst_argb32_c);                                \
    free_aligned_buffer_page_end(dst_argb32_opt);                              \
  }

#define TESTBIPLANARTOB(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, BPP_B, DIFF) \
  TESTBIPLANARTOBI(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, BPP_B,            \
                   benchmark_width_ - 4, DIFF, _Any, +, 0)                    \
  TESTBIPLANARTOBI(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, BPP_B,            \
                   benchmark_width_, DIFF, _Unaligned, +, 1)                  \
  TESTBIPLANARTOBI(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, BPP_B,            \
                   benchmark_width_, DIFF, _Invert, -, 0)                     \
  TESTBIPLANARTOBI(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, BPP_B,            \
                   benchmark_width_, DIFF, _Opt, +, 0)

TESTBIPLANARTOB(NV12, 2, 2, ARGB, 4, 2)
TESTBIPLANARTOB(NV21, 2, 2, ARGB, 4, 2)
TESTBIPLANARTOB(NV12, 2, 2, RGB565, 2, 9)

#ifdef DO_THREE_PLANES
// Do 3 allocations for yuv.  conventional but slower.
#define TESTATOPLANARI(FMT_A, BPP_A, YALIGN, FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, \
                       W1280, DIFF, N, NEG, OFF)                               \
  TEST_F(LibYUVConvertTest, FMT_A##To##FMT_PLANAR##N) {                        \
    const int kWidth = ((W1280) > 0) ? (W1280) : 1;                            \
    const int kHeight = ALIGNINT(benchmark_height_, YALIGN);                   \
    const int kStrideUV = SUBSAMPLE(kWidth, SUBSAMP_X);                        \
    const int kStride = (kStrideUV * SUBSAMP_X * 8 * BPP_A + 7) / 8;           \
    align_buffer_page_end(src_argb, kStride* kHeight + OFF);                   \
    align_buffer_page_end(dst_y_c, kWidth* kHeight);                           \
    align_buffer_page_end(dst_u_c, kStrideUV* SUBSAMPLE(kHeight, SUBSAMP_Y));  \
    align_buffer_page_end(dst_v_c, kStrideUV* SUBSAMPLE(kHeight, SUBSAMP_Y));  \
    align_buffer_page_end(dst_y_opt, kWidth* kHeight);                         \
    align_buffer_page_end(dst_u_opt,                                           \
                          kStrideUV* SUBSAMPLE(kHeight, SUBSAMP_Y));           \
    align_buffer_page_end(dst_v_opt,                                           \
                          kStrideUV* SUBSAMPLE(kHeight, SUBSAMP_Y));           \
    memset(dst_y_c, 1, kWidth* kHeight);                                       \
    memset(dst_u_c, 2, kStrideUV* SUBSAMPLE(kHeight, SUBSAMP_Y));              \
    memset(dst_v_c, 3, kStrideUV* SUBSAMPLE(kHeight, SUBSAMP_Y));              \
    memset(dst_y_opt, 101, kWidth* kHeight);                                   \
    memset(dst_u_opt, 102, kStrideUV* SUBSAMPLE(kHeight, SUBSAMP_Y));          \
    memset(dst_v_opt, 103, kStrideUV* SUBSAMPLE(kHeight, SUBSAMP_Y));          \
    for (int i = 0; i < kHeight; ++i)                                          \
      for (int j = 0; j < kStride; ++j)                                        \
        src_argb[(i * kStride) + j + OFF] = (fastrand() & 0xff);               \
    MaskCpuFlags(disable_cpu_flags_);                                          \
    FMT_A##To##FMT_PLANAR(src_argb + OFF, kStride, dst_y_c, kWidth, dst_u_c,   \
                          kStrideUV, dst_v_c, kStrideUV, kWidth, NEG kHeight); \
    MaskCpuFlags(benchmark_cpu_info_);                                         \
    for (int i = 0; i < benchmark_iterations_; ++i) {                          \
      FMT_A##To##FMT_PLANAR(src_argb + OFF, kStride, dst_y_opt, kWidth,        \
                            dst_u_opt, kStrideUV, dst_v_opt, kStrideUV,        \
                            kWidth, NEG kHeight);                              \
    }                                                                          \
    for (int i = 0; i < kHeight; ++i) {                                        \
      for (int j = 0; j < kWidth; ++j) {                                       \
        EXPECT_NEAR(static_cast<int>(dst_y_c[i * kWidth + j]),                 \
                    static_cast<int>(dst_y_opt[i * kWidth + j]), DIFF);        \
      }                                                                        \
    }                                                                          \
    for (int i = 0; i < SUBSAMPLE(kHeight, SUBSAMP_Y); ++i) {                  \
      for (int j = 0; j < kStrideUV; ++j) {                                    \
        EXPECT_NEAR(static_cast<int>(dst_u_c[i * kStrideUV + j]),              \
                    static_cast<int>(dst_u_opt[i * kStrideUV + j]), DIFF);     \
      }                                                                        \
    }                                                                          \
    for (int i = 0; i < SUBSAMPLE(kHeight, SUBSAMP_Y); ++i) {                  \
      for (int j = 0; j < kStrideUV; ++j) {                                    \
        EXPECT_NEAR(static_cast<int>(dst_v_c[i * kStrideUV + j]),              \
                    static_cast<int>(dst_v_opt[i * kStrideUV + j]), DIFF);     \
      }                                                                        \
    }                                                                          \
    free_aligned_buffer_page_end(dst_y_c);                                     \
    free_aligned_buffer_page_end(dst_u_c);                                     \
    free_aligned_buffer_page_end(dst_v_c);                                     \
    free_aligned_buffer_page_end(dst_y_opt);                                   \
    free_aligned_buffer_page_end(dst_u_opt);                                   \
    free_aligned_buffer_page_end(dst_v_opt);                                   \
    free_aligned_buffer_page_end(src_argb);                                    \
  }
#else
#define TESTATOPLANARI(FMT_A, BPP_A, YALIGN, FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, \
                       W1280, DIFF, N, NEG, OFF)                               \
  TEST_F(LibYUVConvertTest, FMT_A##To##FMT_PLANAR##N) {                        \
    const int kWidth = ((W1280) > 0) ? (W1280) : 1;                            \
    const int kHeight = ALIGNINT(benchmark_height_, YALIGN);                   \
    const int kStrideUV = SUBSAMPLE(kWidth, SUBSAMP_X);                        \
    const int kStride = (kStrideUV * SUBSAMP_X * 8 * BPP_A + 7) / 8;           \
    align_buffer_page_end(src_argb, kStride* kHeight + OFF);                   \
    align_buffer_page_end(dst_y_c, kWidth* kHeight);                           \
    align_buffer_page_end(dst_uv_c,                                            \
                          kStrideUV * 2 * SUBSAMPLE(kHeight, SUBSAMP_Y));      \
    align_buffer_page_end(dst_y_opt, kWidth* kHeight);                         \
    align_buffer_page_end(dst_uv_opt,                                          \
                          kStrideUV * 2 * SUBSAMPLE(kHeight, SUBSAMP_Y));      \
    memset(dst_y_c, 1, kWidth* kHeight);                                       \
    memset(dst_uv_c, 2, kStrideUV * 2 * SUBSAMPLE(kHeight, SUBSAMP_Y));        \
    memset(dst_y_opt, 101, kWidth* kHeight);                                   \
    memset(dst_uv_opt, 102, kStrideUV * 2 * SUBSAMPLE(kHeight, SUBSAMP_Y));    \
    for (int i = 0; i < kHeight; ++i)                                          \
      for (int j = 0; j < kStride; ++j)                                        \
        src_argb[(i * kStride) + j + OFF] = (fastrand() & 0xff);               \
    MaskCpuFlags(disable_cpu_flags_);                                          \
    FMT_A##To##FMT_PLANAR(src_argb + OFF, kStride, dst_y_c, kWidth, dst_uv_c,  \
                          kStrideUV * 2, dst_uv_c + kStrideUV, kStrideUV * 2,  \
                          kWidth, NEG kHeight);                                \
    MaskCpuFlags(benchmark_cpu_info_);                                         \
    for (int i = 0; i < benchmark_iterations_; ++i) {                          \
      FMT_A##To##FMT_PLANAR(src_argb + OFF, kStride, dst_y_opt, kWidth,        \
                            dst_uv_opt, kStrideUV * 2, dst_uv_opt + kStrideUV, \
                            kStrideUV * 2, kWidth, NEG kHeight);               \
    }                                                                          \
    for (int i = 0; i < kHeight; ++i) {                                        \
      for (int j = 0; j < kWidth; ++j) {                                       \
        EXPECT_NEAR(static_cast<int>(dst_y_c[i * kWidth + j]),                 \
                    static_cast<int>(dst_y_opt[i * kWidth + j]), DIFF);        \
      }                                                                        \
    }                                                                          \
    for (int i = 0; i < SUBSAMPLE(kHeight, SUBSAMP_Y) * 2; ++i) {              \
      for (int j = 0; j < kStrideUV; ++j) {                                    \
        EXPECT_NEAR(static_cast<int>(dst_uv_c[i * kStrideUV + j]),             \
                    static_cast<int>(dst_uv_opt[i * kStrideUV + j]), DIFF);    \
      }                                                                        \
    }                                                                          \
    free_aligned_buffer_page_end(dst_y_c);                                     \
    free_aligned_buffer_page_end(dst_uv_c);                                    \
    free_aligned_buffer_page_end(dst_y_opt);                                   \
    free_aligned_buffer_page_end(dst_uv_opt);                                  \
    free_aligned_buffer_page_end(src_argb);                                    \
  }
#endif

#define TESTATOPLANAR(FMT_A, BPP_A, YALIGN, FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, \
                      DIFF)                                                   \
  TESTATOPLANARI(FMT_A, BPP_A, YALIGN, FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y,      \
                 benchmark_width_ - 4, DIFF, _Any, +, 0)                      \
  TESTATOPLANARI(FMT_A, BPP_A, YALIGN, FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y,      \
                 benchmark_width_, DIFF, _Unaligned, +, 1)                    \
  TESTATOPLANARI(FMT_A, BPP_A, YALIGN, FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y,      \
                 benchmark_width_, DIFF, _Invert, -, 0)                       \
  TESTATOPLANARI(FMT_A, BPP_A, YALIGN, FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y,      \
                 benchmark_width_, DIFF, _Opt, +, 0)

