//===-- llvm/CodeGen/MachineBasicBlock.cpp ----------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // Collect the sequence of machine instructions for a basic block. // //===----------------------------------------------------------------------===// #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/CodeGen/LiveIntervalAnalysis.h" #include "llvm/CodeGen/LiveVariables.h" #include "llvm/CodeGen/MachineDominators.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineLoopInfo.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/SlotIndexes.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/ModuleSlotTracker.h" #include "llvm/MC/MCAsmInfo.h" #include "llvm/MC/MCContext.h" #include "llvm/Support/DataTypes.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetRegisterInfo.h" #include "llvm/Target/TargetSubtargetInfo.h" #include <algorithm> using namespace llvm; #define DEBUG_TYPE "codegen" MachineBasicBlock::MachineBasicBlock(MachineFunction &MF, const BasicBlock *B) : BB(B), Number(-1), xParent(&MF) { Insts.Parent = this; } MachineBasicBlock::~MachineBasicBlock() { } /// Return the MCSymbol for this basic block. MCSymbol *MachineBasicBlock::getSymbol() const { if (!CachedMCSymbol) { const MachineFunction *MF = getParent(); MCContext &Ctx = MF->getContext(); const char *Prefix = Ctx.getAsmInfo()->getPrivateLabelPrefix(); assert(getNumber() >= 0 && "cannot get label for unreachable MBB"); CachedMCSymbol = Ctx.getOrCreateSymbol(Twine(Prefix) + "BB" + Twine(MF->getFunctionNumber()) + "_" + Twine(getNumber())); } return CachedMCSymbol; } raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineBasicBlock &MBB) { MBB.print(OS); return OS; } /// When an MBB is added to an MF, we need to update the parent pointer of the /// MBB, the MBB numbering, and any instructions in the MBB to be on the right /// operand list for registers. /// /// MBBs start out as #-1. When a MBB is added to a MachineFunction, it /// gets the next available unique MBB number. If it is removed from a /// MachineFunction, it goes back to being #-1. void ilist_traits<MachineBasicBlock>::addNodeToList(MachineBasicBlock *N) { MachineFunction &MF = *N->getParent(); N->Number = MF.addToMBBNumbering(N); // Make sure the instructions have their operands in the reginfo lists. MachineRegisterInfo &RegInfo = MF.getRegInfo(); for (MachineBasicBlock::instr_iterator I = N->instr_begin(), E = N->instr_end(); I != E; ++I) I->AddRegOperandsToUseLists(RegInfo); } void ilist_traits<MachineBasicBlock>::removeNodeFromList(MachineBasicBlock *N) { N->getParent()->removeFromMBBNumbering(N->Number); N->Number = -1; } /// When we add an instruction to a basic block list, we update its parent /// pointer and add its operands from reg use/def lists if appropriate. void ilist_traits<MachineInstr>::addNodeToList(MachineInstr *N) { assert(!N->getParent() && "machine instruction already in a basic block"); N->setParent(Parent); // Add the instruction's register operands to their corresponding // use/def lists. MachineFunction *MF = Parent->getParent(); N->AddRegOperandsToUseLists(MF->getRegInfo()); } /// When we remove an instruction from a basic block list, we update its parent /// pointer and remove its operands from reg use/def lists if appropriate. void ilist_traits<MachineInstr>::removeNodeFromList(MachineInstr *N) { assert(N->getParent() && "machine instruction not in a basic block"); // Remove from the use/def lists. if (MachineFunction *MF = N->getParent()->getParent()) N->RemoveRegOperandsFromUseLists(MF->getRegInfo()); N->setParent(nullptr); } /// When moving a range of instructions from one MBB list to another, we need to /// update the parent pointers and the use/def lists. void ilist_traits<MachineInstr>:: transferNodesFromList(ilist_traits<MachineInstr> &FromList, ilist_iterator<MachineInstr> First, ilist_iterator<MachineInstr> Last) { assert(Parent->getParent() == FromList.Parent->getParent() && "MachineInstr parent mismatch!"); // Splice within the same MBB -> no change. if (Parent == FromList.Parent) return; // If splicing between two blocks within the same function, just update the // parent pointers. for (; First != Last; ++First) First->setParent(Parent); } void ilist_traits<MachineInstr>::deleteNode(MachineInstr* MI) { assert(!MI->getParent() && "MI is still in a block!"); Parent->getParent()->DeleteMachineInstr(MI); } MachineBasicBlock::iterator MachineBasicBlock::getFirstNonPHI() { instr_iterator I = instr_begin(), E = instr_end(); while (I != E && I->isPHI()) ++I; assert((I == E || !I->isInsideBundle()) && "First non-phi MI cannot be inside a bundle!"); return I; } MachineBasicBlock::iterator MachineBasicBlock::SkipPHIsAndLabels(MachineBasicBlock::iterator I) { iterator E = end(); while (I != E && (I->isPHI() || I->isPosition() || I->isDebugValue())) ++I; // FIXME: This needs to change if we wish to bundle labels / dbg_values // inside the bundle. assert((I == E || !I->isInsideBundle()) && "First non-phi / non-label instruction is inside a bundle!"); return I; } MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminator() { iterator B = begin(), E = end(), I = E; while (I != B && ((--I)->isTerminator() || I->isDebugValue())) ; /*noop */ while (I != E && !I->isTerminator()) ++I; return I; } MachineBasicBlock::instr_iterator MachineBasicBlock::getFirstInstrTerminator() { instr_iterator B = instr_begin(), E = instr_end(), I = E; while (I != B && ((--I)->isTerminator() || I->isDebugValue())) ; /*noop */ while (I != E && !I->isTerminator()) ++I; return I; } MachineBasicBlock::iterator MachineBasicBlock::getFirstNonDebugInstr() { // Skip over begin-of-block dbg_value instructions. iterator I = begin(), E = end(); while (I != E && I->isDebugValue()) ++I; return I; } MachineBasicBlock::iterator MachineBasicBlock::getLastNonDebugInstr() { // Skip over end-of-block dbg_value instructions. instr_iterator B = instr_begin(), I = instr_end(); while (I != B) { --I; // Return instruction that starts a bundle. if (I->isDebugValue() || I->isInsideBundle()) continue; return I; } // The block is all debug values. return end(); } bool MachineBasicBlock::hasEHPadSuccessor() const { for (const_succ_iterator I = succ_begin(), E = succ_end(); I != E; ++I) if ((*I)->isEHPad()) return true; return false; } #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) LLVM_DUMP_METHOD void MachineBasicBlock::dump() const { print(dbgs()); } #endif StringRef MachineBasicBlock::getName() const { if (const BasicBlock *LBB = getBasicBlock()) return LBB->getName(); else return "(null)"; } /// Return a hopefully unique identifier for this block. std::string MachineBasicBlock::getFullName() const { std::string Name; if (getParent()) Name = (getParent()->getName() + ":").str(); if (getBasicBlock()) Name += getBasicBlock()->getName(); else Name += ("BB" + Twine(getNumber())).str(); return Name; } void MachineBasicBlock::print(raw_ostream &OS, const SlotIndexes *Indexes) const { const MachineFunction *MF = getParent(); if (!MF) { OS << "Can't print out MachineBasicBlock because parent MachineFunction" << " is null\n"; return; } const Function *F = MF->getFunction(); const Module *M = F ? F->getParent() : nullptr; ModuleSlotTracker MST(M); print(OS, MST, Indexes); } void MachineBasicBlock::print(raw_ostream &OS, ModuleSlotTracker &MST, const SlotIndexes *Indexes) const { const MachineFunction *MF = getParent(); if (!MF) { OS << "Can't print out MachineBasicBlock because parent MachineFunction" << " is null\n"; return; } if (Indexes) OS << Indexes->getMBBStartIdx(this) << '\t'; OS << "BB#" << getNumber() << ": "; const char *Comma = ""; if (const BasicBlock *LBB = getBasicBlock()) { OS << Comma << "derived from LLVM BB "; LBB->printAsOperand(OS, /*PrintType=*/false, MST); Comma = ", "; } if (isEHPad()) { OS << Comma << "EH LANDING PAD"; Comma = ", "; } if (hasAddressTaken()) { OS << Comma << "ADDRESS TAKEN"; Comma = ", "; } if (Alignment) OS << Comma << "Align " << Alignment << " (" << (1u << Alignment) << " bytes)"; OS << '\n'; const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); if (!livein_empty()) { if (Indexes) OS << '\t'; OS << " Live Ins:"; for (const auto &LI : make_range(livein_begin(), livein_end())) { OS << ' ' << PrintReg(LI.PhysReg, TRI); if (LI.LaneMask != ~0u) OS << ':' << PrintLaneMask(LI.LaneMask); } OS << '\n'; } // Print the preds of this block according to the CFG. if (!pred_empty()) { if (Indexes) OS << '\t'; OS << " Predecessors according to CFG:"; for (const_pred_iterator PI = pred_begin(), E = pred_end(); PI != E; ++PI) OS << " BB#" << (*PI)->getNumber(); OS << '\n'; } for (auto &I : instrs()) { if (Indexes) { if (Indexes->hasIndex(I)) OS << Indexes->getInstructionIndex(I); OS << '\t'; } OS << '\t'; if (I.isInsideBundle()) OS << " * "; I.print(OS, MST); } // Print the successors of this block according to the CFG. if (!succ_empty()) { if (Indexes) OS << '\t'; OS << " Successors according to CFG:"; for (const_succ_iterator SI = succ_begin(), E = succ_end(); SI != E; ++SI) { OS << " BB#" << (*SI)->getNumber(); if (!Probs.empty()) OS << '(' << *getProbabilityIterator(SI) << ')'; } OS << '\n'; } } void MachineBasicBlock::printAsOperand(raw_ostream &OS, bool /*PrintType*/) const { OS << "BB#" << getNumber(); } void MachineBasicBlock::removeLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) { LiveInVector::iterator I = std::find_if( LiveIns.begin(), LiveIns.end(), [Reg] (const RegisterMaskPair &LI) { return LI.PhysReg == Reg; }); if (I == LiveIns.end()) return; I->LaneMask &= ~LaneMask; if (I->LaneMask == 0) LiveIns.erase(I); } bool MachineBasicBlock::isLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) const { livein_iterator I = std::find_if( LiveIns.begin(), LiveIns.end(), [Reg] (const RegisterMaskPair &LI) { return LI.PhysReg == Reg; }); return I != livein_end() && (I->LaneMask & LaneMask) != 0; } void MachineBasicBlock::sortUniqueLiveIns() { std::sort(LiveIns.begin(), LiveIns.end(), [](const RegisterMaskPair &LI0, const RegisterMaskPair &LI1) { return LI0.PhysReg < LI1.PhysReg; }); // Liveins are sorted by physreg now we can merge their lanemasks. LiveInVector::const_iterator I = LiveIns.begin(); LiveInVector::const_iterator J; LiveInVector::iterator Out = LiveIns.begin(); for (; I != LiveIns.end(); ++Out, I = J) { unsigned PhysReg = I->PhysReg; LaneBitmask LaneMask = I->LaneMask; for (J = std::next(I); J != LiveIns.end() && J->PhysReg == PhysReg; ++J) LaneMask |= J->LaneMask; Out->PhysReg = PhysReg; Out->LaneMask = LaneMask; } LiveIns.erase(Out, LiveIns.end()); } unsigned MachineBasicBlock::addLiveIn(MCPhysReg PhysReg, const TargetRegisterClass *RC) { assert(getParent() && "MBB must be inserted in function"); assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) && "Expected physreg"); assert(RC && "Register class is required"); assert((isEHPad() || this == &getParent()->front()) && "Only the entry block and landing pads can have physreg live ins"); bool LiveIn = isLiveIn(PhysReg); iterator I = SkipPHIsAndLabels(begin()), E = end(); MachineRegisterInfo &MRI = getParent()->getRegInfo(); const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo(); // Look for an existing copy. if (LiveIn) for (;I != E && I->isCopy(); ++I) if (I->getOperand(1).getReg() == PhysReg) { unsigned VirtReg = I->getOperand(0).getReg(); if (!MRI.constrainRegClass(VirtReg, RC)) llvm_unreachable("Incompatible live-in register class."); return VirtReg; } // No luck, create a virtual register. unsigned VirtReg = MRI.createVirtualRegister(RC); BuildMI(*this, I, DebugLoc(), TII.get(TargetOpcode::COPY), VirtReg) .addReg(PhysReg, RegState::Kill); if (!LiveIn) addLiveIn(PhysReg); return VirtReg; } void MachineBasicBlock::moveBefore(MachineBasicBlock *NewAfter) { getParent()->splice(NewAfter->getIterator(), getIterator()); } void MachineBasicBlock::moveAfter(MachineBasicBlock *NewBefore) { getParent()->splice(++NewBefore->getIterator(), getIterator()); } void MachineBasicBlock::updateTerminator() { const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); // A block with no successors has no concerns with fall-through edges. if (this->succ_empty()) return; MachineBasicBlock *TBB = nullptr, *FBB = nullptr; SmallVector<MachineOperand, 4> Cond; DebugLoc DL; // FIXME: this is nowhere bool B = TII->analyzeBranch(*this, TBB, FBB, Cond); (void) B; assert(!B && "UpdateTerminators requires analyzable predecessors!"); if (Cond.empty()) { if (TBB) { // The