//===-- IfConversion.cpp - Machine code if conversion pass. ---------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the machine instruction level if-conversion pass, which // tries to convert conditional branches into predicated instructions. // //===----------------------------------------------------------------------===// #include "llvm/CodeGen/Passes.h" #include "BranchFolding.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/Statistic.h" #include "llvm/CodeGen/LivePhysRegs.h" #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineModuleInfo.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/TargetSchedule.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetLowering.h" #include "llvm/Target/TargetRegisterInfo.h" #include "llvm/Target/TargetSubtargetInfo.h" #include <algorithm> #include <utility> using namespace llvm; #define DEBUG_TYPE "ifcvt" // Hidden options for help debugging. static cl::opt<int> IfCvtFnStart("ifcvt-fn-start", cl::init(-1), cl::Hidden); static cl::opt<int> IfCvtFnStop("ifcvt-fn-stop", cl::init(-1), cl::Hidden); static cl::opt<int> IfCvtLimit("ifcvt-limit", cl::init(-1), cl::Hidden); static cl::opt<bool> DisableSimple("disable-ifcvt-simple", cl::init(false), cl::Hidden); static cl::opt<bool> DisableSimpleF("disable-ifcvt-simple-false", cl::init(false), cl::Hidden); static cl::opt<bool> DisableTriangle("disable-ifcvt-triangle", cl::init(false), cl::Hidden); static cl::opt<bool> DisableTriangleR("disable-ifcvt-triangle-rev", cl::init(false), cl::Hidden); static cl::opt<bool> DisableTriangleF("disable-ifcvt-triangle-false", cl::init(false), cl::Hidden); static cl::opt<bool> DisableTriangleFR("disable-ifcvt-triangle-false-rev", cl::init(false), cl::Hidden); static cl::opt<bool> DisableDiamond("disable-ifcvt-diamond", cl::init(false), cl::Hidden); static cl::opt<bool> IfCvtBranchFold("ifcvt-branch-fold", cl::init(true), cl::Hidden); STATISTIC(NumSimple, "Number of simple if-conversions performed"); STATISTIC(NumSimpleFalse, "Number of simple (F) if-conversions performed"); STATISTIC(NumTriangle, "Number of triangle if-conversions performed"); STATISTIC(NumTriangleRev, "Number of triangle (R) if-conversions performed"); STATISTIC(NumTriangleFalse,"Number of triangle (F) if-conversions performed"); STATISTIC(NumTriangleFRev, "Number of triangle (F/R) if-conversions performed"); STATISTIC(NumDiamonds, "Number of diamond if-conversions performed"); STATISTIC(NumIfConvBBs, "Number of if-converted blocks"); STATISTIC(NumDupBBs, "Number of duplicated blocks"); STATISTIC(NumUnpred, "Number of true blocks of diamonds unpredicated"); namespace { class IfConverter : public MachineFunctionPass { enum IfcvtKind { ICNotClassfied, // BB data valid, but not classified. ICSimpleFalse, // Same as ICSimple, but on the false path. ICSimple, // BB is entry of an one split, no rejoin sub-CFG. ICTriangleFRev, // Same as ICTriangleFalse, but false path rev condition. ICTriangleRev, // Same as ICTriangle, but true path rev condition. ICTriangleFalse, // Same as ICTriangle, but on the false path. ICTriangle, // BB is entry of a triangle sub-CFG. ICDiamond // BB is entry of a diamond sub-CFG. }; /// BBInfo - One per MachineBasicBlock, this is used to cache the result /// if-conversion feasibility analysis. This includes results from /// TargetInstrInfo::analyzeBranch() (i.e. TBB, FBB, and Cond), and its /// classification, and common tail block of its successors (if it's a /// diamond shape), its size, whether it's predicable, and whether any /// instruction can clobber the 'would-be' predicate. /// /// IsDone - True if BB is not to be considered for ifcvt. /// IsBeingAnalyzed - True if BB is currently being analyzed. /// IsAnalyzed - True if BB has been analyzed (info is still valid). /// IsEnqueued - True if BB has been enqueued to be ifcvt'ed. /// IsBrAnalyzable - True if analyzeBranch() returns false. /// HasFallThrough - True if BB may fallthrough to the following BB. /// IsUnpredicable - True if BB is known to be unpredicable. /// ClobbersPred - True if BB could modify predicates (e.g. has /// cmp, call, etc.) /// NonPredSize - Number of non-predicated instructions. /// ExtraCost - Extra cost for multi-cycle instructions. /// ExtraCost2 - Some instructions are slower when predicated /// BB - Corresponding MachineBasicBlock. /// TrueBB / FalseBB- See analyzeBranch(). /// BrCond - Conditions for end of block conditional branches. /// Predicate - Predicate used in the BB. struct BBInfo { bool IsDone : 1; bool IsBeingAnalyzed : 1; bool IsAnalyzed : 1; bool IsEnqueued : 1; bool IsBrAnalyzable : 1; bool HasFallThrough : 1; bool IsUnpredicable : 1; bool CannotBeCopied : 1; bool ClobbersPred : 1; unsigned NonPredSize; unsigned ExtraCost; unsigned ExtraCost2; MachineBasicBlock *BB; MachineBasicBlock *TrueBB; MachineBasicBlock *FalseBB; SmallVector<MachineOperand, 4> BrCond; SmallVector<MachineOperand, 4> Predicate; BBInfo() : IsDone(false), IsBeingAnalyzed(false), IsAnalyzed(false), IsEnqueued(false), IsBrAnalyzable(false), HasFallThrough(false), IsUnpredicable(false), CannotBeCopied(false), ClobbersPred(false), NonPredSize(0), ExtraCost(0), ExtraCost2(0), BB(nullptr), TrueBB(nullptr), FalseBB(nullptr) {} }; /// IfcvtToken - Record information about pending if-conversions to attempt: /// BBI - Corresponding BBInfo. /// Kind - Type of block. See IfcvtKind. /// NeedSubsumption - True if the to-be-predicated BB has already been /// predicated. /// NumDups - Number of instructions that would be duplicated due /// to this if-conversion. (For diamonds, the number of /// identical instructions at the beginnings of both /// paths). /// NumDups2 - For diamonds, the number of identical instructions /// at the ends of both paths. struct IfcvtToken { BBInfo &BBI; IfcvtKind Kind; bool NeedSubsumption; unsigned NumDups; unsigned NumDups2; IfcvtToken(BBInfo &b, IfcvtKind k, bool s, unsigned d, unsigned d2 = 0) : BBI(b), Kind(k), NeedSubsumption(s), NumDups(d), NumDups2(d2) {} }; /// BBAnalysis - Results of if-conversion feasibility analysis indexed by /// basic block number. std::vector<BBInfo> BBAnalysis; TargetSchedModel SchedModel; const TargetLoweringBase *TLI; const TargetInstrInfo *TII; const TargetRegisterInfo *TRI; const MachineBranchProbabilityInfo *MBPI; MachineRegisterInfo *MRI; LivePhysRegs Redefs; LivePhysRegs DontKill; bool PreRegAlloc; bool MadeChange; int FnNum; std::function<bool(const Function &)> PredicateFtor; public: static char ID; IfConverter(std::function<bool(const Function &)> Ftor = nullptr) : MachineFunctionPass(ID), FnNum(-1), PredicateFtor(std::move(Ftor)) { initializeIfConverterPass(*PassRegistry::getPassRegistry()); } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.addRequired<MachineBlockFrequencyInfo>(); AU.addRequired<MachineBranchProbabilityInfo>(); MachineFunctionPass::getAnalysisUsage(AU); } bool runOnMachineFunction(MachineFunction &MF) override; MachineFunctionProperties getRequiredProperties() const override { return MachineFunctionProperties().set( MachineFunctionProperties::Property::AllVRegsAllocated); } private: bool ReverseBranchCondition(BBInfo &BBI); bool ValidSimple(BBInfo &TrueBBI, unsigned &Dups, BranchProbability Prediction) const; bool ValidTriangle(BBInfo &TrueBBI, BBInfo &FalseBBI, bool FalseBranch, unsigned &Dups, BranchProbability Prediction) const; bool ValidDiamond(BBInfo &TrueBBI, BBInfo &FalseBBI, unsigned &Dups1, unsigned &Dups2) const; void ScanInstructions(BBInfo &BBI); void AnalyzeBlock(MachineBasicBlock *MBB, std::vector<std::unique_ptr<IfcvtToken>> &Tokens); bool FeasibilityAnalysis(BBInfo &BBI, SmallVectorImpl<MachineOperand> &Cond, bool isTriangle = false, bool RevBranch = false); void AnalyzeBlocks(MachineFunction &MF, std::vector<std::unique_ptr<IfcvtToken>> &Tokens); void InvalidatePreds(MachineBasicBlock *BB); void RemoveExtraEdges(BBInfo &BBI); bool IfConvertSimple(BBInfo &BBI, IfcvtKind Kind); bool IfConvertTriangle(BBInfo &BBI, IfcvtKind Kind); bool IfConvertDiamond(BBInfo &BBI, IfcvtKind Kind, unsigned NumDups1, unsigned NumDups2); void PredicateBlock(BBInfo &BBI, MachineBasicBlock::iterator E, SmallVectorImpl<MachineOperand> &Cond, SmallSet<unsigned, 4> *LaterRedefs = nullptr); void CopyAndPredicateBlock(BBInfo &ToBBI, BBInfo &FromBBI, SmallVectorImpl<MachineOperand> &Cond, bool IgnoreBr = false); void MergeBlocks(BBInfo &ToBBI, BBInfo &FromBBI, bool AddEdges = true); bool MeetIfcvtSizeLimit(MachineBasicBlock &BB, unsigned Cycle, unsigned Extra, BranchProbability Prediction) const { return Cycle > 0 && TII->isProfitableToIfCvt(BB, Cycle, Extra, Prediction); } bool MeetIfcvtSizeLimit(MachineBasicBlock &TBB, unsigned TCycle, unsigned TExtra, MachineBasicBlock &FBB, unsigned FCycle, unsigned FExtra, BranchProbability Prediction) const { return TCycle > 0 && FCycle > 0 && TII->isProfitableToIfCvt(TBB, TCycle, TExtra, FBB, FCycle, FExtra, Prediction); } // blockAlwaysFallThrough - Block ends without a terminator. bool blockAlwaysFallThrough(BBInfo &BBI) const { return BBI.IsBrAnalyzable && BBI.TrueBB == nullptr; } // IfcvtTokenCmp - Used to sort if-conversion candidates. static bool IfcvtTokenCmp(const std::unique_ptr<IfcvtToken> &C1, const std::unique_ptr<IfcvtToken> &C2) { int Incr1 = (C1->Kind == ICDiamond) ? -(int)(C1->NumDups + C1->NumDups2) : (int)C1->NumDups; int Incr2 = (C2->Kind == ICDiamond) ? -(int)(C2->NumDups + C2->NumDups2) : (int)C2->NumDups; if (Incr1 > Incr2) return true; else if (Incr1 == Incr2) { // Favors subsumption. if (!C1->NeedSubsumption && C2->NeedSubsumption) return true; else if (C1->NeedSubsumption == C2->NeedSubsumption) { // Favors diamond over triangle, etc. if ((unsigned)C1->Kind < (unsigned)C2->Kind) return true; else if (C1->Kind == C2->Kind) return C1->BBI.BB->getNumber() < C2->BBI.BB->getNumber(); } } return false; } }; char IfConverter::ID = 0; } char &llvm::IfConverterID = IfConverter::ID; INITIALIZE_PASS_BEGIN(IfConverter, "if-converter", "If Converter", false, false) INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) INITIALIZE_PASS_END(IfConverter, "if-converter", "If Converter", false, false) bool IfConverter::runOnMachineFunction(MachineFunction &MF) { if (skipFunction(*MF.getFunction()) || (PredicateFtor && !PredicateFtor(*MF.getFunction()))) return false; const TargetSubtargetInfo &ST = MF.getSubtarget(); TLI = ST.getTargetLowering(); TII = ST.getInstrInfo(); TRI = ST.getRegisterInfo(); BranchFolder::MBFIWrapper MBFI(getAnalysis<MachineBlockFrequencyInfo>()); MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); MRI = &MF.getRegInfo(); SchedModel.init(ST.getSchedModel(), &ST, TII); if (!TII) return false; PreRegAlloc = MRI->isSSA(); bool BFChange = false; if (!PreRegAlloc) { // Tail merge tend to expose more if-conversion opportunities. BranchFolder BF(true, false, MBFI, *MBPI); BFChange = BF.OptimizeFunction(MF, TII, ST.getRegisterInfo(), getAnalysisIfAvailable<MachineModuleInfo>()); } DEBUG(dbgs() << "\nIfcvt: function (" << ++FnNum << ") \'" << MF.getName() << "\'"); if (FnNum < IfCvtFnStart || (IfCvtFnStop != -1 && FnNum > IfCvtFnStop)) { DEBUG(dbgs() << " skipped\n"); return false; } DEBUG(dbgs() << "\n"); MF.RenumberBlocks(); BBAnalysis.resize(MF.getNumBlockIDs()); std::vector<std::unique_ptr<IfcvtToken>> Tokens; MadeChange = false; unsigned NumIfCvts = NumSimple + NumSimpleFalse + NumTriangle + NumTriangleRev + NumTriangleFalse + NumTriangleFRev + NumDiamonds; while (IfCvtLimit == -1 || (int)NumIfCvts < IfCvtLimit) { // Do an initial analysis for each basic block and find all the potential // candidates to perform if-conversion. bool Change = false; AnalyzeBlocks(MF, Tokens); while (!Tokens.empty()) { std::unique_ptr<IfcvtToken> Token = std::move(Tokens.back()); Tokens.pop_back(); BBInfo &BBI = Token->BBI; IfcvtKind Kind = Token->Kind; unsigned NumDups = Token->NumDups; unsigned NumDups2 = Token->NumDups2; // If the block has been evicted out of the queue or it has already been // marked dead (due to it being predicated), then skip it. if (BBI.IsDone) BBI.IsEnqueued = false; if (!BBI.IsEnqueued) continue; BBI.IsEnqueued = false; bool RetVal = false; switch (Kind) { default: llvm_unreachable("Unexpected!"); case ICSimple: case ICSimpleFalse: { bool isFalse = Kind == ICSimpleFalse; if ((isFalse && DisableSimpleF) || (!isFalse && DisableSimple)) break; DEBUG(dbgs() << "Ifcvt (Simple" << (Kind == ICSimpleFalse ? " false" : "") << "): BB#" << BBI.BB->getNumber() << " (" << ((Kind == ICSimpleFalse) ? BBI.FalseBB->getNumber() : BBI.TrueBB->getNumber()) << ") "); RetVal = IfConvertSimple(BBI, Kind); DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n"); if (RetVal) { if (isFalse) ++NumSimpleFalse; else ++NumSimple; } break; } case ICTriangle: case ICTriangleRev: case ICTriangleFalse: case ICTriangleFRev: { bool isFalse = Kind == ICTriangleFalse; bool isRev = (Kind == ICTriangleRev || Kind == ICTriangleFRev); if (DisableTriangle && !isFalse && !isRev) break; if (DisableTriangleR && !isFalse && isRev) break; if (DisableTriangleF && isFalse && !isRev) break; if (DisableTriangleFR && isFalse && isRev) break; DEBUG(dbgs() << "Ifcvt (Triangle"); if (isFalse) DEBUG(dbgs() << " false"); if (isRev) DEBUG(dbgs() << " rev"); DEBUG(dbgs() << "): BB#" << BBI.BB->getNumber() << " (T:" << BBI.TrueBB->getNumber() << ",F:" << BBI.FalseBB->getNumber() << ") "); RetVal = IfConvertTriangle(BBI, Kind); DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n"); if (RetVal) { if (isFalse) { if (isRev) ++NumTriangleFRev; else ++NumTriangleFalse; } else { if (isRev) ++NumTriangleRev; else ++NumTriangle; } } break; } case ICDiamond: { if (DisableDiamond) break; DEBUG(dbgs() << "Ifcvt (Diamond): BB#" << BBI.BB->getNumber() << " (T:" << BBI.TrueBB->getNumber() << ",F:" << BBI.FalseBB->getNumber() << ") "); RetVal = IfConvertDiamond(BBI, Kind, NumDups, NumDups2); DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n"); if (RetVal) ++NumDiamonds; break; } } Change |= RetVal; NumIfCvts = NumSimple + NumSimpleFalse + NumTriangle + NumTriangleRev + NumTriangleFalse + NumTriangleFRev + NumDiamonds; if (IfCvtLimit != -1 && (int)NumIfCvts >= IfCvtLimit) break; } if (!Change) break; MadeChange |= Change; } Tokens.clear(); BBAnalysis.clear(); if (MadeChange && IfCvtBranchFold) { BranchFolder BF(false, false, MBFI, *MBPI); BF.OptimizeFunction(MF, TII, MF.getSubtarget().getRegisterInfo(), getAnalysisIfAvailable<MachineModuleInfo>()); } MadeChange |= BFChange; return MadeChange; } /// findFalseBlock - BB has a fallthrough. Find its 'false' successor given /// its 'true' successor. static MachineBasicBlock *findFalseBlock(MachineBasicBlock *BB, MachineBasicBlock *TrueBB) { for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(), E = BB->succ_end(); SI != E; ++SI) { MachineBasicBlock *SuccBB = *SI; if (SuccBB != TrueBB) return