TESTATOPLANAR(ARGB, 4, 1, I420, 2, 2, 4)
#if defined(__arm__) || defined(__aarch64__)
// arm version subsamples by summing 4 pixels then multiplying by matrix with
// 4x smaller coefficients which are rounded to nearest integer.
TESTATOPLANAR(ARGB, 4, 1, J420, 2, 2, 4)
TESTATOPLANAR(ARGB, 4, 1, J422, 2, 1, 4)
#else
TESTATOPLANAR(ARGB, 4, 1, J420, 2, 2, 0)
TESTATOPLANAR(ARGB, 4, 1, J422, 2, 1, 0)
#endif
TESTATOPLANAR(BGRA, 4, 1, I420, 2, 2, 4)
TESTATOPLANAR(ABGR, 4, 1, I420, 2, 2, 4)
TESTATOPLANAR(RGBA, 4, 1, I420, 2, 2, 4)
TESTATOPLANAR(RAW, 3, 1, I420, 2, 2, 4)
TESTATOPLANAR(RGB24, 3, 1, I420, 2, 2, 4)
TESTATOPLANAR(RGB565, 2, 1, I420, 2, 2, 5)
// TODO(fbarchard): Make 1555 neon work same as C code, reduce to diff 9.
TESTATOPLANAR(ARGB1555, 2, 1, I420, 2, 2, 15)
TESTATOPLANAR(ARGB4444, 2, 1, I420, 2, 2, 17)
TESTATOPLANAR(ARGB, 4, 1, I422, 2, 1, 2)
TESTATOPLANAR(ARGB, 4, 1, I444, 1, 1, 2)
TESTATOPLANAR(YUY2, 2, 1, I420, 2, 2, 2)
TESTATOPLANAR(UYVY, 2, 1, I420, 2, 2, 2)
TESTATOPLANAR(YUY2, 2, 1, I422, 2, 1, 2)
TESTATOPLANAR(UYVY, 2, 1, I422, 2, 1, 2)
TESTATOPLANAR(I400, 1, 1, I420, 2, 2, 2)
TESTATOPLANAR(J400, 1, 1, J420, 2, 2, 2)

#define TESTATOBIPLANARI(FMT_A, SUB_A, BPP_A, FMT_PLANAR, SUBSAMP_X,          \
                         SUBSAMP_Y, W1280, N, NEG, OFF)                       \
  TEST_F(LibYUVConvertTest, FMT_A##To##FMT_PLANAR##N) {                       \
    const int kWidth = ((W1280) > 0) ? (W1280) : 1;                           \
    const int kHeight = benchmark_height_;                                    \
    const int kStride = SUBSAMPLE(kWidth, SUB_A) * BPP_A;                     \
    const int kStrideUV = SUBSAMPLE(kWidth, SUBSAMP_X);                       \
    align_buffer_page_end(src_argb, kStride* kHeight + OFF);                  \
    align_buffer_page_end(dst_y_c, kWidth* kHeight);                          \
    align_buffer_page_end(dst_uv_c,                                           \
                          kStrideUV * 2 * SUBSAMPLE(kHeight, SUBSAMP_Y));     \
    align_buffer_page_end(dst_y_opt, kWidth* kHeight);                        \
    align_buffer_page_end(dst_uv_opt,                                         \
                          kStrideUV * 2 * SUBSAMPLE(kHeight, SUBSAMP_Y));     \
    for (int i = 0; i < kHeight; ++i)                                         \
      for (int j = 0; j < kStride; ++j)                                       \
        src_argb[(i * kStride) + j + OFF] = (fastrand() & 0xff);              \
    memset(dst_y_c, 1, kWidth* kHeight);                                      \
    memset(dst_uv_c, 2, kStrideUV * 2 * SUBSAMPLE(kHeight, SUBSAMP_Y));       \
    memset(dst_y_opt, 101, kWidth* kHeight);                                  \
    memset(dst_uv_opt, 102, kStrideUV * 2 * SUBSAMPLE(kHeight, SUBSAMP_Y));   \
    MaskCpuFlags(disable_cpu_flags_);                                         \
    FMT_A##To##FMT_PLANAR(src_argb + OFF, kStride, dst_y_c, kWidth, dst_uv_c, \
                          kStrideUV * 2, kWidth, NEG kHeight);                \
    MaskCpuFlags(benchmark_cpu_info_);                                        \
    for (int i = 0; i < benchmark_iterations_; ++i) {                         \
      FMT_A##To##FMT_PLANAR(src_argb + OFF, kStride, dst_y_opt, kWidth,       \
                            dst_uv_opt, kStrideUV * 2, kWidth, NEG kHeight);  \
    }                                                                         \
    int max_diff = 0;                                                         \
    for (int i = 0; i < kHeight; ++i) {                                       \
      for (int j = 0; j < kWidth; ++j) {                                      \
        int abs_diff = abs(static_cast<int>(dst_y_c[i * kWidth + j]) -        \
                           static_cast<int>(dst_y_opt[i * kWidth + j]));      \
        if (abs_diff > max_diff) {                                            \
          max_diff = abs_diff;                                                \
        }                                                                     \
      }                                                                       \
    }                                                                         \
    EXPECT_LE(max_diff, 4);                                                   \
    for (int i = 0; i < SUBSAMPLE(kHeight, SUBSAMP_Y); ++i) {                 \
      for (int j = 0; j < kStrideUV * 2; ++j) {                               \
        int abs_diff =                                                        \
            abs(static_cast<int>(dst_uv_c[i * kStrideUV * 2 + j]) -           \
                static_cast<int>(dst_uv_opt[i * kStrideUV * 2 + j]));         \
        if (abs_diff > max_diff) {                                            \
          max_diff = abs_diff;                                                \
        }                                                                     \
      }                                                                       \
    }                                                                         \
    EXPECT_LE(max_diff, 4);                                                   \
    free_aligned_buffer_page_end(dst_y_c);                                    \
    free_aligned_buffer_page_end(dst_uv_c);                                   \
    free_aligned_buffer_page_end(dst_y_opt);                                  \
    free_aligned_buffer_page_end(dst_uv_opt);                                 \
    free_aligned_buffer_page_end(src_argb);                                   \
  }

#define TESTATOBIPLANAR(FMT_A, SUB_A, BPP_A, FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y) \
  TESTATOBIPLANARI(FMT_A, SUB_A, BPP_A, FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y,      \
                   benchmark_width_ - 4, _Any, +, 0)                           \
  TESTATOBIPLANARI(FMT_A, SUB_A, BPP_A, FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y,      \
                   benchmark_width_, _Unaligned, +, 1)                         \
  TESTATOBIPLANARI(FMT_A, SUB_A, BPP_A, FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y,      \
                   benchmark_width_, _Invert, -, 0)                            \
  TESTATOBIPLANARI(FMT_A, SUB_A, BPP_A, FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y,      \
                   benchmark_width_, _Opt, +, 0)

TESTATOBIPLANAR(ARGB, 1, 4, NV12, 2, 2)
TESTATOBIPLANAR(ARGB, 1, 4, NV21, 2, 2)
TESTATOBIPLANAR(YUY2, 2, 4, NV12, 2, 2)
TESTATOBIPLANAR(UYVY, 2, 4, NV12, 2, 2)

#define TESTATOBI(FMT_A, BPP_A, STRIDE_A, HEIGHT_A, FMT_B, BPP_B, STRIDE_B,  \
                  HEIGHT_B, W1280, DIFF, N, NEG, OFF)                        \
  TEST_F(LibYUVConvertTest, FMT_A##To##FMT_B##N) {                           \
    const int kWidth = ((W1280) > 0) ? (W1280) : 1;                          \
    const int kHeight = benchmark_height_;                                   \
    const int kHeightA = (kHeight + HEIGHT_A - 1) / HEIGHT_A * HEIGHT_A;     \
    const int kHeightB = (kHeight + HEIGHT_B - 1) / HEIGHT_B * HEIGHT_B;     \
    const int kStrideA =                                                     \
        (kWidth * BPP_A + STRIDE_A - 1) / STRIDE_A * STRIDE_A;               \
    const int kStrideB =                                                     \
        (kWidth * BPP_B + STRIDE_B - 1) / STRIDE_B * STRIDE_B;               \
    align_buffer_page_end(src_argb, kStrideA* kHeightA + OFF);               \
    align_buffer_page_end(dst_argb_c, kStrideB* kHeightB);                   \
    align_buffer_page_end(dst_argb_opt, kStrideB* kHeightB);                 \
    for (int i = 0; i < kStrideA * kHeightA; ++i) {                          \
      src_argb[i + OFF] = (fastrand() & 0xff);                               \
    }                                                                        \
    memset(dst_argb_c, 1, kStrideB* kHeightB);                               \
    memset(dst_argb_opt, 101, kStrideB* kHeightB);                           \
    MaskCpuFlags(disable_cpu_flags_);                                        \
    FMT_A##To##FMT_B(src_argb + OFF, kStrideA, dst_argb_c, kStrideB, kWidth, \
                     NEG kHeight);                                           \
    MaskCpuFlags(benchmark_cpu_info_);                                       \
    for (int i = 0; i < benchmark_iterations_; ++i) {                        \
      FMT_A##To##FMT_B(src_argb + OFF, kStrideA, dst_argb_opt, kStrideB,     \
                       kWidth, NEG kHeight);                                 \
    }                                                                        \
    int max_diff = 0;                                                        \
    for (int i = 0; i < kStrideB * kHeightB; ++i) {                          \
      int abs_diff = abs(static_cast<int>(dst_argb_c[i]) -                   \
                         static_cast<int>(dst_argb_opt[i]));                 \
      if (abs_diff > max_diff) {                                             \
        max_diff = abs_diff;                                                 \
      }                                                                      \
    }                                                                        \
    EXPECT_LE(max_diff, DIFF);                                               \
    free_aligned_buffer_page_end(src_argb);                                  \
    free_aligned_buffer_page_end(dst_argb_c);                                \
    free_aligned_buffer_page_end(dst_argb_opt);                              \
  }

