//===-- Bitcode/Writer/ValueEnumerator.h - Number values --------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This class gives values and types Unique ID's. // //===----------------------------------------------------------------------===// #ifndef LLVM_LIB_BITCODE_WRITER_VALUEENUMERATOR_H #define LLVM_LIB_BITCODE_WRITER_VALUEENUMERATOR_H #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/UniqueVector.h" #include "llvm/IR/Attributes.h" #include "llvm/IR/Metadata.h" #include "llvm/IR/Type.h" #include "llvm/IR/UseListOrder.h" #include <vector> namespace llvm { class Type; class Value; class Instruction; class BasicBlock; class Comdat; class Function; class Module; class Metadata; class LocalAsMetadata; class MDNode; class MDOperand; class NamedMDNode; class AttributeSet; class ValueSymbolTable; class MDSymbolTable; class raw_ostream; class ValueEnumerator { public: typedef std::vector<Type*> TypeList; // For each value, we remember its Value* and occurrence frequency. typedef std::vector<std::pair<const Value*, unsigned> > ValueList; UseListOrderStack UseListOrders; private: typedef DenseMap<Type*, unsigned> TypeMapType; TypeMapType TypeMap; TypeList Types; typedef DenseMap<const Value*, unsigned> ValueMapType; ValueMapType ValueMap; ValueList Values; typedef UniqueVector<const Comdat *> ComdatSetType; ComdatSetType Comdats; std::vector<const Metadata *> MDs; std::vector<const Metadata *> FunctionMDs; /// Index of information about a piece of metadata. struct MDIndex { unsigned F = 0; ///< The ID of the function for this metadata, if any. unsigned ID = 0; ///< The implicit ID of this metadata in bitcode. MDIndex() = default; explicit MDIndex(unsigned F) : F(F) {} /// Check if this has a function tag, and it's different from NewF. bool hasDifferentFunction(unsigned NewF) const { return F && F != NewF; } /// Fetch the MD this references out of the given metadata array. const Metadata *get(ArrayRef<const Metadata *> MDs) const { assert(ID && "Expected non-zero ID"); assert(ID <= MDs.size() && "Expected valid ID"); return MDs[ID - 1]; } }; typedef DenseMap<const Metadata *, MDIndex> MetadataMapType; MetadataMapType MetadataMap; /// Range of metadata IDs, as a half-open range. struct MDRange { unsigned First = 0; unsigned Last = 0; /// Number of strings in the prefix of the metadata range. unsigned NumStrings = 0; MDRange() = default; explicit MDRange(unsigned First) : First(First) {} }; SmallDenseMap<unsigned, MDRange, 1> FunctionMDInfo; bool ShouldPreserveUseListOrder; typedef DenseMap<AttributeSet, unsigned> AttributeGroupMapType; AttributeGroupMapType AttributeGroupMap; std::vector<AttributeSet> AttributeGroups; typedef DenseMap<AttributeSet, unsigned> AttributeMapType; AttributeMapType AttributeMap; std::vector<AttributeSet> Attribute; /// GlobalBasicBlockIDs - This map memoizes the basic block ID's referenced by /// the "getGlobalBasicBlockID" method. mutable DenseMap<const BasicBlock*, unsigned> GlobalBasicBlockIDs; typedef DenseMap<const Instruction*, unsigned> InstructionMapType; InstructionMapType InstructionMap; unsigned InstructionCount; /// BasicBlocks - This contains all the basic blocks for the currently /// incorporated function. Their reverse mapping is stored in ValueMap. std::vector<const BasicBlock*> BasicBlocks; /// When a function is incorporated, this is the size of the Values list /// before incorporation. unsigned NumModuleValues; /// When a function is incorporated, this is the size of the Metadatas list /// before incorporation. unsigned NumModuleMDs = 0; unsigned NumMDStrings = 0; unsigned FirstFuncConstantID; unsigned FirstInstID; ValueEnumerator(const ValueEnumerator &) = delete; void operator=(const ValueEnumerator &) = delete; public: ValueEnumerator(const Module &M, bool ShouldPreserveUseListOrder); void dump() const; void print(raw_ostream &OS, const ValueMapType &Map, const char *Name) const; void print(raw_ostream &OS, const MetadataMapType &Map, const char *Name) const; unsigned getValueID(const Value *V) const; unsigned getMetadataID(const Metadata *MD) const { auto ID = getMetadataOrNullID(MD); assert(ID != 0 && "Metadata not in slotcalculator!"); return ID - 1; } unsigned getMetadataOrNullID(const Metadata *MD) const { return MetadataMap.lookup(MD).ID; } unsigned numMDs() const { return MDs.size(); } bool shouldPreserveUseListOrder() const { return ShouldPreserveUseListOrder; } unsigned getTypeID(Type *T) const { TypeMapType::const_iterator I = TypeMap.find(T); assert(I != TypeMap.end() && "Type not in ValueEnumerator!"); return I->second-1; } unsigned getInstructionID(const