block has an unconditional branch. If its successor is now its // layout successor, delete the branch. if (isLayoutSuccessor(TBB)) TII->RemoveBranch(*this); } else { // The block has an unconditional fallthrough. If its successor is not its // layout successor, insert a branch. First we have to locate the only // non-landing-pad successor, as that is the fallthrough block. for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) { if ((*SI)->isEHPad()) continue; assert(!TBB && "Found more than one non-landing-pad successor!"); TBB = *SI; } // If there is no non-landing-pad successor, the block has no fall-through // edges to be concerned with. if (!TBB) return; // Finally update the unconditional successor to be reached via a branch // if it would not be reached by fallthrough. if (!isLayoutSuccessor(TBB)) TII->InsertBranch(*this, TBB, nullptr, Cond, DL); } return; } if (FBB) { // The block has a non-fallthrough conditional branch. If one of its // successors is its layout successor, rewrite it to a fallthrough // conditional branch. if (isLayoutSuccessor(TBB)) { if (TII->ReverseBranchCondition(Cond)) return; TII->RemoveBranch(*this); TII->InsertBranch(*this, FBB, nullptr, Cond, DL); } else if (isLayoutSuccessor(FBB)) { TII->RemoveBranch(*this); TII->InsertBranch(*this, TBB, nullptr, Cond, DL); } return; } // Walk through the successors and find the successor which is not a landing // pad and is not the conditional branch destination (in TBB) as the // fallthrough successor. MachineBasicBlock *FallthroughBB = nullptr; for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) { if ((*SI)->isEHPad() || *SI == TBB) continue; assert(!FallthroughBB && "Found more than one fallthrough successor."); FallthroughBB = *SI; } if (!FallthroughBB) { if (canFallThrough()) { // We fallthrough to the same basic block as the conditional jump targets. // Remove the conditional jump, leaving unconditional fallthrough. // FIXME: This does not seem like a reasonable pattern to support, but it // has been seen in the wild coming out of degenerate ARM test cases. TII->RemoveBranch(*this); // Finally update the unconditional successor to be reached via a branch if // it would not be reached by fallthrough. if (!isLayoutSuccessor(TBB)) TII->InsertBranch(*this, TBB, nullptr, Cond, DL); return; } // We enter here iff exactly one successor is TBB which cannot fallthrough // and the rest successors if any are EHPads. In this case, we need to // change the conditional branch into unconditional branch. TII->RemoveBranch(*this); Cond.clear(); TII->InsertBranch(*this, TBB, nullptr, Cond, DL); return; } // The block has a fallthrough conditional branch. if (isLayoutSuccessor(TBB)) { if (TII->ReverseBranchCondition(Cond)) { // We can't reverse the condition, add an unconditional branch. Cond.clear(); TII->InsertBranch(*this, FallthroughBB, nullptr, Cond, DL); return; } TII->RemoveBranch(*this); TII->InsertBranch(*this, FallthroughBB, nullptr, Cond, DL); } else if (!isLayoutSuccessor(FallthroughBB)) { TII->RemoveBranch(*this); TII->InsertBranch(*this, TBB, FallthroughBB, Cond, DL); } } void MachineBasicBlock::validateSuccProbs() const { #ifndef NDEBUG int64_t Sum = 0; for (auto Prob : Probs) Sum += Prob.getNumerator(); // Due to precision issue, we assume that the sum of probabilities is one if // the difference between the sum of their numerators and the denominator is // no greater than the number of successors. assert((uint64_t)std::abs(Sum - BranchProbability::getDenominator()) <= Probs.size() && "The sum of successors's probabilities exceeds one."); #endif // NDEBUG } void MachineBasicBlock::addSuccessor(MachineBasicBlock *Succ, BranchProbability Prob) { // Probability list is either empty (if successor list isn't empty, this means // disabled optimization) or has the same size as successor list. if (!