#define TESTATOBRANDOM(FMT_A, BPP_A, STRIDE_A, HEIGHT_A, FMT_B, BPP_B,     \
                       STRIDE_B, HEIGHT_B, DIFF)                           \
  TEST_F(LibYUVConvertTest, FMT_A##To##FMT_B##_Random) {                   \
    for (int times = 0; times < benchmark_iterations_; ++times) {          \
      const int kWidth = (fastrand() & 63) + 1;                            \
      const int kHeight = (fastrand() & 31) + 1;                           \
      const int kHeightA = (kHeight + HEIGHT_A - 1) / HEIGHT_A * HEIGHT_A; \
      const int kHeightB = (kHeight + HEIGHT_B - 1) / HEIGHT_B * HEIGHT_B; \
      const int kStrideA =                                                 \
          (kWidth * BPP_A + STRIDE_A - 1) / STRIDE_A * STRIDE_A;           \
      const int kStrideB =                                                 \
          (kWidth * BPP_B + STRIDE_B - 1) / STRIDE_B * STRIDE_B;           \
      align_buffer_page_end(src_argb, kStrideA* kHeightA);                 \
      align_buffer_page_end(dst_argb_c, kStrideB* kHeightB);               \
      align_buffer_page_end(dst_argb_opt, kStrideB* kHeightB);             \
      for (int i = 0; i < kStrideA * kHeightA; ++i) {                      \
        src_argb[i] = (fastrand() & 0xff);                                 \
      }                                                                    \
      memset(dst_argb_c, 123, kStrideB* kHeightB);                         \
      memset(dst_argb_opt, 123, kStrideB* kHeightB);                       \
      MaskCpuFlags(disable_cpu_flags_);                                    \
      FMT_A##To##FMT_B(src_argb, kStrideA, dst_argb_c, kStrideB, kWidth,   \
                       kHeight);                                           \
      MaskCpuFlags(benchmark_cpu_info_);                                   \
      FMT_A##To##FMT_B(src_argb, kStrideA, dst_argb_opt, kStrideB, kWidth, \
                       kHeight);                                           \
      int max_diff = 0;                                                    \
      for (int i = 0; i < kStrideB * kHeightB; ++i) {                      \
        int abs_diff = abs(static_cast<int>(dst_argb_c[i]) -               \
                           static_cast<int>(dst_argb_opt[i]));             \
        if (abs_diff > max_diff) {                                         \
          max_diff = abs_diff;                                             \
        }                                                                  \
      }                                                                    \
      EXPECT_LE(max_diff, DIFF);                                           \
      free_aligned_buffer_page_end(src_argb);                              \
      free_aligned_buffer_page_end(dst_argb_c);                            \
      free_aligned_buffer_page_end(dst_argb_opt);                          \
    }                                                                      \
  }

#define TESTATOB(FMT_A, BPP_A, STRIDE_A, HEIGHT_A, FMT_B, BPP_B, STRIDE_B, \
                 HEIGHT_B, DIFF)                                           \
  TESTATOBI(FMT_A, BPP_A, STRIDE_A, HEIGHT_A, FMT_B, BPP_B, STRIDE_B,      \
            HEIGHT_B, benchmark_width_ - 4, DIFF, _Any, +, 0)              \
  TESTATOBI(FMT_A, BPP_A, STRIDE_A, HEIGHT_A, FMT_B, BPP_B, STRIDE_B,      \
            HEIGHT_B, benchmark_width_, DIFF, _Unaligned, +, 1)            \
  TESTATOBI(FMT_A, BPP_A, STRIDE_A, HEIGHT_A, FMT_B, BPP_B, STRIDE_B,      \
            HEIGHT_B, benchmark_width_, DIFF, _Invert, -, 0)               \
  TESTATOBI(FMT_A, BPP_A, STRIDE_A, HEIGHT_A, FMT_B, BPP_B, STRIDE_B,      \
            HEIGHT_B, benchmark_width_, DIFF, _Opt, +, 0)                  \
  TESTATOBRANDOM(FMT_A, BPP_A, STRIDE_A, HEIGHT_A, FMT_B, BPP_B, STRIDE_B, \
                 HEIGHT_B, DIFF)

TESTATOB(ARGB, 4, 4, 1, ARGB, 4, 4, 1, 0)
TESTATOB(ARGB, 4, 4, 1, BGRA, 4, 4, 1, 0)
TESTATOB(ARGB, 4, 4, 1, ABGR, 4, 4, 1, 0)
TESTATOB(ARGB, 4, 4, 1, RGBA, 4, 4, 1, 0)
TESTATOB(ARGB, 4, 4, 1, RAW, 3, 3, 1, 0)
TESTATOB(ARGB, 4, 4, 1, RGB24, 3, 3, 1, 0)
TESTATOB(ARGB, 4, 4, 1, RGB565, 2, 2, 1, 0)
TESTATOB(ARGB, 4, 4, 1, ARGB1555, 2, 2, 1, 0)
TESTATOB(ARGB, 4, 4, 1, ARGB4444, 2, 2, 1, 0)
TESTATOB(ARGB, 4, 4, 1, YUY2, 2, 4, 1, 4)
TESTATOB(ARGB, 4, 4, 1, UYVY, 2, 4, 1, 4)
TESTATOB(ARGB, 4, 4, 1, I400, 1, 1, 1, 2)
TESTATOB(ARGB, 4, 4, 1, J400, 1, 1, 1, 2)
TESTATOB(BGRA, 4, 4, 1, ARGB, 4, 4, 1, 0)
TESTATOB(ABGR, 4, 4, 1, ARGB, 4, 4, 1, 0)
TESTATOB(RGBA, 4, 4, 1, ARGB, 4, 4, 1, 0)
TESTATOB(RAW, 3, 3, 1, ARGB, 4, 4, 1, 0)
TESTATOB(RAW, 3, 3, 1, RGB24, 3, 3, 1, 0)
TESTATOB(RGB24, 3, 3, 1, ARGB, 4, 4, 1, 0)
TESTATOB(RGB565, 2, 2, 1, ARGB, 4, 4, 1, 0)
TESTATOB(ARGB1555, 2, 2, 1, ARGB, 4, 4, 1, 0)
TESTATOB(ARGB4444, 2, 2, 1, ARGB, 4, 4, 1, 0)
TESTATOB(YUY2, 2, 4, 1, ARGB, 4, 4, 1, 4)
TESTATOB(UYVY, 2, 4, 1, ARGB, 4, 4, 1, 4)
TESTATOB(YUY2, 2, 4, 1, Y, 1, 1, 1, 0)
TESTATOB(I400, 1, 1, 1, ARGB, 4, 4, 1, 0)
TESTATOB(J400, 1, 1, 1, ARGB, 4, 4, 1, 0)
TESTATOB(I400, 1, 1, 1, I400, 1, 1, 1, 0)
TESTATOB(J400, 1, 1, 1, J400, 1, 1, 1, 0)
TESTATOB(I400, 1, 1, 1, I400Mirror, 1, 1, 1, 0)
TESTATOB(ARGB, 4, 4, 1, ARGBMirror, 4, 4, 1, 0)

#define TESTATOBDI(FMT_A, BPP_A, STRIDE_A, HEIGHT_A, FMT_B, BPP_B, STRIDE_B, \
                   HEIGHT_B, W1280, DIFF, N, NEG, OFF)                       \
  TEST_F(LibYUVConvertTest, FMT_A##To##FMT_B##Dither##N) {                   \
    const int kWidth = ((W1280) > 0) ? (W1280) : 1;                          \
    const int kHeight = benchmark_height_;                                   \
    const int kHeightA = (kHeight + HEIGHT_A - 1) / HEIGHT_A * HEIGHT_A;     \
    const int kHeightB = (kHeight + HEIGHT_B - 1) / HEIGHT_B * HEIGHT_B;     \
    const int kStrideA =                                                     \
        (kWidth * BPP_A + STRIDE_A - 1) / STRIDE_A * STRIDE_A;               \
    const int kStrideB =                                                     \
        (kWidth * BPP_B + STRIDE_B - 1) / STRIDE_B * STRIDE_B;               \
    align_buffer_page_end(src_argb, kStrideA* kHeightA + OFF);               \
    align_buffer_page_end(dst_argb_c, kStrideB* kHeightB);                   \
    align_buffer_page_end(dst_argb_opt, kStrideB* kHeightB);                 \
    for (int i = 0; i < kStrideA * kHeightA; ++i) {                          \
      src_argb[i + OFF] = (fastrand() & 0xff);                               \
    }                                                                        \
    memset(dst_argb_c, 1, kStrideB* kHeightB);                               \
    memset(dst_argb_opt, 101, kStrideB* kHeightB);                           \
    MaskCpuFlags(disable_cpu_flags_);                                        \
    FMT_A##To##FMT_B##Dither(src_argb + OFF, kStrideA, dst_argb_c, kStrideB, \
                             NULL, kWidth, NEG kHeight);                     \
    MaskCpuFlags(benchmark_cpu_info_);                                       \
    for (int i = 0; i < benchmark_iterations_; ++i) {                        \
      FMT_A##To##FMT_B##Dither(src_argb + OFF, kStrideA, dst_argb_opt,       \
                               kStrideB, NULL, kWidth, NEG kHeight);         \
    }                                                                        \
    int max_diff = 0;                                                        \
    for (int i = 0; i < kStrideB * kHeightB; ++i) {                          \
      int abs_diff = abs(static_cast<int>(dst_argb_c[i]) -                   \
                         static_cast<int>(dst_argb_opt[i]));                 \
      if (abs_diff > max_diff) {                                             \
        max_diff = abs_diff;                                                 \
      }                                                                      \
    }                                                                        \
    EXPECT_LE(max_diff, DIFF);                                               \
    free_aligned_buffer_page_end(src_argb);                                  \
    free_aligned_buffer_page_end(dst_argb_c);                                \
    free_aligned_buffer_page_end(dst_argb_opt);                              \
  }