SuccBB; } return nullptr; } /// ReverseBranchCondition - Reverse the condition of the end of the block /// branch. Swap block's 'true' and 'false' successors. bool IfConverter::ReverseBranchCondition(BBInfo &BBI) { DebugLoc dl; // FIXME: this is nowhere if (!TII->ReverseBranchCondition(BBI.BrCond)) { TII->RemoveBranch(*BBI.BB); TII->InsertBranch(*BBI.BB, BBI.FalseBB, BBI.TrueBB, BBI.BrCond, dl); std::swap(BBI.TrueBB, BBI.FalseBB); return true; } return false; } /// getNextBlock - Returns the next block in the function blocks ordering. If /// it is the end, returns NULL. static inline MachineBasicBlock *getNextBlock(MachineBasicBlock *BB) { MachineFunction::iterator I = BB->getIterator(); MachineFunction::iterator E = BB->getParent()->end(); if (++I == E) return nullptr; return &*I; } /// ValidSimple - Returns true if the 'true' block (along with its /// predecessor) forms a valid simple shape for ifcvt. It also returns the /// number of instructions that the ifcvt would need to duplicate if performed /// in Dups. bool IfConverter::ValidSimple(BBInfo &TrueBBI, unsigned &Dups, BranchProbability Prediction) const { Dups = 0; if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone) return false; if (TrueBBI.IsBrAnalyzable) return false; if (TrueBBI.BB->pred_size() > 1) { if (TrueBBI.CannotBeCopied || !TII->isProfitableToDupForIfCvt(*TrueBBI.BB, TrueBBI.NonPredSize, Prediction)) return false; Dups = TrueBBI.NonPredSize; } return true; } /// ValidTriangle - Returns true if the 'true' and 'false' blocks (along /// with their common predecessor) forms a valid triangle shape for ifcvt. /// If 'FalseBranch' is true, it checks if 'true' block's false branch /// branches to the 'false' block rather than the other way around. It also /// returns the number of instructions that the ifcvt would need to duplicate /// if performed in 'Dups'. bool IfConverter::ValidTriangle(BBInfo &TrueBBI, BBInfo &FalseBBI, bool FalseBranch, unsigned &Dups, BranchProbability Prediction) const { Dups = 0; if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone) return false; if (TrueBBI.BB->pred_size() > 1) { if (TrueBBI.CannotBeCopied) return false; unsigned Size = TrueBBI.NonPredSize; if (TrueBBI.IsBrAnalyzable) { if (TrueBBI.TrueBB && TrueBBI.BrCond.empty()) // Ends with an unconditional branch. It will be removed. --Size; else { MachineBasicBlock *FExit = FalseBranch ? TrueBBI.TrueBB : TrueBBI.FalseBB; if (FExit) // Require a conditional branch ++Size; } } if (!TII->isProfitableToDupForIfCvt(*TrueBBI.BB, Size, Prediction)) return false; Dups = Size; } MachineBasicBlock *TExit = FalseBranch ? TrueBBI.FalseBB : TrueBBI.TrueBB; if (!TExit && blockAlwaysFallThrough(TrueBBI)) { MachineFunction::iterator I = TrueBBI.BB->getIterator(); if (++I == TrueBBI.BB->getParent()->end()) return false; TExit = &*I; } return TExit && TExit == FalseBBI.BB; } /// ValidDiamond - Returns true if the 'true' and 'false' blocks (along /// with their common predecessor) forms a valid diamond shape for ifcvt. bool IfConverter::ValidDiamond(BBInfo &TrueBBI, BBInfo &FalseBBI, unsigned &Dups1, unsigned &Dups2) const { Dups1 = Dups2 = 0; if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone || FalseBBI.IsBeingAnalyzed || FalseBBI.IsDone) return false; MachineBasicBlock *TT = TrueBBI.TrueBB; MachineBasicBlock *FT = FalseBBI.TrueBB; if (!TT && blockAlwaysFallThrough(TrueBBI)) TT = getNextBlock(TrueBBI.BB); if (!FT && blockAlwaysFallThrough(FalseBBI)) FT = getNextBlock(FalseBBI.BB); if (TT != FT) return false; if (!TT && (TrueBBI.IsBrAnalyzable || FalseBBI.IsBrAnalyzable)) return false; if (TrueBBI.BB->pred_size() > 1 || FalseBBI.BB->pred_size() > 1) return false; // FIXME: Allow true block to have an early exit? if (TrueBBI.FalseBB || FalseBBI.FalseBB || (TrueBBI.ClobbersPred && FalseBBI.ClobbersPred)) return false; // Count duplicate instructions at the beginning of the true and false blocks. MachineBasicBlock::iterator TIB = TrueBBI.BB->begin(); MachineBasicBlock::iterator FIB = FalseBBI.BB->begin(); MachineBasicBlock::iterator TIE = TrueBBI.BB->end(); MachineBasicBlock::iterator FIE = FalseBBI.BB->end(); while (TIB != TIE && FIB != FIE) { // Skip dbg_value instructions. These do not count. if (TIB->isDebugValue()) { while (TIB != TIE && TIB->isDebugValue()) ++TIB; if (TIB == TIE) break; } if (FIB->isDebugValue()) { while (FIB != FIE && FIB->isDebugValue()) ++FIB; if (FIB == FIE) break; } if (!TIB->isIdenticalTo(*FIB)) break; ++Dups1; ++TIB; ++FIB; } // Now, in preparation for counting duplicate instructions at the ends of the // blocks, move the end iterators up past any branch instructions. // If both blocks are returning don't skip the branches, since they will // likely be both identical return instructions. In such cases the return // can be left unpredicated. // Check for already containing all of the block. if (TIB == TIE || FIB == FIE) return true; --TIE; --FIE; if (!TrueBBI.BB->succ_empty() || !FalseBBI.BB->succ_empty()) { while (TIE != TIB && TIE->isBranch()) --TIE; while (FIE != FIB && FIE->isBranch()) --FIE; } // If Dups1 includes all of a block, then don't count duplicate // instructions at the end of the blocks. if (TIB == TIE || FIB == FIE) return true; // Count duplicate instructions at the ends of the blocks. while (TIE != TIB && FIE != FIB) { // Skip dbg_value instructions. These do not count. if (TIE->isDebugValue()) { while (TIE != TIB && TIE->isDebugValue()) --TIE; if (TIE == TIB) break; } if (FIE->isDebugValue()) { while (FIE != FIB && FIE->isDebugValue()) --FIE; if (FIE == FIB) break; } if (!TIE->isIdenticalTo(*FIE)) break; ++Dups2; --TIE; --FIE; } return true; } /// ScanInstructions - Scan all the instructions in the block to determine if /// the block is predicable. In most cases, that means all the instructions /// in the block are isPredicable(). Also checks if the block contains any /// instruction which can clobber a predicate (e.g. condition code register). /// If so, the block is not predicable unless it's the last instruction. void IfConverter::ScanInstructions(BBInfo &BBI) { if (BBI.IsDone) return; bool AlreadyPredicated = !BBI.Predicate.empty(); // First analyze the end of BB branches. BBI.TrueBB = BBI.FalseBB = nullptr; BBI.BrCond.clear(); BBI.IsBrAnalyzable = !TII->analyzeBranch(*BBI.BB, BBI.TrueBB, BBI.FalseBB, BBI.BrCond); BBI.HasFallThrough = BBI.IsBrAnalyzable && BBI.FalseBB == nullptr; if (BBI.BrCond.size()) { // No false branch. This BB must end with a conditional branch and a // fallthrough. if (!BBI.FalseBB) BBI.FalseBB = findFalseBlock(BBI.BB, BBI.TrueBB); if (!BBI.FalseBB) { // Malformed bcc? True and false blocks are the same? BBI.IsUnpredicable = true; return; } } // Then scan all the instructions. BBI.NonPredSize = 0; BBI.ExtraCost = 0; BBI.ExtraCost2 = 0; BBI.ClobbersPred = false; for (auto &MI : *BBI.BB) { if (MI.isDebugValue()) continue; // It's unsafe to duplicate convergent instructions in this context, so set // BBI.CannotBeCopied to true if MI is convergent. To see why, consider the // following CFG, which is subject to our "simple" transformation. // // BB0 // if (c1) goto BB1; else goto BB2; // / \ // BB1 | // | BB2 // if (c2) goto TBB; else goto FBB; // | / | // | / | // TBB | // | | // | FBB // | // exit // // Suppose we want to move TBB's contents up into BB1 and BB2 (in BB1 they'd // be unconditional, and in BB2, they'd be predicated upon c2), and suppose // TBB contains a convergent instruction. This is safe iff doing so does // not add a control-flow dependency to the convergent instruction -- i.e., // it's safe iff the set of control flows that leads us to the convergent // instruction does not get smaller after the transformation. // // Originally we executed TBB if c1 || c2. After the transformation, there // are two copies of TBB's instructions. We get to the first if c1, and we // get to the second if !c1 && c2. // // There are clearly fewer ways to satisfy the condition "c1" than // "c1 || c2". Since we've shrunk the set of control flows which lead to // our convergent instruction, the transformation is unsafe. if (MI.isNotDuplicable() || MI.isConvergent()) BBI.CannotBeCopied = true; bool isPredicated = TII->isPredicated(MI); bool isCondBr = BBI.IsBrAnalyzable && MI.isConditionalBranch(); // A conditional branch is not predicable, but it may be eliminated. if (isCondBr) continue; if (!isPredicated) { BBI.NonPredSize++; unsigned ExtraPredCost = TII->getPredicationCost(MI); unsigned NumCycles = SchedModel.computeInstrLatency(&MI, false); if (NumCycles > 1) BBI.ExtraCost += NumCycles-1; BBI.ExtraCost2 += ExtraPredCost; } else if (!AlreadyPredicated) { // FIXME: This instruction is already predicated before the // if-conversion pass. It's probably something like a conditional move. // Mark this block unpredicable for now. BBI.IsUnpredicable = true; return; } if (BBI.ClobbersPred && !isPredicated) { // Predicate modification instruction should end the block (except for // already predicated instructions and end of block branches). // Predicate may have been modified, the subsequent (currently) // unpredicated instructions cannot be correctly predicated. BBI.IsUnpredicable = true; return; } // FIXME: Make use of PredDefs? e.g. ADDC, SUBC sets predicates but are // still potentially predicable. std::vector<MachineOperand> PredDefs; if (TII->DefinesPredicate(MI, PredDefs)) BBI.ClobbersPred = true; if (!TII->isPredicable(MI)) { BBI.IsUnpredicable = true; return; } } } /// FeasibilityAnalysis - Determine if the block is a suitable candidate to be /// predicated by the specified predicate. bool IfConverter::FeasibilityAnalysis(BBInfo &BBI, SmallVectorImpl<MachineOperand> &Pred, bool isTriangle, bool RevBranch) { // If the block is dead or unpredicable, then it cannot be predicated. if (BBI.IsDone || BBI.IsUnpredicable) return false; // If it is already predicated but we couldn't analyze its terminator, the // latter might fallthrough, but we can't determine where to. // Conservatively avoid if-converting again. if (BBI.Predicate.size() && !BBI.IsBrAnalyzable) return false; // If it is already predicated, check if the new predicate subsumes // its predicate. if (BBI.Predicate.size() && !TII->SubsumesPredicate(Pred, BBI.Predicate)) return false; if (BBI.BrCond.size()) { if (!isTriangle) return false; // Test predicate subsumption. SmallVector<MachineOperand, 4> RevPred(Pred.begin(), Pred.end()); SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end()); if (RevBranch) { if (TII->ReverseBranchCondition(Cond)) return false; } if (TII->ReverseBranchCondition(RevPred) || !TII->SubsumesPredicate(Cond, RevPred)) return false; } return true; } /// AnalyzeBlock - Analyze the structure of the sub-CFG starting from /// the specified block. Record its successors and whether it looks like an /// if-conversion candidate. void IfConverter::AnalyzeBlock( MachineBasicBlock *MBB, std::vector<std::unique_ptr<IfcvtToken>> &Tokens) { struct BBState { BBState(MachineBasicBlock *BB) : MBB(BB), SuccsAnalyzed(false) {} MachineBasicBlock *MBB; /// This flag is true if MBB's successors have been analyzed. bool SuccsAnalyzed; }; // Push MBB to the stack. SmallVector<BBState, 16> BBStack(1, MBB); while (!BBStack.empty()) { BBState &State = BBStack.back(); MachineBasicBlock *BB = State.MBB; BBInfo &BBI = BBAnalysis[BB->getNumber()]; if (!State.SuccsAnalyzed) { if (BBI.IsAnalyzed || BBI.IsBeingAnalyzed) { BBStack.pop_back(); continue; } BBI.BB = BB; BBI.IsBeingAnalyzed = true; ScanInstructions(BBI); // Unanalyzable or ends with fallthrough or unconditional branch, or if is // not considered for ifcvt anymore. if (!BBI.IsBrAnalyzable || BBI.BrCond.empty() || BBI.IsDone) { BBI.IsBeingAnalyzed = false; BBI.IsAnalyzed = true; BBStack.pop_back(); continue; } // Do not ifcvt if either path is a back edge to the entry block. if (BBI.TrueBB == BB || BBI.FalseBB == BB) { BBI.IsBeingAnalyzed = false; BBI.IsAnalyzed = true; BBStack.pop_back(); continue; } // Do not ifcvt if true and false fallthrough blocks are the same. if (!BBI.FalseBB) { BBI.IsBeingAnalyzed = false; BBI.IsAnalyzed = true; BBStack.pop_back(); continue; } // Push the False and True blocks to the stack. State.SuccsAnalyzed = true; BBStack.push_back(BBI.FalseBB); BBStack.push_back(BBI.TrueBB); continue; } BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()]; BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()]; if (TrueBBI.IsDone && FalseBBI.IsDone) { BBI.IsBeingAnalyzed = false; BBI.IsAnalyzed = true; BBStack.pop_back(); continue; } SmallVector<MachineOperand, 4> RevCond(BBI.BrCond.begin(), BBI.BrCond.end()); bool CanRevCond = !TII->ReverseBranchCondition(RevCond); unsigned Dups = 0; unsigned Dups2 = 0; bool TNeedSub = !TrueBBI.Predicate.empty(); bool FNeedSub = !FalseBBI.Predicate.empty(); bool Enqueued = false; BranchProbability Prediction = MBPI->getEdgeProbability(BB, TrueBBI.BB); if (CanRevCond && ValidDiamond(TrueBBI, FalseBBI, Dups, Dups2) && MeetIfcvtSizeLimit(*TrueBBI.BB, (TrueBBI.NonPredSize - (Dups + Dups2) + TrueBBI.ExtraCost), TrueBBI.ExtraCost2, *FalseBBI.BB, (FalseBBI.NonPredSize - (Dups + Dups2) + FalseBBI.ExtraCost),FalseBBI.ExtraCost2, Prediction) && FeasibilityAnalysis(TrueBBI, BBI.BrCond) && FeasibilityAnalysis(FalseBBI, RevCond)) { // Diamond: // EBB // / \_ // | | // TBB FBB // \ / // TailBB // Note TailBB can be empty. Tokens.push_back(llvm::make_unique<IfcvtToken>( BBI, ICDiamond, TNeedSub | FNeedSub, Dups, Dups2)); Enqueued = true; } if (ValidTriangle(TrueBBI, FalseBBI, false, Dups, Prediction) && MeetIfcvtSizeLimit(*TrueBBI.BB, TrueBBI.NonPredSize + TrueBBI.ExtraCost, TrueBBI.ExtraCost2, Prediction) && FeasibilityAnalysis(TrueBBI, BBI.BrCond, true)) { // Triangle: // EBB // | \_ // | | // | TBB // | / // FBB Tokens.push_back( llvm::make_unique<IfcvtToken>(BBI, ICTriangle, TNeedSub, Dups)); Enqueued = true; } if (ValidTriangle(TrueBBI, FalseBBI, true, Dups, Prediction) && MeetIfcvtSizeLimit(*TrueBBI.BB, TrueBBI.NonPredSize + TrueBBI.ExtraCost, TrueBBI.ExtraCost2, Prediction) && FeasibilityAnalysis(TrueBBI, BBI.BrCond, true, true)) { Tokens.push_back( llvm::make_unique<IfcvtToken>(BBI, ICTriangleRev, TNeedSub, Dups)); Enqueued = true; } if (ValidSimple(TrueBBI, Dups, Prediction) && MeetIfcvtSizeLimit(*TrueBBI.BB, TrueBBI.NonPredSize + TrueBBI.ExtraCost, TrueBBI.ExtraCost2, Prediction) && FeasibilityAnalysis(TrueBBI, BBI.BrCond)) { // Simple (split, no rejoin): // EBB // | \_ // | | // | TBB---> exit // | // FBB Tokens.push_back( llvm::make_unique<IfcvtToken>(BBI, ICSimple, TNeedSub, Dups)); Enqueued = true; } if (CanRevCond) { // Try the other path... if (ValidTriangle(FalseBBI, TrueBBI, false, Dups, Prediction.getCompl()) && MeetIfcvtSizeLimit(*FalseBBI.BB, FalseBBI.NonPredSize + FalseBBI.ExtraCost, FalseBBI.ExtraCost2, Prediction.getCompl()) && FeasibilityAnalysis(FalseBBI, RevCond, true)) { Tokens.push_back(llvm::make_unique<IfcvtToken>(BBI, ICTriangleFalse, FNeedSub, Dups)); Enqueued = true; } if (ValidTriangle(FalseBBI, TrueBBI, true, Dups, Prediction.getCompl()) && MeetIfcvtSizeLimit(*FalseBBI.BB, FalseBBI.NonPredSize + FalseBBI.ExtraCost, FalseBBI.ExtraCost2, Prediction.getCompl()) && FeasibilityAnalysis(FalseBBI, RevCond, true, true)) { Tokens.push_back( llvm::make_unique<IfcvtToken>(BBI, ICTriangleFRev, FNeedSub, Dups)); Enqueued = true; } if (ValidSimple(FalseBBI, Dups, Prediction.getCompl()) && MeetIfcvtSizeLimit(*FalseBBI.BB, FalseBBI.NonPredSize + FalseBBI.ExtraCost, FalseBBI.ExtraCost2, Prediction.getCompl()) && FeasibilityAnalysis(FalseBBI, RevCond)) { Tokens.push_back( llvm::make_unique<IfcvtToken>(BBI, ICSimpleFalse, FNeedSub, Dups)); Enqueued = true; } } BBI.IsEnqueued = Enqueued; BBI.IsBeingAnalyzed = false; BBI.IsAnalyzed = true; BBStack.pop_back(); } } /// AnalyzeBlocks - Analyze all blocks and find entries for all if-conversion /// candidates. void IfConverter::AnalyzeBlocks( MachineFunction &MF, std::vector<std::unique_ptr<IfcvtToken>> &Tokens) { for (auto &BB : MF) AnalyzeBlock(&BB, Tokens); // Sort to favor more complex ifcvt scheme. std::stable_sort(Tokens.begin(), Tokens.end(), IfcvtTokenCmp); } /// canFallThroughTo - Returns true either if ToBB is the next block after BB or /// that all the intervening blocks are empty (given BB can fall through to its /// next block). static bool canFallThroughTo(MachineBasicBlock *BB, MachineBasicBlock *ToBB) { MachineFunction::iterator PI = BB->getIterator(); MachineFunction::iterator I = std::next(PI); MachineFunction::iterator TI = ToBB->getIterator(); MachineFunction::iterator E = BB->getParent()->end(); while (I != TI) { // Check isSuccessor to avoid case where the next block is empty, but // it's not a successor. if (I == E || !I->empty() || !PI->isSuccessor(&*I)) return false; PI = I++; } return true; } /// InvalidatePreds - Invalidate predecessor BB info so it would be re-analyzed /// to determine if it can be if-converted. If predecessor is already enqueued, /// dequeue it! void IfConverter::InvalidatePreds(MachineBasicBlock *BB) { for (const auto &Predecessor : BB->predecessors()) { BBInfo &PBBI = BBAnalysis[Predecessor->getNumber()]; if (PBBI.IsDone || PBBI.BB == BB) continue; PBBI.IsAnalyzed = false; PBBI.IsEnqueued = false; } } /// InsertUncondBranch - Inserts an unconditional branch from BB to ToBB. /// static void InsertUncondBranch(MachineBasicBlock *BB, MachineBasicBlock *ToBB, const TargetInstrInfo *TII) { DebugLoc dl; // FIXME: this is nowhere SmallVector<MachineOperand, 0> NoCond; TII->InsertBranch(*BB, ToBB, nullptr, NoCond, dl); } /// RemoveExtraEdges - Remove true / false edges if either / both are no longer /// successors. void IfConverter::RemoveExtraEdges(BBInfo &BBI) { MachineBasicBlock *TBB = nullptr, *FBB = nullptr; SmallVector<MachineOperand, 4> Cond; if (!TII->analyzeBranch(*BBI.BB, TBB, FBB, Cond)) BBI.BB->CorrectExtraCFGEdges(TBB, FBB, !Cond.empty()); } /// Behaves like LiveRegUnits::StepForward() but also adds implicit uses to all /// values defined in MI which are not live/used by MI. static void UpdatePredRedefs(MachineInstr &MI, LivePhysRegs &Redefs) { SmallVector<std::pair<unsigned, const MachineOperand*>, 4> Clobbers; Redefs.stepForward(MI, Clobbers); // Now add the implicit uses for each of the clobbered values. for (auto Reg : Clobbers) { // FIXME: Const cast here is nasty, but better than making StepForward // take a mutable instruction instead of const. MachineOperand &Op = const_cast<MachineOperand&>(*Reg.second); MachineInstr *OpMI = Op.getParent(); MachineInstrBuilder MIB(*OpMI->getParent()->getParent(), OpMI); if (Op.isRegMask()) { // First handle regmasks. They clobber any entries in the mask which // means that we need a def for those registers. MIB.addReg(Reg.first, RegState::Implicit | RegState::Undef); // We also need to add an implicit def of this register for the later // use to read from. // For the register allocator to have allocated a register clobbered // by the call which is used later, it must be the case that // the call doesn't return. MIB.addReg(Reg.first, RegState::Implicit | RegState::Define); continue; } assert(Op.isReg() && "Register operand required"); if (Op.isDead()) { // If we found a dead def, but it needs to be live, then remove the dead // flag. if (Redefs.contains(Op.getReg())) Op.setIsDead(false); } MIB.addReg(Reg.first, RegState::Implicit | RegState::Undef); } } /** * Remove kill flags from operands with a registers in the @p DontKill set. */ static void RemoveKills(MachineInstr &MI, const LivePhysRegs &DontKill) { for (MIBundleOperands O(MI); O.isValid(); ++O) { if (!O->isReg() || !O->isKill()) continue; if (DontKill.contains(O->getReg())) O->setIsKill(false); } } /** * Walks a range of machine instructions and removes kill flags for registers * in the @p DontKill set. */ static void RemoveKills(MachineBasicBlock::iterator I, MachineBasicBlock::iterator E, const LivePhysRegs &DontKill, const MCRegisterInfo &MCRI) { for ( ; I != E; ++I) RemoveKills(*I, DontKill); } /// IfConvertSimple - If convert a simple (split, no rejoin) sub-CFG. /// bool IfConverter::IfConvertSimple(BBInfo &BBI, IfcvtKind Kind) { BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()]; BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()]; BBInfo *CvtBBI = &TrueBBI; BBInfo *NextBBI = &FalseBBI; SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end()); if (Kind == ICSimpleFalse) std::swap(CvtBBI, NextBBI); if (CvtBBI->IsDone || (CvtBBI->CannotBeCopied && CvtBBI->BB->pred_size() > 1)) { // Something has changed. It's no longer safe to predicate this block. BBI.IsAnalyzed = false; CvtBBI->IsAnalyzed = false; return false; } if (CvtBBI->BB->hasAddressTaken()) // Conservatively abort if-conversion if BB's address is taken. return false; if (Kind == ICSimpleFalse) if (TII->ReverseBranchCondition(Cond)) llvm_unreachable("Unable to reverse branch condition!"); // Initialize liveins to the first BB. These are potentiall redefined by // predicated instructions. Redefs.init(TRI); Redefs.addLiveIns(*CvtBBI->BB); Redefs.addLiveIns(*NextBBI->BB); // Compute a set of registers which must not be killed by instructions in // BB1: This is everything live-in to BB2. DontKill.init(TRI); DontKill.addLiveIns(*NextBBI->BB); if (CvtBBI->BB->pred_size() > 1) { BBI.NonPredSize -= TII->RemoveBranch(*BBI.BB); // Copy instructions in the true block, predicate them, and add them to // the entry block. CopyAndPredicateBlock(BBI, *CvtBBI, Cond); // RemoveExtraEdges won't work if the block has an unanalyzable branch, so // explicitly remove CvtBBI as a successor. BBI.BB->removeSuccessor(CvtBBI->BB, true); } else { RemoveKills(CvtBBI->BB->begin(), CvtBBI->BB->end(), DontKill, *TRI); PredicateBlock(*CvtBBI, CvtBBI->BB->end(), Cond); // Merge converted block into entry block. BBI.NonPredSize -= TII->RemoveBranch(*BBI.BB); MergeBlocks(BBI, *CvtBBI); } bool IterIfcvt = true; if (!canFallThroughTo(BBI.BB, NextBBI->BB)) { InsertUncondBranch(BBI.BB, NextBBI->BB, TII); BBI.HasFallThrough = false; // Now ifcvt'd block will look like this: // BB: // ... // t, f = cmp // if t op // b BBf // // We cannot further ifcvt this block because the unconditional branch // will have to be predicated on the new condition, that will not be // available