(Probs.empty() && !Successors.empty())) Probs.push_back(Prob); Successors.push_back(Succ); Succ->addPredecessor(this); } void MachineBasicBlock::addSuccessorWithoutProb(MachineBasicBlock *Succ) { // We need to make sure probability list is either empty or has the same size // of successor list. When this function is called, we can safely delete all // probability in the list. Probs.clear(); Successors.push_back(Succ); Succ->addPredecessor(this); } void MachineBasicBlock::removeSuccessor(MachineBasicBlock *Succ, bool NormalizeSuccProbs) { succ_iterator I = std::find(Successors.begin(), Successors.end(), Succ); removeSuccessor(I, NormalizeSuccProbs); } MachineBasicBlock::succ_iterator MachineBasicBlock::removeSuccessor(succ_iterator I, bool NormalizeSuccProbs) { assert(I != Successors.end() && "Not a current successor!"); // If probability list is empty it means we don't use it (disabled // optimization). if (!Probs.empty()) { probability_iterator WI = getProbabilityIterator(I); Probs.erase(WI); if (NormalizeSuccProbs) normalizeSuccProbs(); } (*I)->removePredecessor(this); return Successors.erase(I); } void MachineBasicBlock::replaceSuccessor(MachineBasicBlock *Old, MachineBasicBlock *New) { if (Old == New) return; succ_iterator E = succ_end(); succ_iterator NewI = E; succ_iterator OldI = E; for (succ_iterator I = succ_begin(); I != E; ++I) { if (*I == Old) { OldI = I; if (NewI != E) break; } if (*I == New) { NewI = I; if (OldI != E) break; } } assert(OldI != E && "Old is not a successor of this block"); // If New isn't already a successor, let it take Old's place. if (NewI == E) { Old->removePredecessor(this); New->addPredecessor(this); *OldI = New; return; } // New is already a successor. // Update its probability instead of adding a duplicate edge. if (!Probs.empty()) { auto ProbIter = getProbabilityIterator(NewI); if (!ProbIter->isUnknown()) *ProbIter += *getProbabilityIterator(OldI); } removeSuccessor(OldI); } void MachineBasicBlock::addPredecessor(MachineBasicBlock *Pred) { Predecessors.push_back(Pred); } void MachineBasicBlock::removePredecessor(MachineBasicBlock *Pred) { pred_iterator I = std::find(Predecessors.begin(), Predecessors.end(), Pred); assert(I != Predecessors.end() && "Pred is not a predecessor of this block!"); Predecessors.erase(I); } void MachineBasicBlock::transferSuccessors(MachineBasicBlock *FromMBB) { if (this == FromMBB) return; while (!FromMBB->succ_empty()) { MachineBasicBlock *Succ = *FromMBB->succ_begin(); // If probability list is empty it means we don't use it (disabled optimization). if (!FromMBB->Probs.empty()) { auto Prob = *FromMBB->Probs.begin(); addSuccessor(Succ, Prob); } else addSuccessorWithoutProb(Succ); FromMBB->removeSuccessor(Succ); } } void MachineBasicBlock::transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB) { if (this == FromMBB) return; while (!FromMBB->succ_empty()) { MachineBasicBlock *Succ = *FromMBB->succ_begin(); if (!FromMBB->Probs.empty()) { auto Prob = *FromMBB->Probs.begin(); addSuccessor(Succ, Prob); } else addSuccessorWithoutProb(Succ); FromMBB->removeSuccessor(Succ); // Fix up any PHI nodes in the successor. for (MachineBasicBlock::instr_iterator MI = Succ->instr_begin(), ME = Succ->instr_end(); MI != ME && MI->isPHI(); ++MI) for (unsigned i = 2, e = MI->getNumOperands()+1; i != e; i += 2) { MachineOperand &MO = MI->getOperand(i); if (MO.getMBB() == FromMBB) MO.setMBB(this); } } normalizeSuccProbs(); } bool MachineBasicBlock::isPredecessor(const MachineBasicBlock *MBB) const { return std::find(pred_begin(), pred_end(), MBB) != pred_end(); } bool MachineBasicBlock::isSuccessor(const MachineBasicBlock *MBB) const { return std::find(succ_begin(), succ_end(), MBB) != succ_end(); } bool MachineBasicBlock::isLayoutSuccessor(const MachineBasicBlock *MBB) const { MachineFunction::const_iterator I(this); return std::next(I) == MachineFunction::const_iterator(MBB); } bool MachineBasicBlock::canFallThrough() { MachineFunction::iterator Fallthrough = getIterator(); ++Fallthrough; // If FallthroughBlock is off the end of the function, it can't fall through. if (Fallthrough == getParent()->end()) return false; // If FallthroughBlock isn't a successor, no fallthrough is possible. if (!isSuccessor(&*Fallthrough)) return false; // Analyze the branches, if any, at the end of the block. MachineBasicBlock *TBB = nullptr, *FBB = nullptr; SmallVector<MachineOperand, 4> Cond; const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); if (TII->analyzeBranch(*this, TBB, FBB, Cond)) { // If we couldn't analyze the branch, examine the last instruction. // If the block doesn't end in a known control barrier, assume fallthrough // is possible. The isPredicated check is needed because this code can be // called during IfConversion, where an instruction which is normally a // Barrier is predicated and thus no longer an actual control barrier. return empty() || !back().isBarrier() || TII->isPredicated(back()); } // If there is no branch, control always falls through. if (!TBB) return true; // If there is some explicit branch to the fallthrough block, it can obviously // reach, even though the branch should get folded to fall through implicitly. if (MachineFunction::iterator(TBB) == Fallthrough || MachineFunction::iterator(FBB) == Fallthrough) return true; // If it's an unconditional branch to some block not the fall through, it // doesn't fall through. if (Cond.empty()) return false; // Otherwise, if it is conditional and has no explicit false block, it falls // through. return FBB == nullptr; } MachineBasicBlock *MachineBasicBlock::SplitCriticalEdge(MachineBasicBlock *Succ, Pass &P) { if (!canSplitCriticalEdge(Succ)) return nullptr; MachineFunction *MF = getParent(); DebugLoc DL; // FIXME: this is nowhere MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock(); MF->insert(std::next(MachineFunction::iterator(this)), NMBB); DEBUG(dbgs() << "Splitting critical edge:" " BB#" << getNumber() << " -- BB#" << NMBB->getNumber() << " -- BB#" << Succ->getNumber() << '\n'); LiveIntervals *LIS = P.getAnalysisIfAvailable<LiveIntervals>(); SlotIndexes *Indexes = P.getAnalysisIfAvailable<SlotIndexes>(); if (LIS) LIS->insertMBBInMaps(NMBB); else if (Indexes) Indexes->insertMBBInMaps(NMBB); // On some targets like Mips, branches may kill virtual registers. Make sure // that LiveVariables is properly updated after updateTerminator replaces the // terminators. LiveVariables *LV = P.getAnalysisIfAvailable<LiveVariables>(); // Collect a list of virtual registers killed by the terminators. SmallVector<unsigned, 4> KilledRegs; if (LV) for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); I != E; ++I) { MachineInstr *MI = &*I; for (MachineInstr::mop_iterator OI = MI->operands_begin(), OE = MI->operands_end(); OI != OE; ++OI) { if (!OI->isReg() || OI->getReg() == 0 || !OI->isUse() || !OI->isKill() || OI->isUndef()) continue; unsigned Reg = OI->getReg(); if (TargetRegisterInfo::isPhysicalRegister(Reg) || LV->getVarInfo(Reg).removeKill(*MI)) { KilledRegs.push_back(Reg); DEBUG(dbgs() << "Removing terminator kill: " << *MI); OI->setIsKill(false); } } } SmallVector<unsigned, 4> UsedRegs; if (LIS) { for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); I != E; ++I) { MachineInstr *MI = &*I; for (MachineInstr::mop_iterator OI = MI->operands_begin(), OE = MI->operands_end(); OI != OE; ++OI) { if (!OI->isReg() || OI->getReg() == 0) continue; unsigned Reg = OI->getReg(); if (std::find(UsedRegs.begin(), UsedRegs.end(), Reg) == UsedRegs.end()) UsedRegs.push_back(Reg); } } } ReplaceUsesOfBlockWith(Succ, NMBB); // If updateTerminator() removes instructions, we need to remove them from // SlotIndexes. SmallVector<MachineInstr*, 4> Terminators; if (Indexes) { for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); I != E; ++I) Terminators.push_back(&*I); } updateTerminator(); if (Indexes) { SmallVector<MachineInstr*, 4> NewTerminators; for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); I != E; ++I) NewTerminators.push_back(&*I); for (SmallVectorImpl<MachineInstr*>::iterator I = Terminators.begin(), E = Terminators.end(); I != E; ++I) { if (std::find(NewTerminators.begin(), NewTerminators.end(), *I) == NewTerminators.end()) Indexes->removeMachineInstrFromMaps(**I); } } // Insert unconditional "jump Succ" instruction in NMBB if necessary. NMBB->addSuccessor(Succ); if (!NMBB->isLayoutSuccessor(Succ)) { SmallVector<MachineOperand, 4> Cond; const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); TII->InsertBranch(*NMBB, Succ, nullptr, Cond, DL); if (Indexes) { for (MachineInstr &MI : NMBB->instrs()) { // Some instructions may have been moved to NMBB by updateTerminator(), // so we first remove any instruction that already has an index. if (Indexes->hasIndex(MI)) Indexes->removeMachineInstrFromMaps(MI); Indexes->insertMachineInstrInMaps(MI); } } } // Fix PHI nodes in Succ so they refer to NMBB instead of this for (MachineBasicBlock::instr_iterator i = Succ->instr_begin(),e = Succ->instr_end(); i != e && i->isPHI(); ++i) for (unsigned ni = 1, ne = i->getNumOperands(); ni != ne; ni += 2) if (i->getOperand(ni+1).getMBB() == this) i->getOperand(ni+1).setMBB(NMBB); // Inherit live-ins from the successor for (const auto &LI : Succ->liveins()) NMBB->addLiveIn(LI); // Update LiveVariables. const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); if (LV) { // Restore kills of virtual registers that were killed by the terminators. while (!KilledRegs.empty()) { unsigned Reg = KilledRegs.pop_back_val(); for (instr_iterator I = instr_end(), E = instr_begin(); I != E;) { if (!(--I)->addRegisterKilled(Reg, TRI, /* addIfNotFound= */ false)) continue; if (TargetRegisterInfo::isVirtualRegister(Reg)) LV->getVarInfo(Reg).Kills.push_back(&*I); DEBUG(dbgs() << "Restored terminator kill: " << *I); break; } } // Update relevant live-through information. LV->addNewBlock(NMBB, this, Succ); } if (LIS) { // After splitting the edge and updating SlotIndexes, live intervals may be // in one of two situations, depending on whether this block was the last in // the function. If the original block was the last in the function, all // live intervals will end prior to the beginning of the new split block. If // the original block was not at the end of the function, all live intervals // will extend to the end of the new split block. bool isLastMBB = std::next(MachineFunction::iterator(NMBB)) == getParent()->end(); SlotIndex StartIndex = Indexes->getMBBEndIdx(this); SlotIndex PrevIndex = StartIndex.getPrevSlot(); SlotIndex EndIndex = Indexes->getMBBEndIdx(NMBB); // Find the registers used from NMBB in PHIs in Succ. SmallSet<unsigned, 8> PHISrcRegs; for (MachineBasicBlock::instr_iterator I = Succ->instr_begin(), E = Succ->instr_end(); I != E && I->isPHI(); ++I) { for (unsigned ni = 1, ne = I->getNumOperands(); ni != ne; ni += 2) { if (I->getOperand(ni+1).getMBB() == NMBB) { MachineOperand &MO = I->getOperand(ni); unsigned Reg = MO.getReg(); PHISrcRegs.insert(Reg); if (MO.isUndef()) continue; LiveInterval &LI = LIS->getInterval(Reg); VNInfo *VNI = LI.getVNInfoAt(PrevIndex); assert(VNI && "PHI sources should be live out of their predecessors."); LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI)); } } } MachineRegisterInfo *MRI = &getParent()->getRegInfo(); for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { unsigned Reg = TargetRegisterInfo::index2VirtReg(i); if (PHISrcRegs.count(Reg) || !LIS->hasInterval(Reg)) continue; LiveInterval &LI = LIS->getInterval(Reg); if (!LI.liveAt(PrevIndex)) continue; bool isLiveOut = LI.liveAt(LIS->getMBBStartIdx(Succ)); if (isLiveOut && isLastMBB) { VNInfo *VNI = LI.getVNInfoAt(PrevIndex); assert(VNI && "LiveInterval should have VNInfo where it is live."); LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI)); } else if (!isLiveOut && !isLastMBB) { LI.removeSegment(StartIndex, EndIndex); } } // Update all intervals for registers whose uses may have been modified by // updateTerminator(). LIS->repairIntervalsInRange(this, getFirstTerminator(), end(), UsedRegs); } if (MachineDominatorTree *MDT = P.getAnalysisIfAvailable<MachineDominatorTree>()) MDT->recordSplitCriticalEdge(this, Succ, NMBB); if (MachineLoopInfo *MLI = P.getAnalysisIfAvailable<MachineLoopInfo>()) if (MachineLoop *TIL = MLI->getLoopFor(this)) { // If one or the other blocks were not in a loop, the new block is not // either, and thus LI doesn't need to be updated. if (MachineLoop *DestLoop = MLI->getLoopFor(Succ)) { if (TIL == DestLoop) { // Both in the same loop, the NMBB joins loop. DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase()); } else if (TIL->contains(DestLoop)) { // Edge from an outer loop to an inner loop. Add to the outer