#define TESTATOBDRANDOM(FMT_A, BPP_A, STRIDE_A, HEIGHT_A, FMT_B, BPP_B,        \
                        STRIDE_B, HEIGHT_B, DIFF)                              \
  TEST_F(LibYUVConvertTest, FMT_A##To##FMT_B##Dither_Random) {                 \
    for (int times = 0; times < benchmark_iterations_; ++times) {              \
      const int kWidth = (fastrand() & 63) + 1;                                \
      const int kHeight = (fastrand() & 31) + 1;                               \
      const int kHeightA = (kHeight + HEIGHT_A - 1) / HEIGHT_A * HEIGHT_A;     \
      const int kHeightB = (kHeight + HEIGHT_B - 1) / HEIGHT_B * HEIGHT_B;     \
      const int kStrideA =                                                     \
          (kWidth * BPP_A + STRIDE_A - 1) / STRIDE_A * STRIDE_A;               \
      const int kStrideB =                                                     \
          (kWidth * BPP_B + STRIDE_B - 1) / STRIDE_B * STRIDE_B;               \
      align_buffer_page_end(src_argb, kStrideA* kHeightA);                     \
      align_buffer_page_end(dst_argb_c, kStrideB* kHeightB);                   \
      align_buffer_page_end(dst_argb_opt, kStrideB* kHeightB);                 \
      for (int i = 0; i < kStrideA * kHeightA; ++i) {                          \
        src_argb[i] = (fastrand() & 0xff);                                     \
      }                                                                        \
      memset(dst_argb_c, 123, kStrideB* kHeightB);                             \
      memset(dst_argb_opt, 123, kStrideB* kHeightB);                           \
      MaskCpuFlags(disable_cpu_flags_);                                        \
      FMT_A##To##FMT_B##Dither(src_argb, kStrideA, dst_argb_c, kStrideB, NULL, \
                               kWidth, kHeight);                               \
      MaskCpuFlags(benchmark_cpu_info_);                                       \
      FMT_A##To##FMT_B##Dither(src_argb, kStrideA, dst_argb_opt, kStrideB,     \
                               NULL, kWidth, kHeight);                         \
      int max_diff = 0;                                                        \
      for (int i = 0; i < kStrideB * kHeightB; ++i) {                          \
        int abs_diff = abs(static_cast<int>(dst_argb_c[i]) -                   \
                           static_cast<int>(dst_argb_opt[i]));                 \
        if (abs_diff > max_diff) {                                             \
          max_diff = abs_diff;                                                 \
        }                                                                      \
      }                                                                        \
      EXPECT_LE(max_diff, DIFF);                                               \
      free_aligned_buffer_page_end(src_argb);                                  \
      free_aligned_buffer_page_end(dst_argb_c);                                \
      free_aligned_buffer_page_end(dst_argb_opt);                              \
    }                                                                          \
  }

#define TESTATOBD(FMT_A, BPP_A, STRIDE_A, HEIGHT_A, FMT_B, BPP_B, STRIDE_B, \
                  HEIGHT_B, DIFF)                                           \
  TESTATOBDI(FMT_A, BPP_A, STRIDE_A, HEIGHT_A, FMT_B, BPP_B, STRIDE_B,      \
             HEIGHT_B, benchmark_width_ - 4, DIFF, _Any, +, 0)              \
  TESTATOBDI(FMT_A, BPP_A, STRIDE_A, HEIGHT_A, FMT_B, BPP_B, STRIDE_B,      \
             HEIGHT_B, benchmark_width_, DIFF, _Unaligned, +, 1)            \
  TESTATOBDI(FMT_A, BPP_A, STRIDE_A, HEIGHT_A, FMT_B, BPP_B, STRIDE_B,      \
             HEIGHT_B, benchmark_width_, DIFF, _Invert, -, 0)               \
  TESTATOBDI(FMT_A, BPP_A, STRIDE_A, HEIGHT_A, FMT_B, BPP_B, STRIDE_B,      \
             HEIGHT_B, benchmark_width_, DIFF, _Opt, +, 0)                  \
  TESTATOBDRANDOM(FMT_A, BPP_A, STRIDE_A, HEIGHT_A, FMT_B, BPP_B, STRIDE_B, \
                  HEIGHT_B, DIFF)

TESTATOBD(ARGB, 4, 4, 1, RGB565, 2, 2, 1, 0)

#define TESTSYMI(FMT_ATOB, BPP_A, STRIDE_A, HEIGHT_A, W1280, N, NEG, OFF)      \
  TEST_F(LibYUVConvertTest, FMT_ATOB##_Symetric##N) {                          \
    const int kWidth = ((W1280) > 0) ? (W1280) : 1;                            \
    const int kHeight = benchmark_height_;                                     \
    const int kHeightA = (kHeight + HEIGHT_A - 1) / HEIGHT_A * HEIGHT_A;       \
    const int kStrideA =                                                       \
        (kWidth * BPP_A + STRIDE_A - 1) / STRIDE_A * STRIDE_A;                 \
    align_buffer_page_end(src_argb, kStrideA* kHeightA + OFF);                 \
    align_buffer_page_end(dst_argb_c, kStrideA* kHeightA);                     \
    align_buffer_page_end(dst_argb_opt, kStrideA* kHeightA);                   \
    for (int i = 0; i < kStrideA * kHeightA; ++i) {                            \
      src_argb[i + OFF] = (fastrand() & 0xff);                                 \
    }                                                                          \
    memset(dst_argb_c, 1, kStrideA* kHeightA);                                 \
    memset(dst_argb_opt, 101, kStrideA* kHeightA);                             \
    MaskCpuFlags(disable_cpu_flags_);                                          \
    FMT_ATOB(src_argb + OFF, kStrideA, dst_argb_c, kStrideA, kWidth,           \
             NEG kHeight);                                                     \
    MaskCpuFlags(benchmark_cpu_info_);                                         \
    for (int i = 0; i < benchmark_iterations_; ++i) {                          \
      FMT_ATOB(src_argb + OFF, kStrideA, dst_argb_opt, kStrideA, kWidth,       \
               NEG kHeight);                                                   \
    }                                                                          \
    MaskCpuFlags(disable_cpu_flags_);                                          \
    FMT_ATOB(dst_argb_c, kStrideA, dst_argb_c, kStrideA, kWidth, NEG kHeight); \
    MaskCpuFlags(benchmark_cpu_info_);                                         \
    FMT_ATOB(dst_argb_opt, kStrideA, dst_argb_opt, kStrideA, kWidth,           \
             NEG kHeight);                                                     \
    for (int i = 0; i < kStrideA * kHeightA; ++i) {                            \
      EXPECT_EQ(src_argb[i + OFF], dst_argb_opt[i]);                           \
      EXPECT_EQ(dst_argb_c[i], dst_argb_opt[i]);                               \
    }                                                                          \
    free_aligned_buffer_page_end(src_argb);                                    \
    free_aligned_buffer_page_end(dst_argb_c);                                  \
    free_aligned_buffer_page_end(dst_argb_opt);                                \
  }

#define TESTSYM(FMT_ATOB, BPP_A, STRIDE_A, HEIGHT_A)                           \
  TESTSYMI(FMT_ATOB, BPP_A, STRIDE_A, HEIGHT_A, benchmark_width_ - 4, _Any, +, \
           0)                                                                  \
  TESTSYMI(FMT_ATOB, BPP_A, STRIDE_A, HEIGHT_A, benchmark_width_, _Unaligned,  \
           +, 1)                                                               \
  TESTSYMI(FMT_ATOB, BPP_A, STRIDE_A, HEIGHT_A, benchmark_width_, _Opt, +, 0)

TESTSYM(ARGBToARGB, 4, 4, 1)
TESTSYM(ARGBToBGRA, 4, 4, 1)
TESTSYM(ARGBToABGR, 4, 4, 1)
TESTSYM(BGRAToARGB, 4, 4, 1)
TESTSYM(ABGRToARGB, 4, 4, 1)

TEST_F(LibYUVConvertTest, Test565) {
  SIMD_ALIGNED(uint8 orig_pixels[256][4]);
  SIMD_ALIGNED(uint8 pixels565[256][2]);

  for (int i = 0; i < 256; ++i) {
    for (int j = 0; j < 4; ++j) {
      orig_pixels[i][j] = i;
    }
  }
  ARGBToRGB565(&orig_pixels[0][0], 0, &pixels565[0][0], 0, 256, 1);
  uint32 checksum = HashDjb2(&pixels565[0][0], sizeof(pixels565), 5381);
  EXPECT_EQ(610919429u, checksum);
}

#ifdef HAVE_JPEG
TEST_F(LibYUVConvertTest, ValidateJpeg) {
  const int kOff = 10;
  const int kMinJpeg = 64;
  const int kImageSize = benchmark_width_ * benchmark_height_ >= kMinJpeg
                             ? benchmark_width_ * benchmark_height_
                             : kMinJpeg;
  const int kSize = kImageSize + kOff;
  align_buffer_page_end(orig_pixels, kSize);

  // No SOI or EOI. Expect fail.
  memset(orig_pixels, 0, kSize);
  EXPECT_FALSE(ValidateJpeg(orig_pixels, kSize));

  // Test special value that matches marker start.
  memset(orig_pixels, 0xff, kSize);
  EXPECT_FALSE(ValidateJpeg(orig_pixels, kSize));

  // EOI, SOI. Expect pass.
  orig_pixels[0] = 0xff;
  orig_pixels[1] = 0xd8;  // SOI.
  orig_pixels[kSize - kOff + 0] = 0xff;
  orig_pixels[kSize - kOff + 1] = 0xd9;  // EOI.
  for (int times = 0; times < benchmark_iterations_; ++times) {
    EXPECT_TRUE(ValidateJpeg(orig_pixels, kSize));
  }
  free_aligned_buffer_page_end(orig_pixels);
}