if cmp executes. IterIfcvt = false; } RemoveExtraEdges(BBI); // Update block info. BB can be iteratively if-converted. if (!IterIfcvt) BBI.IsDone = true; InvalidatePreds(BBI.BB); CvtBBI->IsDone = true; // FIXME: Must maintain LiveIns. return true; } /// IfConvertTriangle - If convert a triangle sub-CFG. /// bool IfConverter::IfConvertTriangle(BBInfo &BBI, IfcvtKind Kind) { BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()]; BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()]; BBInfo *CvtBBI = &TrueBBI; BBInfo *NextBBI = &FalseBBI; DebugLoc dl; // FIXME: this is nowhere SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end()); if (Kind == ICTriangleFalse || Kind == ICTriangleFRev) std::swap(CvtBBI, NextBBI); if (CvtBBI->IsDone || (CvtBBI->CannotBeCopied && CvtBBI->BB->pred_size() > 1)) { // Something has changed. It's no longer safe to predicate this block. BBI.IsAnalyzed = false; CvtBBI->IsAnalyzed = false; return false; } if (CvtBBI->BB->hasAddressTaken()) // Conservatively abort if-conversion if BB's address is taken. return false; if (Kind == ICTriangleFalse || Kind == ICTriangleFRev) if (TII->ReverseBranchCondition(Cond)) llvm_unreachable("Unable to reverse branch condition!"); if (Kind == ICTriangleRev || Kind == ICTriangleFRev) { if (ReverseBranchCondition(*CvtBBI)) { // BB has been changed, modify its predecessors (except for this // one) so they don't get ifcvt'ed based on bad intel. for (MachineBasicBlock::pred_iterator PI = CvtBBI->BB->pred_begin(), E = CvtBBI->BB->pred_end(); PI != E; ++PI) { MachineBasicBlock *PBB = *PI; if (PBB == BBI.BB) continue; BBInfo &PBBI = BBAnalysis[PBB->getNumber()]; if (PBBI.IsEnqueued) { PBBI.IsAnalyzed = false; PBBI.IsEnqueued = false; } } } } // Initialize liveins to the first BB. These are potentially redefined by // predicated instructions. Redefs.init(TRI); Redefs.addLiveIns(*CvtBBI->BB); Redefs.addLiveIns(*NextBBI->BB); DontKill.clear(); bool HasEarlyExit = CvtBBI->FalseBB != nullptr; BranchProbability CvtNext, CvtFalse, BBNext, BBCvt; if (HasEarlyExit) { // Get probabilities before modifying CvtBBI->BB and BBI.BB. CvtNext = MBPI->getEdgeProbability(CvtBBI->BB, NextBBI->BB); CvtFalse = MBPI->getEdgeProbability(CvtBBI->BB, CvtBBI->FalseBB); BBNext = MBPI->getEdgeProbability(BBI.BB, NextBBI->BB); BBCvt = MBPI->getEdgeProbability(BBI.BB, CvtBBI->BB); } if (CvtBBI->BB->pred_size() > 1) { BBI.NonPredSize -= TII->RemoveBranch(*BBI.BB); // Copy instructions in the true block, predicate them, and add them to // the entry block. CopyAndPredicateBlock(BBI, *CvtBBI, Cond, true); // RemoveExtraEdges won't work if the block has an unanalyzable branch, so // explicitly remove CvtBBI as a successor. BBI.BB->removeSuccessor(CvtBBI->BB, true); } else { // Predicate the 'true' block after removing its branch. CvtBBI->NonPredSize -= TII->RemoveBranch(*CvtBBI->BB); PredicateBlock(*CvtBBI, CvtBBI->BB->end(), Cond); // Now merge the entry of the triangle with the true block. BBI.NonPredSize -= TII->RemoveBranch(*BBI.BB); MergeBlocks(BBI, *CvtBBI, false); } // If 'true' block has a 'false' successor, add an exit branch to it. if (HasEarlyExit) { SmallVector<MachineOperand, 4> RevCond(CvtBBI->BrCond.begin(), CvtBBI->BrCond.end()); if (TII->ReverseBranchCondition(RevCond)) llvm_unreachable("Unable to reverse branch condition!"); // Update the edge probability for both CvtBBI->FalseBB and NextBBI. // NewNext = New_Prob(BBI.BB, NextBBI->BB) = // Prob(BBI.BB, NextBBI->BB) + // Prob(BBI.BB, CvtBBI->BB) * Prob(CvtBBI->BB, NextBBI->BB) // NewFalse = New_Prob(BBI.BB, CvtBBI->FalseBB) = // Prob(BBI.BB, CvtBBI->BB) * Prob(CvtBBI->BB, CvtBBI->FalseBB) auto NewTrueBB = getNextBlock(BBI.BB); auto NewNext = BBNext + BBCvt * CvtNext; auto NewTrueBBIter = std::find(BBI.BB->succ_begin(), BBI.BB->succ_end(), NewTrueBB); if (NewTrueBBIter != BBI.BB->succ_end()) BBI.BB->setSuccProbability(NewTrueBBIter, NewNext); auto NewFalse = BBCvt * CvtFalse; TII->InsertBranch(*BBI.BB, CvtBBI->FalseBB, nullptr, RevCond, dl); BBI.BB->addSuccessor(CvtBBI->FalseBB, NewFalse); } // Merge in the 'false' block if the 'false' block has no other // predecessors. Otherwise, add an unconditional branch to 'false'. bool FalseBBDead = false; bool IterIfcvt = true; bool isFallThrough = canFallThroughTo(BBI.BB, NextBBI->BB); if (!isFallThrough) { // Only merge them if the true block does not fallthrough to the false // block. By not merging them, we make it possible to iteratively // ifcvt the blocks. if (!HasEarlyExit && NextBBI->BB->pred_size() == 1 && !NextBBI->HasFallThrough && !NextBBI->BB->hasAddressTaken()) { MergeBlocks(BBI, *NextBBI); FalseBBDead = true; } else { InsertUncondBranch(BBI.BB, NextBBI->BB, TII); BBI.HasFallThrough = false; } // Mixed predicated and unpredicated code. This cannot be iteratively // predicated. IterIfcvt = false; } RemoveExtraEdges(BBI); // Update block info. BB can be iteratively if-converted. if (!IterIfcvt) BBI.IsDone = true; InvalidatePreds(BBI.BB); CvtBBI->IsDone = true; if (FalseBBDead) NextBBI->IsDone = true; // FIXME: Must maintain LiveIns. return true; } /// IfConvertDiamond - If convert a diamond sub-CFG. /// bool IfConverter::IfConvertDiamond(BBInfo &BBI, IfcvtKind Kind, unsigned NumDups1, unsigned NumDups2) { BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()]; BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()]; MachineBasicBlock *TailBB = TrueBBI.TrueBB; // True block must fall through or end with an unanalyzable terminator. if (!TailBB) { if (blockAlwaysFallThrough(TrueBBI)) TailBB = FalseBBI.TrueBB; assert((TailBB || !TrueBBI.IsBrAnalyzable) && "Unexpected!"); } if (TrueBBI.IsDone || FalseBBI.IsDone || TrueBBI.BB->pred_size() > 1 || FalseBBI.BB->pred_size() > 1) { // Something has changed. It's no longer safe to predicate these blocks. BBI.IsAnalyzed = false; TrueBBI.IsAnalyzed = false; FalseBBI.IsAnalyzed = false; return false; } if (TrueBBI.BB->hasAddressTaken() || FalseBBI.BB->hasAddressTaken()) // Conservatively abort if-conversion if either BB has its address taken. return false; // Put the predicated instructions from the 'true' block before the // instructions from the 'false' block, unless the true block would clobber // the predicate, in which case, do the opposite. BBInfo *BBI1 = &TrueBBI; BBInfo *BBI2 = &FalseBBI; SmallVector<MachineOperand, 4> RevCond(BBI.BrCond.begin(), BBI.BrCond.end()); if (TII->ReverseBranchCondition(RevCond)) llvm_unreachable("Unable to reverse branch condition!"); SmallVector<MachineOperand, 4> *Cond1 = &BBI.BrCond; SmallVector<MachineOperand, 4> *Cond2 = &RevCond; // Figure out the more profitable ordering. bool DoSwap = false; if (TrueBBI.ClobbersPred && !FalseBBI.ClobbersPred) DoSwap = true; else if (TrueBBI.ClobbersPred == FalseBBI.ClobbersPred) { if (TrueBBI.NonPredSize > FalseBBI.NonPredSize) DoSwap = true; } if (DoSwap) { std::swap(BBI1, BBI2); std::swap(Cond1, Cond2); } // Remove the conditional branch from entry to the blocks. BBI.NonPredSize -= TII->RemoveBranch(*BBI.BB); // Initialize liveins to the first BB. These are potentially redefined by // predicated instructions. Redefs.init(TRI); Redefs.addLiveIns(*BBI1->BB); // Remove the duplicated instructions at the beginnings of both paths. // Skip dbg_value instructions MachineBasicBlock::iterator DI1 = BBI1->BB->getFirstNonDebugInstr(); MachineBasicBlock::iterator DI2 = BBI2->BB->getFirstNonDebugInstr(); BBI1->NonPredSize -= NumDups1; BBI2->NonPredSize -= NumDups1; // Skip past the dups on each side separately since there may be // differing dbg_value entries. for (unsigned i = 0; i < NumDups1; ++DI1) { if (!DI1->isDebugValue()) ++i; } while (NumDups1 != 0) { ++DI2; if (!DI2->isDebugValue()) --NumDups1; } // Compute a set of registers which must not be killed by instructions in BB1: // This is everything used+live in BB2 after the duplicated instructions. We // can compute this set by simulating liveness backwards from the end of BB2. DontKill.init(TRI); for (MachineBasicBlock::reverse_iterator I = BBI2->BB->rbegin(), E = MachineBasicBlock::reverse_iterator(DI2); I != E; ++I) { DontKill.stepBackward(*I); } for (MachineBasicBlock::const_iterator I = BBI1->BB->begin(), E = DI1; I != E; ++I) { SmallVector<std::pair<unsigned, const MachineOperand*>, 4> IgnoredClobbers; Redefs.stepForward(*I, IgnoredClobbers); } BBI.BB->splice(BBI.BB->end(), BBI1->BB, BBI1->BB->begin(), DI1); BBI2->BB->erase(BBI2->BB->begin(), DI2); // Remove branch from the 'true' block, unless it was not analyzable. // Non-analyzable branches need to be preserved, since in such cases, // the CFG structure is not an actual diamond (the join block may not // be present). if (BBI1->IsBrAnalyzable) BBI1->NonPredSize -= TII->RemoveBranch(*BBI1->BB); // Remove duplicated instructions. DI1 = BBI1->BB->end(); for (unsigned i = 0; i != NumDups2; ) { // NumDups2 only counted non-dbg_value instructions, so this won't // run off the head of the list. assert (DI1 != BBI1->BB->begin()); --DI1; // skip dbg_value instructions if (!DI1->isDebugValue()) ++i; } BBI1->BB->erase(DI1, BBI1->BB->end()); // Kill flags in the true block for registers living into the false block // must be removed. RemoveKills(BBI1->BB->begin(), BBI1->BB->end(), DontKill, *TRI); // Remove 'false' block branch (unless it was not analyzable), and find // the last instruction to predicate. if (BBI2->IsBrAnalyzable) BBI2->NonPredSize -= TII->RemoveBranch(*BBI2->BB); DI2 = BBI2->BB->end(); while (NumDups2 != 0) { // NumDups2 only counted non-dbg_value instructions, so this won't // run off the head of the list. assert (DI2 != BBI2->BB->begin()); --DI2; // skip dbg_value instructions if (!DI2->isDebugValue()) --NumDups2; } // Remember which registers would later be defined by the false block. // This allows us not to predicate instructions in the true block that would // later be re-defined. That is, rather than // subeq r0, r1, #1 // addne r0, r1, #1 // generate: // sub r0, r1, #1 // addne r0, r1, #1 SmallSet<unsigned, 4> RedefsByFalse; SmallSet<unsigned, 4> ExtUses; if (TII->isProfitableToUnpredicate(*BBI1->BB, *BBI2->BB)) { for (MachineBasicBlock::iterator FI = BBI2->BB->begin(); FI != DI2; ++FI) { if (FI->isDebugValue()) continue; SmallVector<unsigned, 4> Defs; for (unsigned i = 0, e = FI->getNumOperands(); i != e; ++i) { const MachineOperand &MO = FI->getOperand(i); if (!MO.isReg()) continue; unsigned Reg = MO.getReg(); if (!Reg) continue; if (MO.isDef()) { Defs.push_back(Reg); } else if (!RedefsByFalse.count(Reg)) { // These are defined before ctrl flow reach the 'false' instructions. // They cannot be modified by the 'true' instructions. for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true); SubRegs.isValid(); ++SubRegs) ExtUses.insert(*SubRegs); } } for (unsigned i = 0, e = Defs.size(); i != e; ++i) { unsigned Reg = Defs[i]; if (!ExtUses.count(Reg)) { for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true); SubRegs.isValid(); ++SubRegs) RedefsByFalse.insert(*SubRegs); } } } } // Predicate the 'true' block. PredicateBlock(*BBI1, BBI1->BB->end(), *Cond1, &RedefsByFalse); // After predicating BBI1, if there is a predicated terminator in BBI1 and // a non-predicated in BBI2, then we don't want to predicate the one from // BBI2. The reason is that if we merged these blocks, we would end up with // two predicated terminators in the same block. if (!BBI2->BB->empty() && (DI2 == BBI2->BB->end())) { MachineBasicBlock::iterator BBI1T = BBI1->BB->getFirstTerminator(); MachineBasicBlock::iterator BBI2T = BBI2->BB->getFirstTerminator(); if (BBI1T != BBI1->BB->end() && TII->isPredicated(*BBI1T) && BBI2T != BBI2->BB->end() && !TII->isPredicated(*BBI2T)) --DI2; } // Predicate the 'false' block. PredicateBlock(*BBI2, DI2, *Cond2); // Merge the true block into the entry of the diamond. MergeBlocks(BBI, *BBI1, TailBB == nullptr); MergeBlocks(BBI, *BBI2, TailBB == nullptr); // If the if-converted block falls through or unconditionally branches into // the tail block, and the tail block does not have other predecessors, then // fold the tail block in as well. Otherwise, unless it falls through to the // tail, add a unconditional branch to it. if (TailBB) { BBInfo &TailBBI = BBAnalysis[TailBB->getNumber()]; bool CanMergeTail = !TailBBI.HasFallThrough && !TailBBI.BB->hasAddressTaken(); // The if-converted block can still have a predicated terminator // (e.g. a predicated return). If that is the case, we cannot merge // it with the tail block. MachineBasicBlock::const_iterator TI = BBI.BB->getFirstTerminator(); if (TI != BBI.BB->end() && TII->isPredicated(*TI)) CanMergeTail = false; // There may still be a fall-through edge from BBI1 or BBI2 to TailBB; // check if there are any other predecessors besides those. unsigned NumPreds = TailBB->pred_size(); if (NumPreds > 1) CanMergeTail = false; else if (NumPreds == 1 && CanMergeTail) { MachineBasicBlock::pred_iterator PI = TailBB->pred_begin(); if (*PI != BBI1->BB && *PI != BBI2->BB) CanMergeTail = false; } if (CanMergeTail) { MergeBlocks(BBI, TailBBI); TailBBI.IsDone = true; } else { BBI.BB->addSuccessor(TailBB, BranchProbability::getOne()); InsertUncondBranch(BBI.BB, TailBB, TII); BBI.HasFallThrough = false; } } // RemoveExtraEdges won't work if the block has an unanalyzable branch, // which can happen here if TailBB is unanalyzable and is merged, so // explicitly remove BBI1 and BBI2 as successors. BBI.BB->removeSuccessor(BBI1->BB); BBI.BB->removeSuccessor(BBI2->BB, true); RemoveExtraEdges(BBI); // Update block info. BBI.IsDone = TrueBBI.IsDone = FalseBBI.IsDone = true; InvalidatePreds(BBI.BB); // FIXME: Must maintain LiveIns. return true; } static bool MaySpeculate(const MachineInstr &MI, SmallSet<unsigned, 4> &LaterRedefs) { bool SawStore = true; if (!MI.isSafeToMove(nullptr, SawStore)) return false; for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { const MachineOperand &MO = MI.getOperand(i); if (!MO.isReg()) continue; unsigned Reg = MO.getReg(); if (!Reg) continue; if (MO.isDef() && !LaterRedefs.count(Reg)) return false; } return true; } /// PredicateBlock - Predicate instructions from the start of the block to the /// specified end with the specified condition. void IfConverter::PredicateBlock(BBInfo &BBI, MachineBasicBlock::iterator E, SmallVectorImpl<MachineOperand> &Cond, SmallSet<unsigned, 4> *LaterRedefs) { bool AnyUnpred = false; bool MaySpec = LaterRedefs != nullptr; for (MachineInstr &I : llvm::make_range(BBI.BB->begin(), E)) { if (I.isDebugValue() || TII->isPredicated(I)) continue; // It may be possible not to predicate an instruction if it's the 'true' // side of a diamond and the 'false' side may re-define the instruction's // defs. if (MaySpec && MaySpeculate(I, *LaterRedefs)) { AnyUnpred = true; continue; } // If any instruction is predicated, then every instruction after it must // be predicated. MaySpec = false; if (!TII->PredicateInstruction(I, Cond)) { #ifndef NDEBUG dbgs() << "Unable to predicate " << I << "!