Instruction *I) const; void setInstructionID(const Instruction *I); unsigned getAttributeID(AttributeSet PAL) const { if (PAL.isEmpty()) return 0; // Null maps to zero. AttributeMapType::const_iterator I = AttributeMap.find(PAL); assert(I != AttributeMap.end() && "Attribute not in ValueEnumerator!"); return I->second; } unsigned getAttributeGroupID(AttributeSet PAL) const { if (PAL.isEmpty()) return 0; // Null maps to zero. AttributeGroupMapType::const_iterator I = AttributeGroupMap.find(PAL); assert(I != AttributeGroupMap.end() && "Attribute not in ValueEnumerator!"); return I->second; } /// getFunctionConstantRange - Return the range of values that corresponds to /// function-local constants. void getFunctionConstantRange(unsigned &Start, unsigned &End) const { Start = FirstFuncConstantID; End = FirstInstID; } const ValueList &getValues() const { return Values; } /// Check whether the current block has any metadata to emit. bool hasMDs() const { return NumModuleMDs < MDs.size(); } /// Get the MDString metadata for this block. ArrayRef<const Metadata *> getMDStrings() const { return makeArrayRef(MDs).slice(NumModuleMDs, NumMDStrings); } /// Get the non-MDString metadata for this block. ArrayRef<const Metadata *> getNonMDStrings() const { return makeArrayRef(MDs).slice(NumModuleMDs).slice(NumMDStrings); } const TypeList &getTypes() const { return Types; } const std::vector<const BasicBlock*> &getBasicBlocks() const { return BasicBlocks; } const std::vector<AttributeSet> &getAttributes() const { return Attribute; } const std::vector<AttributeSet> &getAttributeGroups() const { return AttributeGroups; } const ComdatSetType &getComdats() const { return Comdats; } unsigned getComdatID(const Comdat *C) const; /// getGlobalBasicBlockID - This returns the function-specific ID for the /// specified basic block. This is relatively expensive information, so it /// should only be used by rare constructs such as address-of-label. unsigned getGlobalBasicBlockID(const BasicBlock *BB) const; /// incorporateFunction/purgeFunction - If you'd like to deal with a function, /// use these two methods to get its data into the ValueEnumerator! /// void incorporateFunction(const Function &F); void purgeFunction(); uint64_t computeBitsRequiredForTypeIndicies() const; private: void OptimizeConstants(unsigned CstStart, unsigned CstEnd); /// Reorder the reachable metadata. /// /// This is not just an optimization, but is mandatory for emitting MDString /// correctly. void organizeMetadata(); /// Drop the function tag from the transitive operands of the given node. void dropFunctionFromMetadata(MetadataMapType::value_type &FirstMD); /// Incorporate the function metadata. /// /// This should be called before enumerating LocalAsMetadata for the /// function. void incorporateFunctionMetadata(const Function &F); /// Enumerate a single instance of metadata with the given function tag. /// /// If \c MD has already been enumerated, check that \c F matches its /// function tag. If not, call \a dropFunctionFromMetadata(). /// /// Otherwise, mark \c MD as visited. Assign it an ID, or just return it if /// it's an \a MDNode. const MDNode *enumerateMetadataImpl(unsigned F, const Metadata *MD); unsigned getMetadataFunctionID(const Function *F) const; /// Enumerate reachable metadata in (almost) post-order. /// /// Enumerate all the metadata reachable from MD. We want to minimize the /// cost of reading bitcode records, and so the primary consideration is that /// operands of uniqued nodes are resolved before the nodes are read. This /// avoids re-uniquing them on the context and factors away RAUW support. /// /// This algorithm guarantees that subgraphs of uniqued nodes are in /// post-order. Distinct subgraphs reachable only from a single uniqued node /// will be in post-order. /// /// \note The relative order of a distinct and uniqued node is irrelevant. /// \a organizeMetadata() will later partition distinct nodes ahead of /// uniqued ones. ///{ void EnumerateMetadata(const Function *F, const Metadata *MD); void EnumerateMetadata(unsigned F, const Metadata *MD); ///} void EnumerateFunctionLocalMetadata(const Function &F, const LocalAsMetadata *Local); void EnumerateFunctionLocalMetadata(unsigned F, const LocalAsMetadata *Local); void EnumerateNamedMDNode(const NamedMDNode *NMD); void EnumerateValue(const Value *V); void EnumerateType(Type *T); void EnumerateOperandType(const Value *V); void EnumerateAttributes(AttributeSet PAL); void EnumerateValueSymbolTable(const ValueSymbolTable &ST); void EnumerateNamedMetadata(const Module &M); }; } // End llvm namespace #endif