TEST_F(LibYUVConvertTest, ValidateJpegLarge) {
  const int kOff = 10;
  const int kMinJpeg = 64;
  const int kImageSize = benchmark_width_ * benchmark_height_ >= kMinJpeg
                             ? benchmark_width_ * benchmark_height_
                             : kMinJpeg;
  const int kSize = kImageSize + kOff;
  const int kMultiple = 10;
  const int kBufSize = kImageSize * kMultiple + kOff;
  align_buffer_page_end(orig_pixels, kBufSize);

  // No SOI or EOI. Expect fail.
  memset(orig_pixels, 0, kBufSize);
  EXPECT_FALSE(ValidateJpeg(orig_pixels, kBufSize));

  // EOI, SOI. Expect pass.
  orig_pixels[0] = 0xff;
  orig_pixels[1] = 0xd8;  // SOI.
  orig_pixels[kSize - kOff + 0] = 0xff;
  orig_pixels[kSize - kOff + 1] = 0xd9;  // EOI.
  for (int times = 0; times < benchmark_iterations_; ++times) {
    EXPECT_TRUE(ValidateJpeg(orig_pixels, kBufSize));
  }
  free_aligned_buffer_page_end(orig_pixels);
}

TEST_F(LibYUVConvertTest, InvalidateJpeg) {
  const int kOff = 10;
  const int kMinJpeg = 64;
  const int kImageSize = benchmark_width_ * benchmark_height_ >= kMinJpeg
                             ? benchmark_width_ * benchmark_height_
                             : kMinJpeg;
  const int kSize = kImageSize + kOff;
  align_buffer_page_end(orig_pixels, kSize);

  // NULL pointer. Expect fail.
  EXPECT_FALSE(ValidateJpeg(NULL, kSize));

  // Negative size. Expect fail.
  EXPECT_FALSE(ValidateJpeg(orig_pixels, -1));

  // Too large size. Expect fail.
  EXPECT_FALSE(ValidateJpeg(orig_pixels, 0xfb000000ull));

  // No SOI or EOI. Expect fail.
  memset(orig_pixels, 0, kSize);
  EXPECT_FALSE(ValidateJpeg(orig_pixels, kSize));

  // SOI but no EOI. Expect fail.
  orig_pixels[0] = 0xff;
  orig_pixels[1] = 0xd8;  // SOI.
  for (int times = 0; times < benchmark_iterations_; ++times) {
    EXPECT_FALSE(ValidateJpeg(orig_pixels, kSize));
  }

  // EOI but no SOI. Expect fail.
  orig_pixels[0] = 0;
  orig_pixels[1] = 0;
  orig_pixels[kSize - kOff + 0] = 0xff;
  orig_pixels[kSize - kOff + 1] = 0xd9;  // EOI.
  EXPECT_FALSE(ValidateJpeg(orig_pixels, kSize));

  free_aligned_buffer_page_end(orig_pixels);
}

TEST_F(LibYUVConvertTest, FuzzJpeg) {
  // SOI but no EOI. Expect fail.
  for (int times = 0; times < benchmark_iterations_; ++times) {
    const int kSize = fastrand() % 5000 + 2;
    align_buffer_page_end(orig_pixels, kSize);
    MemRandomize(orig_pixels, kSize);

    // Add SOI so frame will be scanned.
    orig_pixels[0] = 0xff;
    orig_pixels[1] = 0xd8;  // SOI.
    orig_pixels[kSize - 1] = 0xff;
    ValidateJpeg(orig_pixels, kSize);  // Failure normally expected.
    free_aligned_buffer_page_end(orig_pixels);
  }
}

TEST_F(LibYUVConvertTest, MJPGToI420) {
  const int kOff = 10;
  const int kMinJpeg = 64;
  const int kImageSize = benchmark_width_ * benchmark_height_ >= kMinJpeg
                             ? benchmark_width_ * benchmark_height_
                             : kMinJpeg;
  const int kSize = kImageSize + kOff;
  align_buffer_page_end(orig_pixels, kSize);
  align_buffer_page_end(dst_y_opt, benchmark_width_ * benchmark_height_);
  align_buffer_page_end(dst_u_opt, SUBSAMPLE(benchmark_width_, 2) *
                                       SUBSAMPLE(benchmark_height_, 2));
  align_buffer_page_end(dst_v_opt, SUBSAMPLE(benchmark_width_, 2) *
                                       SUBSAMPLE(benchmark_height_, 2));

  // EOI, SOI to make MJPG appear valid.
  memset(orig_pixels, 0, kSize);
  orig_pixels[0] = 0xff;
  orig_pixels[1] = 0xd8;  // SOI.
  orig_pixels[kSize - kOff + 0] = 0xff;
  orig_pixels[kSize - kOff + 1] = 0xd9;  // EOI.

  for (int times = 0; times < benchmark_iterations_; ++times) {
    int ret =
        MJPGToI420(orig_pixels, kSize, dst_y_opt, benchmark_width_, dst_u_opt,
                   SUBSAMPLE(benchmark_width_, 2), dst_v_opt,
                   SUBSAMPLE(benchmark_width_, 2), benchmark_width_,
                   benchmark_height_, benchmark_width_, benchmark_height_);
    // Expect failure because image is not really valid.
    EXPECT_EQ(1, ret);
  }

  free_aligned_buffer_page_end(dst_y_opt);
  free_aligned_buffer_page_end(dst_u_opt);
  free_aligned_buffer_page_end(dst_v_opt);
  free_aligned_buffer_page_end(orig_pixels);
}

TEST_F(LibYUVConvertTest, MJPGToARGB) {
  const int kOff = 10;
  const int kMinJpeg = 64;
  const int kImageSize = benchmark_width_ * benchmark_height_ >= kMinJpeg
                             ? benchmark_width_ * benchmark_height_
                             : kMinJpeg;
  const int kSize = kImageSize + kOff;
  align_buffer_page_end(orig_pixels, kSize);
  align_buffer_page_end(dst_argb_opt, benchmark_width_ * benchmark_height_ * 4);

  // EOI, SOI to make MJPG appear valid.
  memset(orig_pixels, 0, kSize);
  orig_pixels[0] = 0xff;
  orig_pixels[1] = 0xd8;  // SOI.
  orig_pixels[kSize - kOff + 0] = 0xff;
  orig_pixels[kSize - kOff + 1] = 0xd9;  // EOI.

  for (int times = 0; times < benchmark_iterations_; ++times) {
    int ret = MJPGToARGB(orig_pixels, kSize, dst_argb_opt, benchmark_width_ * 4,
                         benchmark_width_, benchmark_height_, benchmark_width_,
                         benchmark_height_);
    // Expect failure because image is not really valid.
    EXPECT_EQ(1, ret);
  }

  free_aligned_buffer_page_end(dst_argb_opt);
  free_aligned_buffer_page_end(orig_pixels);
}

#endif  // HAVE_JPEG

TEST_F(LibYUVConvertTest, NV12Crop) {
  const int SUBSAMP_X = 2;
  const int SUBSAMP_Y = 2;
  const int kWidth = benchmark_width_;
  const int kHeight = benchmark_height_;
  const int crop_y =
      ((benchmark_height_ - (benchmark_height_ * 360 / 480)) / 2 + 1) & ~1;
  const int kDestWidth = benchmark_width_;
  const int kDestHeight = benchmark_height_ - crop_y * 2;
  const int kStrideUV = SUBSAMPLE(kWidth, SUBSAMP_X);
  const int sample_size =
      kWidth * kHeight + kStrideUV * SUBSAMPLE(kHeight, SUBSAMP_Y) * 2;
  align_buffer_page_end(src_y, sample_size);
  uint8* src_uv = src_y + kWidth * kHeight;

  align_buffer_page_end(dst_y, kDestWidth * kDestHeight);
  align_buffer_page_end(dst_u, SUBSAMPLE(kDestWidth, SUBSAMP_X) *
                                   SUBSAMPLE(kDestHeight, SUBSAMP_Y));
  align_buffer_page_end(dst_v, SUBSAMPLE(kDestWidth, SUBSAMP_X) *
                                   SUBSAMPLE(kDestHeight, SUBSAMP_Y));

  align_buffer_page_end(dst_y_2, kDestWidth * kDestHeight);
  align_buffer_page_end(dst_u_2, SUBSAMPLE(kDestWidth, SUBSAMP_X) *
                                     SUBSAMPLE(kDestHeight, SUBSAMP_Y));
  align_buffer_page_end(dst_v_2, SUBSAMPLE(kDestWidth, SUBSAMP_X) *
                                     SUBSAMPLE(kDestHeight, SUBSAMP_Y));

  for (int i = 0; i < kHeight * kWidth; ++i) {
    src_y[i] = (fastrand() & 0xff);
  }
  for (int i = 0; i < (SUBSAMPLE(kHeight, SUBSAMP_Y) * kStrideUV) * 2; ++i) {
    src_uv[i] = (fastrand() & 0xff);
  }
  memset(dst_y, 1, kDestWidth * kDestHeight);
  memset(dst_u, 2,
         SUBSAMPLE(kDestWidth, SUBSAMP_X) * SUBSAMPLE(kDestHeight, SUBSAMP_Y));
  memset(dst_v, 3,
         SUBSAMPLE(kDestWidth, SUBSAMP_X) * SUBSAMPLE(kDestHeight, SUBSAMP_Y));
  memset(dst_y_2, 1, kDestWidth * kDestHeight);
  memset(dst_u_2, 2,
         SUBSAMPLE(kDestWidth, SUBSAMP_X) * SUBSAMPLE(kDestHeight, SUBSAMP_Y));
  memset(dst_v_2, 3,
         SUBSAMPLE(kDestWidth, SUBSAMP_X) * SUBSAMPLE(kDestHeight, SUBSAMP_Y));