\n"; #endif llvm_unreachable(nullptr); } // If the predicated instruction now redefines a register as the result of // if-conversion, add an implicit kill. UpdatePredRedefs(I, Redefs); } BBI.Predicate.append(Cond.begin(), Cond.end()); BBI.IsAnalyzed = false; BBI.NonPredSize = 0; ++NumIfConvBBs; if (AnyUnpred) ++NumUnpred; } /// CopyAndPredicateBlock - Copy and predicate instructions from source BB to /// the destination block. Skip end of block branches if IgnoreBr is true. void IfConverter::CopyAndPredicateBlock(BBInfo &ToBBI, BBInfo &FromBBI, SmallVectorImpl<MachineOperand> &Cond, bool IgnoreBr) { MachineFunction &MF = *ToBBI.BB->getParent(); for (auto &I : *FromBBI.BB) { // Do not copy the end of the block branches. if (IgnoreBr && I.isBranch()) break; MachineInstr *MI = MF.CloneMachineInstr(&I); ToBBI.BB->insert(ToBBI.BB->end(), MI); ToBBI.NonPredSize++; unsigned ExtraPredCost = TII->getPredicationCost(I); unsigned NumCycles = SchedModel.computeInstrLatency(&I, false); if (NumCycles > 1) ToBBI.ExtraCost += NumCycles-1; ToBBI.ExtraCost2 += ExtraPredCost; if (!TII->isPredicated(I) && !MI->isDebugValue()) { if (!TII->PredicateInstruction(*MI, Cond)) { #ifndef NDEBUG dbgs() << "Unable to predicate " << I << "!\n"; #endif llvm_unreachable(nullptr); } } // If the predicated instruction now redefines a register as the result of // if-conversion, add an implicit kill. UpdatePredRedefs(*MI, Redefs); // Some kill flags may not be correct anymore. if (!DontKill.empty()) RemoveKills(*MI, DontKill); } if (!IgnoreBr) { std::vector<MachineBasicBlock *> Succs(FromBBI.BB->succ_begin(), FromBBI.BB->succ_end()); MachineBasicBlock *NBB = getNextBlock(FromBBI.BB); MachineBasicBlock *FallThrough = FromBBI.HasFallThrough ? NBB : nullptr; for (unsigned i = 0, e = Succs.size(); i != e; ++i) { MachineBasicBlock *Succ = Succs[i]; // Fallthrough edge can't be transferred. if (Succ == FallThrough) continue; ToBBI.BB->addSuccessor(Succ); } } ToBBI.Predicate.append(FromBBI.Predicate.begin(), FromBBI.Predicate.end()); ToBBI.Predicate.append(Cond.begin(), Cond.end()); ToBBI.ClobbersPred |= FromBBI.ClobbersPred; ToBBI.IsAnalyzed = false; ++NumDupBBs; } /// MergeBlocks - Move all instructions from FromBB to the end of ToBB. /// This will leave FromBB as an empty block, so remove all of its /// successor edges except for the fall-through edge. If AddEdges is true, /// i.e., when FromBBI's branch is being moved, add those successor edges to /// ToBBI. void IfConverter::MergeBlocks(BBInfo &ToBBI, BBInfo &FromBBI, bool AddEdges) { assert(!FromBBI.BB->hasAddressTaken() && "Removing a BB whose address is taken!"); // In case FromBBI.BB contains terminators (e.g. return instruction), // first move the non-terminator instructions, then the terminators. MachineBasicBlock::iterator FromTI = FromBBI.BB->getFirstTerminator(); MachineBasicBlock::iterator ToTI = ToBBI.BB->getFirstTerminator(); ToBBI.BB->splice(ToTI, FromBBI.BB, FromBBI.BB->begin(), FromTI); // If FromBB has non-predicated terminator we should copy it at the end. if (FromTI != FromBBI.BB->end() && !TII->isPredicated(*FromTI)) ToTI = ToBBI.BB->end(); ToBBI.BB->splice(ToTI, FromBBI.BB, FromTI, FromBBI.BB->end()); // Force normalizing the successors' probabilities of ToBBI.BB to convert all // unknown probabilities into known ones. // FIXME: This usage is too tricky and in the future we would like to // eliminate all unknown probabilities in MBB. ToBBI.BB->normalizeSuccProbs(); SmallVector<MachineBasicBlock *, 4> FromSuccs(FromBBI.BB->succ_begin(), FromBBI.BB->succ_end()); MachineBasicBlock *NBB = getNextBlock(FromBBI.BB); MachineBasicBlock *FallThrough = FromBBI.HasFallThrough ? NBB : nullptr; // The edge probability from ToBBI.BB to FromBBI.BB, which is only needed when // AddEdges is true and FromBBI.BB is a successor of ToBBI.BB. auto To2FromProb = BranchProbability::getZero(); if (AddEdges && ToBBI.BB->isSuccessor(FromBBI.BB)) { To2FromProb = MBPI->getEdgeProbability(ToBBI.BB, FromBBI.BB); // Set the edge probability from ToBBI.BB to FromBBI.BB to zero to avoid the // edge probability being merged to other edges when this edge is removed // later. ToBBI.BB->setSuccProbability( std::find(ToBBI.BB->succ_begin(), ToBBI.BB->succ_end(), FromBBI.BB), BranchProbability::getZero()); } for (unsigned i = 0, e = FromSuccs.size(); i != e; ++i) { MachineBasicBlock *Succ = FromSuccs[i]; // Fallthrough edge can't be transferred. if (Succ == FallThrough) continue; auto NewProb = BranchProbability::getZero(); if (AddEdges) { // Calculate the edge probability for the edge from ToBBI.BB to Succ, // which is a portion of the edge probability from FromBBI.BB to Succ. The // portion ratio is the edge probability from ToBBI.BB to FromBBI.BB (if // FromBBI is a successor of ToBBI.BB. See comment below for excepion). NewProb = MBPI->getEdgeProbability(FromBBI.BB, Succ); // To2FromProb is 0 when FromBBI.BB is not a successor of ToBBI.BB. This // only happens when if-converting a diamond CFG and FromBBI.BB is the // tail BB. In this case FromBBI.BB post-dominates ToBBI.BB and hence we // could just use the probabilities on FromBBI.BB's out-edges when adding // new successors. if (!To2FromProb.isZero()) NewProb *= To2FromProb; } FromBBI.BB->removeSuccessor(Succ); if (AddEdges) { // If the edge from ToBBI.BB to Succ already exists, update the // probability of this edge by adding NewProb to it. An example is shown // below, in which A is ToBBI.BB and B is FromBBI.BB. In this case we // don't have to set C as A's successor as it already is. We only need to // update the edge probability on A->C. Note that B will not be // immediately removed from A's successors. It is possible that B->D is // not removed either if D is a fallthrough of B. Later the edge A->D // (generated here) and B->D will be combined into one edge. To maintain // correct edge probability of this combined edge, we need to set the edge // probability of A->B to zero, which is already done above. The edge // probability on A->D is calculated by scaling the original probability // on A->B by the probability of B->D. // // Before ifcvt: After ifcvt (assume B->D is kept): // // A A // /| /|\ // / B / B| // | /| | || // |/ | | |/ // C D C D // if (ToBBI.BB->isSuccessor(Succ)) ToBBI.BB->setSuccProbability( std::find(ToBBI.BB->succ_begin(), ToBBI.BB->succ_end(), Succ), MBPI->getEdgeProbability(ToBBI.BB, Succ) + NewProb); else ToBBI.BB->addSuccessor(Succ, NewProb); } } // Now FromBBI always falls through to the next block! if (NBB && !FromBBI.BB->isSuccessor(NBB)) FromBBI.BB->addSuccessor(NBB); // Normalize the probabilities of ToBBI.BB's successors with all adjustment // we've done above. ToBBI.BB->normalizeSuccProbs(); ToBBI.Predicate.append(FromBBI.Predicate.begin(), FromBBI.Predicate.end()); FromBBI.Predicate.clear(); ToBBI.NonPredSize += FromBBI.NonPredSize; ToBBI.ExtraCost += FromBBI.ExtraCost; ToBBI.ExtraCost2 += FromBBI.ExtraCost2; FromBBI.NonPredSize = 0; FromBBI.ExtraCost = 0; FromBBI.ExtraCost2 = 0; ToBBI.ClobbersPred |= FromBBI.ClobbersPred; ToBBI.HasFallThrough = FromBBI.HasFallThrough; ToBBI.IsAnalyzed = false; FromBBI.IsAnalyzed = false; } FunctionPass * llvm::createIfConverter(std::function<bool(const Function &)> Ftor) { return new IfConverter(std::move(Ftor)); }