  ConvertToI420(src_y, sample_size, dst_y_2, kDestWidth, dst_u_2,
                SUBSAMPLE(kDestWidth, SUBSAMP_X), dst_v_2,
                SUBSAMPLE(kDestWidth, SUBSAMP_X), 0, crop_y, kWidth, kHeight,
                kDestWidth, kDestHeight, libyuv::kRotate0, libyuv::FOURCC_NV12);

  NV12ToI420(src_y + crop_y * kWidth, kWidth,
             src_uv + (crop_y / 2) * kStrideUV * 2, kStrideUV * 2, dst_y,
             kDestWidth, dst_u, SUBSAMPLE(kDestWidth, SUBSAMP_X), dst_v,
             SUBSAMPLE(kDestWidth, SUBSAMP_X), kDestWidth, kDestHeight);

  for (int i = 0; i < kDestHeight; ++i) {
    for (int j = 0; j < kDestWidth; ++j) {
      EXPECT_EQ(dst_y[i * kWidth + j], dst_y_2[i * kWidth + j]);
    }
  }
  for (int i = 0; i < SUBSAMPLE(kDestHeight, SUBSAMP_Y); ++i) {
    for (int j = 0; j < SUBSAMPLE(kDestWidth, SUBSAMP_X); ++j) {
      EXPECT_EQ(dst_u[i * SUBSAMPLE(kDestWidth, SUBSAMP_X) + j],
                dst_u_2[i * SUBSAMPLE(kDestWidth, SUBSAMP_X) + j]);
    }
  }
  for (int i = 0; i < SUBSAMPLE(kDestHeight, SUBSAMP_Y); ++i) {
    for (int j = 0; j < SUBSAMPLE(kDestWidth, SUBSAMP_X); ++j) {
      EXPECT_EQ(dst_v[i * SUBSAMPLE(kDestWidth, SUBSAMP_X) + j],
                dst_v_2[i * SUBSAMPLE(kDestWidth, SUBSAMP_X) + j]);
    }
  }
  free_aligned_buffer_page_end(dst_y);
  free_aligned_buffer_page_end(dst_u);
  free_aligned_buffer_page_end(dst_v);
  free_aligned_buffer_page_end(dst_y_2);
  free_aligned_buffer_page_end(dst_u_2);
  free_aligned_buffer_page_end(dst_v_2);
  free_aligned_buffer_page_end(src_y);
}

TEST_F(LibYUVConvertTest, TestYToARGB) {
  uint8 y[32];
  uint8 expectedg[32];
  for (int i = 0; i < 32; ++i) {
    y[i] = i * 5 + 17;
    expectedg[i] = static_cast<int>((y[i] - 16) * 1.164f + 0.5f);
  }
  uint8 argb[32 * 4];
  YToARGB(y, 0, argb, 0, 32, 1);

  for (int i = 0; i < 32; ++i) {
    printf("%2d %d: %d <-> %d,%d,%d,%d\n", i, y[i], expectedg[i],
           argb[i * 4 + 0], argb[i * 4 + 1], argb[i * 4 + 2], argb[i * 4 + 3]);
  }
  for (int i = 0; i < 32; ++i) {
    EXPECT_EQ(expectedg[i], argb[i * 4 + 0]);
  }
}

static const uint8 kNoDither4x4[16] = {
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
};

TEST_F(LibYUVConvertTest, TestNoDither) {
  align_buffer_page_end(src_argb, benchmark_width_ * benchmark_height_ * 4);
  align_buffer_page_end(dst_rgb565, benchmark_width_ * benchmark_height_ * 2);
  align_buffer_page_end(dst_rgb565dither,
                        benchmark_width_ * benchmark_height_ * 2);
  MemRandomize(src_argb, benchmark_width_ * benchmark_height_ * 4);
  MemRandomize(dst_rgb565, benchmark_width_ * benchmark_height_ * 2);
  MemRandomize(dst_rgb565dither, benchmark_width_ * benchmark_height_ * 2);
  ARGBToRGB565(src_argb, benchmark_width_ * 4, dst_rgb565, benchmark_width_ * 2,
               benchmark_width_, benchmark_height_);
  ARGBToRGB565Dither(src_argb, benchmark_width_ * 4, dst_rgb565dither,
                     benchmark_width_ * 2, kNoDither4x4, benchmark_width_,
                     benchmark_height_);
  for (int i = 0; i < benchmark_width_ * benchmark_height_ * 2; ++i) {
    EXPECT_EQ(dst_rgb565[i], dst_rgb565dither[i]);
  }

  free_aligned_buffer_page_end(src_argb);
  free_aligned_buffer_page_end(dst_rgb565);
  free_aligned_buffer_page_end(dst_rgb565dither);
}

// Ordered 4x4 dither for 888 to 565.  Values from 0 to 7.
static const uint8 kDither565_4x4[16] = {
    0, 4, 1, 5, 6, 2, 7, 3, 1, 5, 0, 4, 7, 3, 6, 2,
};

TEST_F(LibYUVConvertTest, TestDither) {
  align_buffer_page_end(src_argb, benchmark_width_ * benchmark_height_ * 4);
  align_buffer_page_end(dst_rgb565, benchmark_width_ * benchmark_height_ * 2);
  align_buffer_page_end(dst_rgb565dither,
                        benchmark_width_ * benchmark_height_ * 2);
  align_buffer_page_end(dst_argb, benchmark_width_ * benchmark_height_ * 4);
  align_buffer_page_end(dst_argbdither,
                        benchmark_width_ * benchmark_height_ * 4);
  MemRandomize(src_argb, benchmark_width_ * benchmark_height_ * 4);
  MemRandomize(dst_rgb565, benchmark_width_ * benchmark_height_ * 2);
  MemRandomize(dst_rgb565dither, benchmark_width_ * benchmark_height_ * 2);
  MemRandomize(dst_argb, benchmark_width_ * benchmark_height_ * 4);
  MemRandomize(dst_argbdither, benchmark_width_ * benchmark_height_ * 4);
  ARGBToRGB565(src_argb, benchmark_width_ * 4, dst_rgb565, benchmark_width_ * 2,
               benchmark_width_, benchmark_height_);
  ARGBToRGB565Dither(src_argb, benchmark_width_ * 4, dst_rgb565dither,
                     benchmark_width_ * 2, kDither565_4x4, benchmark_width_,
                     benchmark_height_);
  RGB565ToARGB(dst_rgb565, benchmark_width_ * 2, dst_argb, benchmark_width_ * 4,
               benchmark_width_, benchmark_height_);
  RGB565ToARGB(dst_rgb565dither, benchmark_width_ * 2, dst_argbdither,
               benchmark_width_ * 4, benchmark_width_, benchmark_height_);

  for (int i = 0; i < benchmark_width_ * benchmark_height_ * 4; ++i) {
    EXPECT_NEAR(dst_argb[i], dst_argbdither[i], 9);
  }
  free_aligned_buffer_page_end(src_argb);
  free_aligned_buffer_page_end(dst_rgb565);
  free_aligned_buffer_page_end(dst_rgb565dither);
  free_aligned_buffer_page_end(dst_argb);
  free_aligned_buffer_page_end(dst_argbdither);
}

#define TESTPLANARTOBID(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, BPP_B, ALIGN, \
                        YALIGN, W1280, DIFF, N, NEG, OFF, FMT_C, BPP_C)        \
  TEST_F(LibYUVConvertTest, FMT_PLANAR##To##FMT_B##Dither##N) {                \
    const int kWidth = ((W1280) > 0) ? (W1280) : 1;                            \
    const int kHeight = ALIGNINT(benchmark_height_, YALIGN);                   \
    const int kStrideB = ALIGNINT(kWidth * BPP_B, ALIGN);                      \
    const int kStrideUV = SUBSAMPLE(kWidth, SUBSAMP_X);                        \
    const int kSizeUV = kStrideUV * SUBSAMPLE(kHeight, SUBSAMP_Y);             \
    align_buffer_page_end(src_y, kWidth* kHeight + OFF);                       \
    align_buffer_page_end(src_u, kSizeUV + OFF);                               \
    align_buffer_page_end(src_v, kSizeUV + OFF);                               \
    align_buffer_page_end(dst_argb_c, kStrideB* kHeight + OFF);                \
    align_buffer_page_end(dst_argb_opt, kStrideB* kHeight + OFF);              \
    for (int i = 0; i < kWidth * kHeight; ++i) {                               \
      src_y[i + OFF] = (fastrand() & 0xff);                                    \
    }                                                                          \
    for (int i = 0; i < kSizeUV; ++i) {                                        \
      src_u[i + OFF] = (fastrand() & 0xff);                                    \
      src_v[i + OFF] = (fastrand() & 0xff);                                    \
    }                                                                          \
    memset(dst_argb_c + OFF, 1, kStrideB * kHeight);                           \
    memset(dst_argb_opt + OFF, 101, kStrideB * kHeight);                       \
    MaskCpuFlags(disable_cpu_flags_);                                          \
    FMT_PLANAR##To##FMT_B##Dither(src_y + OFF, kWidth, src_u + OFF, kStrideUV, \
                                  src_v + OFF, kStrideUV, dst_argb_c + OFF,    \
                                  kStrideB, NULL, kWidth, NEG kHeight);        \
    MaskCpuFlags(benchmark_cpu_info_);                                         \
    for (int i = 0; i < benchmark_iterations_; ++i) {                          \
      FMT_PLANAR##To##FMT_B##Dither(                                           \
          src_y + OFF, kWidth, src_u + OFF, kStrideUV, src_v + OFF, kStrideUV, \
          dst_argb_opt + OFF, kStrideB, NULL, kWidth, NEG kHeight);            \
    }                                                                          \
    int max_diff = 0;                                                          \
    /* Convert to ARGB so 565 is expanded to bytes that can be compared. */    \
    align_buffer_page_end(dst_argb32_c, kWidth* BPP_C* kHeight);               \
    align_buffer_page_end(dst_argb32_opt, kWidth* BPP_C* kHeight);             \
    memset(dst_argb32_c, 2, kWidth* BPP_C* kHeight);                           \
    memset(dst_argb32_opt, 102, kWidth* BPP_C* kHeight);                       \
    FMT_B##To##FMT_C(dst_argb_c + OFF, kStrideB, dst_argb32_c, kWidth * BPP_C, \
                     kWidth, kHeight);                                         \
    FMT_B##To##FMT_C(dst_argb_opt + OFF, kStrideB, dst_argb32_opt,             \
                     kWidth * BPP_C, kWidth, kHeight);                         \
    for (int i = 0; i < kWidth * BPP_C * kHeight; ++i) {                       \
      int abs_diff = abs(static_cast<int>(dst_argb32_c[i]) -                   \
                         static_cast<int>(dst_argb32_opt[i]));                 \
      if (abs_diff > max_diff) {                                               \
        max_diff = abs_diff;                                                   \
      }                                                                        \
    }                                                                          \
    EXPECT_LE(max_diff, DIFF);                                                 \
    free_aligned_buffer_page_end(src_y);                                       \
    free_aligned_buffer_page_end(src_u);                                       \
    free_aligned_buffer_page_end(src_v);                                       \
    free_aligned_buffer_page_end(dst_argb_c);                                  \
    free_aligned_buffer_page_end(dst_argb_opt);                                \
    free_aligned_buffer_page_end(dst_argb32_c);                                \
    free_aligned_buffer_page_end(dst_argb32_opt);                              \
  }

#define TESTPLANARTOBD(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, BPP_B, ALIGN,  \
                       YALIGN, DIFF, FMT_C, BPP_C)                             \
  TESTPLANARTOBID(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, BPP_B, ALIGN,       \
                  YALIGN, benchmark_width_ - 4, DIFF, _Any, +, 0, FMT_C,       \
                  BPP_C)                                                       \
  TESTPLANARTOBID(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, BPP_B, ALIGN,       \
                  YALIGN, benchmark_width_, DIFF, _Unaligned, +, 1, FMT_C,     \
                  BPP_C)                                                       \
  TESTPLANARTOBID(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, BPP_B, ALIGN,       \
                  YALIGN, benchmark_width_, DIFF, _Invert, -, 0, FMT_C, BPP_C) \
  TESTPLANARTOBID(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, BPP_B, ALIGN,       \
                  YALIGN, benchmark_width_, DIFF, _Opt, +, 0, FMT_C, BPP_C)

TESTPLANARTOBD(I420, 2, 2, RGB565, 2, 2, 1, 9, ARGB, 4)

#define TESTPTOB(NAME, UYVYTOI420, UYVYTONV12)                                \
  TEST_F(LibYUVConvertTest, NAME) {                                           \
    const int kWidth = benchmark_width_;                                      \
    const int kHeight = benchmark_height_;                                    \
                                                                              \
    align_buffer_page_end(orig_uyvy, 4 * SUBSAMPLE(kWidth, 2) * kHeight);     \
    align_buffer_page_end(orig_y, kWidth* kHeight);                           \
    align_buffer_page_end(orig_u,                                             \
                          SUBSAMPLE(kWidth, 2) * SUBSAMPLE(kHeight, 2));      \
    align_buffer_page_end(orig_v,                                             \
                          SUBSAMPLE(kWidth, 2) * SUBSAMPLE(kHeight, 2));      \
                                                                              \
    align_buffer_page_end(dst_y_orig, kWidth* kHeight);                       \
    align_buffer_page_end(dst_uv_orig,                                        \
                          2 * SUBSAMPLE(kWidth, 2) * SUBSAMPLE(kHeight, 2));  \
                                                                              \
    align_buffer_page_end(dst_y, kWidth* kHeight);                            \
    align_buffer_page_end(dst_uv,                                             \
                          2 * SUBSAMPLE(kWidth, 2) * SUBSAMPLE(kHeight, 2));  \
                                                                              \
    MemRandomize(orig_uyvy, 4 * SUBSAMPLE(kWidth, 2) * kHeight);              \
                                                                              \
    /* Convert UYVY to NV12 in 2 steps for reference */                       \
    libyuv::UYVYTOI420(orig_uyvy, 4 * SUBSAMPLE(kWidth, 2), orig_y, kWidth,   \
                       orig_u, SUBSAMPLE(kWidth, 2), orig_v,                  \
                       SUBSAMPLE(kWidth, 2), kWidth, kHeight);                \
    libyuv::I420ToNV12(orig_y, kWidth, orig_u, SUBSAMPLE(kWidth, 2), orig_v,  \
                       SUBSAMPLE(kWidth, 2), dst_y_orig, kWidth, dst_uv_orig, \
                       2 * SUBSAMPLE(kWidth, 2), kWidth, kHeight);            \
                                                                              \
    /* Convert to NV12 */                                                     \
    for (int i = 0; i < benchmark_iterations_; ++i) {                         \
      libyuv::UYVYTONV12(orig_uyvy, 4 * SUBSAMPLE(kWidth, 2), dst_y, kWidth,  \
                         dst_uv, 2 * SUBSAMPLE(kWidth, 2), kWidth, kHeight);  \
    }                                                                         \
                                                                              \
    for (int i = 0; i < kWidth * kHeight; ++i) {                              \
      EXPECT_EQ(orig_y[i], dst_y[i]);                                         \
    }                                                                         \
    for (int i = 0; i < kWidth * kHeight; ++i) {                              \
      EXPECT_EQ(dst_y_orig[i], dst_y[i]);                                     \
    }                                                                         \
    for (int i = 0; i < 2 * SUBSAMPLE(kWidth, 2) * SUBSAMPLE(kHeight, 2);     \
         ++i) {                                                               \
      EXPECT_EQ(dst_uv_orig[i], dst_uv[i]);                                   \
    }                                                                         \
                                                                              \
    free_aligned_buffer_page_end(orig_uyvy);                                  \
    free_aligned_buffer_page_end(orig_y);                                     \
    free_aligned_buffer_page_end(orig_u);                                     \
    free_aligned_buffer_page_end(orig_v);                                     \
    free_aligned_buffer_page_end(dst_y_orig);                                 \
    free_aligned_buffer_page_end(dst_uv_orig);                                \
    free_aligned_buffer_page_end(dst_y);                                      \
    free_aligned_buffer_page_end(dst_uv);                                     \
  }

TESTPTOB(TestYUY2ToNV12, YUY2ToI420, YUY2ToNV12)
TESTPTOB(TestUYVYToNV12, UYVYToI420, UYVYToNV12)

#define TESTPLANARTOEI(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, SUB_B, BPP_B, \
                       W1280, N, NEG, OFF, FMT_C, BPP_C)                      \
  TEST_F(LibYUVConvertTest, FMT_PLANAR##To##FMT_B##_##FMT_C##N) {             \
    const int kWidth = ((W1280) > 0) ? (W1280) : 1;                           \
    const int kHeight = benchmark_height_;                                    \
    const int kStrideB = SUBSAMPLE(kWidth, SUB_B) * BPP_B;                    \
    const int kStrideUV = SUBSAMPLE(kWidth, SUBSAMP_X);                       \
    const int kSizeUV = kStrideUV * SUBSAMPLE(kHeight, SUBSAMP_Y);            \
    align_buffer_page_end(src_y, kWidth* kHeight + OFF);                      \
    align_buffer_page_end(src_u, kSizeUV + OFF);                              \
    align_buffer_page_end(src_v, kSizeUV + OFF);                              \
    align_buffer_page_end(dst_argb_b, kStrideB* kHeight + OFF);               \
    for (int i = 0; i < kWidth * kHeight; ++i) {                              \
      src_y[i + OFF] = (fastrand() & 0xff);                                   \
    }                                                                         \
    for (int i = 0; i < kSizeUV; ++i) {                                       \
      src_u[i + OFF] = (fastrand() & 0xff);                                   \
      src_v[i + OFF] = (fastrand() & 0xff);                                   \
    }                                                                         \
    memset(dst_argb_b + OFF, 1, kStrideB * kHeight);                          \
    for (int i = 0; i < benchmark_iterations_; ++i) {                         \
      FMT_PLANAR##To##FMT_B(src_y + OFF, kWidth, src_u + OFF, kStrideUV,      \
                            src_v + OFF, kStrideUV, dst_argb_b + OFF,         \
                            kStrideB, kWidth, NEG kHeight);                   \
    }                                                                         \
    /* Convert to a 3rd format in 1 step and 2 steps and compare  */          \
    const int kStrideC = kWidth * BPP_C;                                      \
    align_buffer_page_end(dst_argb_c, kStrideC* kHeight + OFF);               \
    align_buffer_page_end(dst_argb_bc, kStrideC* kHeight + OFF);              \
    memset(dst_argb_c + OFF, 2, kStrideC * kHeight);                          \
    memset(dst_argb_bc + OFF, 3, kStrideC * kHeight);                         \
    FMT_PLANAR##To##FMT_C(src_y + OFF, kWidth, src_u + OFF, kStrideUV,        \
                          src_v + OFF, kStrideUV, dst_argb_c + OFF, kStrideC, \
                          kWidth, NEG kHeight);                               \
    /* Convert B to C */                                                      \
    FMT_B##To##FMT_C(dst_argb_b + OFF, kStrideB, dst_argb_bc + OFF, kStrideC, \
                     kWidth, kHeight);                                        \
    for (int i = 0; i < kStrideC * kHeight; ++i) {                            \
      EXPECT_EQ(dst_argb_c[i + OFF], dst_argb_bc[i + OFF]);                   \
    }                                                                         \
    free_aligned_buffer_page_end(src_y);                                      \
    free_aligned_buffer_page_end(src_u);                                      \
    free_aligned_buffer_page_end(src_v);                                      \
    free_aligned_buffer_page_end(dst_argb_b);                                 \
    free_aligned_buffer_page_end(dst_argb_c);                                 \
    free_aligned_buffer_page_end(dst_argb_bc);                                \
  }

#define TESTPLANARTOE(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, SUB_B, BPP_B, \
                      FMT_C, BPP_C)                                          \
  TESTPLANARTOEI(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, SUB_B, BPP_B,      \
                 benchmark_width_ - 4, _Any, +, 0, FMT_C, BPP_C)             \
  TESTPLANARTOEI(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, SUB_B, BPP_B,      \
                 benchmark_width_, _Unaligned, +, 1, FMT_C, BPP_C)           \
  TESTPLANARTOEI(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, SUB_B, BPP_B,      \
                 benchmark_width_, _Invert, -, 0, FMT_C, BPP_C)              \
  TESTPLANARTOEI(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, SUB_B, BPP_B,      \
                 benchmark_width_, _Opt, +, 0, FMT_C, BPP_C)

TESTPLANARTOE(I420, 2, 2, ARGB, 1, 4, ABGR, 4)
TESTPLANARTOE(J420, 2, 2, ARGB, 1, 4, ARGB, 4)
TESTPLANARTOE(J420, 2, 2, ABGR, 1, 4, ARGB, 4)
TESTPLANARTOE(H420, 2, 2, ARGB, 1, 4, ARGB, 4)
TESTPLANARTOE(H420, 2, 2, ABGR, 1, 4, ARGB, 4)
TESTPLANARTOE(I420, 2, 2, BGRA, 1, 4, ARGB, 4)
TESTPLANARTOE(I420, 2, 2, ABGR, 1, 4, ARGB, 4)
TESTPLANARTOE(I420, 2, 2, RGBA, 1, 4, ARGB, 4)
TESTPLANARTOE(I420, 2, 2, RGB24, 1, 3, ARGB, 4)
TESTPLANARTOE(I420, 2, 2, RAW, 1, 3, RGB24, 3)
TESTPLANARTOE(I420, 2, 2, RGB24, 1, 3, RAW, 3)
TESTPLANARTOE(I420, 2, 2, ARGB, 1, 4, RAW, 3)
TESTPLANARTOE(I420, 2, 2, RAW, 1, 3, ARGB, 4)
TESTPLANARTOE(I420, 2, 2, ARGB, 1, 4, RGB565, 2)
TESTPLANARTOE(I420, 2, 2, ARGB, 1, 4, ARGB1555, 2)
TESTPLANARTOE(I420, 2, 2, ARGB, 1, 4, ARGB4444, 2)
TESTPLANARTOE(I422, 2, 1, ARGB, 1, 4,  RGB565, 2)
TESTPLANARTOE(J422, 2, 1, ARGB, 1, 4, ARGB, 4)
TESTPLANARTOE(J422, 2, 1, ABGR, 1, 4, ARGB, 4)
TESTPLANARTOE(H422, 2, 1, ARGB, 1, 4, ARGB, 4)
TESTPLANARTOE(H422, 2, 1, ABGR, 1, 4, ARGB, 4)
TESTPLANARTOE(I422, 2, 1, BGRA, 1, 4, ARGB, 4)
TESTPLANARTOE(I422, 2, 1, ABGR, 1, 4, ARGB, 4)
TESTPLANARTOE(I422, 2, 1, RGBA, 1, 4, ARGB, 4)
TESTPLANARTOE(I444, 1, 1, ARGB, 1, 4, ARGB, 4)
TESTPLANARTOE(J444, 1, 1, ARGB, 1, 4, ARGB, 4)
TESTPLANARTOE(I444, 1, 1, ABGR, 1, 4, ARGB, 4)
TESTPLANARTOE(I420, 2, 2, YUY2, 2, 4, ARGB, 4)
TESTPLANARTOE(I420, 2, 2, UYVY, 2, 4, ARGB, 4)
TESTPLANARTOE(I422, 2, 1, YUY2, 2, 4, ARGB, 4)
TESTPLANARTOE(I422, 2, 1, UYVY, 2, 4, ARGB, 4)

#define TESTQPLANARTOEI(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, SUB_B, BPP_B, \
                        W1280, N, NEG, OFF, FMT_C, BPP_C, ATTEN)               \
  TEST_F(LibYUVConvertTest, FMT_PLANAR##To##FMT_B##_##FMT_C##N) {              \
    const int kWidth = ((W1280) > 0) ? (W1280) : 1;                            \
    const int kHeight = benchmark_height_;                                     \
    const int kStrideB = SUBSAMPLE(kWidth, SUB_B) * BPP_B;                     \
    const int kSizeUV =                                                        \
        SUBSAMPLE(kWidth, SUBSAMP_X) * SUBSAMPLE(kHeight, SUBSAMP_Y);          \
    align_buffer_page_end(src_y, kWidth* kHeight + OFF);                       \
    align_buffer_page_end(src_u, kSizeUV + OFF);                               \
    align_buffer_page_end(src_v, kSizeUV + OFF);                               \
    align_buffer_page_end(src_a, kWidth* kHeight + OFF);                       \
    align_buffer_page_end(dst_argb_b, kStrideB* kHeight + OFF);                \
    for (int i = 0; i < kWidth * kHeight; ++i) {                               \
      src_y[i + OFF] = (fastrand() & 0xff);                                    \
      src_a[i + OFF] = (fastrand() & 0xff);                                    \
    }                                                                          \
    for (int i = 0; i < kSizeUV; ++i) {                                        \
      src_u[i + OFF] = (fastrand() & 0xff);                                    \
      src_v[i + OFF] = (fastrand() & 0xff);                                    \
    }                                                                          \
    memset(dst_argb_b + OFF, 1, kStrideB * kHeight);                           \
    for (int i = 0; i < benchmark_iterations_; ++i) {                          \
      FMT_PLANAR##To##FMT_B(                                                   \
          src_y + OFF, kWidth, src_u + OFF, SUBSAMPLE(kWidth, SUBSAMP_X),      \
          src_v + OFF, SUBSAMPLE(kWidth, SUBSAMP_X), src_a + OFF, kWidth,      \
          dst_argb_b + OFF, kStrideB, kWidth, NEG kHeight, ATTEN);             \
    }                                                                          \
    /* Convert to a 3rd format in 1 step and 2 steps and compare  */           \
    const int kStrideC = kWidth * BPP_C;                                       \
    align_buffer_page_end(dst_argb_c, kStrideC* kHeight + OFF);                \
    align_buffer_page_end(dst_argb_bc, kStrideC* kHeight + OFF);               \
    memset(dst_argb_c + OFF, 2, kStrideC * kHeight);                           \
    memset(dst_argb_bc + OFF, 3, kStrideC * kHeight);                          \
    FMT_PLANAR##To##FMT_C(                                                     \
        src_y + OFF, kWidth, src_u + OFF, SUBSAMPLE(kWidth, SUBSAMP_X),        \
        src_v + OFF, SUBSAMPLE(kWidth, SUBSAMP_X), src_a + OFF, kWidth,        \
        dst_argb_c + OFF, kStrideC, kWidth, NEG kHeight, ATTEN);               \
    /* Convert B to C */                                                       \
    FMT_B##To##FMT_C(dst_argb_b + OFF, kStrideB, dst_argb_bc + OFF, kStrideC,  \
                     kWidth, kHeight);                                         \
    for (int i = 0; i < kStrideC * kHeight; ++i) {                             \
      EXPECT_EQ(dst_argb_c[i + OFF], dst_argb_bc[i + OFF]);                    \
    }                                                                          \
    free_aligned_buffer_page_end(src_y);                                       \
    free_aligned_buffer_page_end(src_u);                                       \
    free_aligned_buffer_page_end(src_v);                                       \
    free_aligned_buffer_page_end(src_a);                                       \
    free_aligned_buffer_page_end(dst_argb_b);                                  \
    free_aligned_buffer_page_end(dst_argb_c);                                  \
    free_aligned_buffer_page_end(dst_argb_bc);                                 \
  }

#define TESTQPLANARTOE(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, SUB_B, BPP_B, \
                       FMT_C, BPP_C)                                          \
  TESTQPLANARTOEI(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, SUB_B, BPP_B,      \
                  benchmark_width_ - 4, _Any, +, 0, FMT_C, BPP_C, 0)          \
  TESTQPLANARTOEI(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, SUB_B, BPP_B,      \
                  benchmark_width_, _Unaligned, +, 1, FMT_C, BPP_C, 0)        \
  TESTQPLANARTOEI(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, SUB_B, BPP_B,      \
                  benchmark_width_, _Invert, -, 0, FMT_C, BPP_C, 0)           \
  TESTQPLANARTOEI(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, SUB_B, BPP_B,      \
                  benchmark_width_, _Opt, +, 0, FMT_C, BPP_C, 0)              \
  TESTQPLANARTOEI(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, SUB_B, BPP_B,      \
                  benchmark_width_, _Premult, +, 0, FMT_C, BPP_C, 1)

TESTQPLANARTOE(I420Alpha, 2, 2, ARGB, 1, 4, ABGR, 4)
TESTQPLANARTOE(I420Alpha, 2, 2, ABGR, 1, 4, ARGB, 4)

TEST_F(LibYUVConvertTest, RotateWithARGBSource) {
  // 2x2 frames
  uint32_t src[4];
  uint32_t dst[4];
  // some random input
  src[0] = 0x11000000;
  src[1] = 0x00450000;
  src[2] = 0x00009f00;
  src[3] = 0x000000ff;
  // zeros on destination
  dst[0] = 0x00000000;
  dst[1] = 0x00000000;
  dst[2] = 0x00000000;
  dst[3] = 0x00000000;

  int r = ConvertToARGB(reinterpret_cast<uint8_t*>(src),
                        16,  // input size
                        reinterpret_cast<uint8_t*>(dst),
                        8,  // destination stride
                        0,  // crop_x
                        0,  // crop_y
                        2,  // width
                        2,  // height
                        2,  // crop width
                        2,  // crop height
                        kRotate90, FOURCC_ARGB);

  EXPECT_EQ(r, 0);
  // 90 degrees rotation, no conversion
  EXPECT_EQ(dst[0], src[2]);
  EXPECT_EQ(dst[1], src[0]);
  EXPECT_EQ(dst[2], src[3]);
  EXPECT_EQ(dst[3], src[1]);
}

}  // namespace libyuv