loop. TIL->addBasicBlockToLoop(NMBB, MLI->getBase()); } else if (DestLoop->contains(TIL)) { // Edge from an inner loop to an outer loop. Add to the outer loop. DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase()); } else { // Edge from two loops with no containment relation. Because these // are natural loops, we know that the destination block must be the // header of its loop (adding a branch into a loop elsewhere would // create an irreducible loop). assert(DestLoop->getHeader() == Succ && "Should not create irreducible loops!"); if (MachineLoop *P = DestLoop->getParentLoop()) P->addBasicBlockToLoop(NMBB, MLI->getBase()); } } } return NMBB; } bool MachineBasicBlock::canSplitCriticalEdge( const MachineBasicBlock *Succ) const { // Splitting the critical edge to a landing pad block is non-trivial. Don't do // it in this generic function. if (Succ->isEHPad()) return false; const MachineFunction *MF = getParent(); // Performance might be harmed on HW that implements branching using exec mask // where both sides of the branches are always executed. if (MF->getTarget().requiresStructuredCFG()) return false; // We may need to update this's terminator, but we can't do that if // AnalyzeBranch fails. If this uses a jump table, we won't touch it. const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); MachineBasicBlock *TBB = nullptr, *FBB = nullptr; SmallVector<MachineOperand, 4> Cond; // AnalyzeBanch should modify this, since we did not allow modification. if (TII->analyzeBranch(*const_cast<MachineBasicBlock *>(this), TBB, FBB, Cond, /*AllowModify*/ false)) return false; // Avoid bugpoint weirdness: A block may end with a conditional branch but // jumps to the same MBB is either case. We have duplicate CFG edges in that // case that we can't handle. Since this never happens in properly optimized // code, just skip those edges. if (TBB && TBB == FBB) { DEBUG(dbgs() << "Won't split critical edge after degenerate BB#" << getNumber() << '\n'); return false; } return true; } /// Prepare MI to be removed from its bundle. This fixes bundle flags on MI's /// neighboring instructions so the bundle won't be broken by removing MI. static void unbundleSingleMI(MachineInstr *MI) { // Removing the first instruction in a bundle. if (MI->isBundledWithSucc() && !MI->isBundledWithPred()) MI->unbundleFromSucc(); // Removing the last instruction in a bundle. if (MI->isBundledWithPred() && !MI->isBundledWithSucc()) MI->unbundleFromPred(); // If MI is not bundled, or if it is internal to a bundle, the neighbor flags // are already fine. } MachineBasicBlock::instr_iterator MachineBasicBlock::erase(MachineBasicBlock::instr_iterator I) { unbundleSingleMI(&*I); return Insts.erase(I); } MachineInstr *MachineBasicBlock::remove_instr(MachineInstr *MI) { unbundleSingleMI(MI); MI->clearFlag(MachineInstr::BundledPred); MI->clearFlag(MachineInstr::BundledSucc); return Insts.remove(MI); } MachineBasicBlock::instr_iterator MachineBasicBlock::insert(instr_iterator I, MachineInstr *MI) { assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() && "Cannot insert instruction with bundle flags"); // Set the bundle flags when inserting inside a bundle. if (I != instr_end() && I->isBundledWithPred()) { MI->setFlag(MachineInstr::BundledPred); MI->setFlag(MachineInstr::BundledSucc); } return Insts.insert(I, MI); } /// This method unlinks 'this' from the containing function, and returns it, but /// does not delete it. MachineBasicBlock *MachineBasicBlock::removeFromParent() { assert(getParent() && "Not embedded in a function!"); getParent()->remove(this); return this; } /// This method unlinks 'this' from the containing function, and deletes it. void MachineBasicBlock::eraseFromParent() { assert(getParent() && "Not embedded in a function!"); getParent()->erase(this); } /// Given a machine basic block that branched to 'Old', change the code and CFG /// so that it branches to 'New' instead. void MachineBasicBlock::ReplaceUsesOfBlockWith(MachineBasicBlock *Old, MachineBasicBlock *New) { assert(Old != New && "Cannot replace self with self!"); MachineBasicBlock::instr_iterator I = instr_end(); while (I != instr_begin()) { --I; if (!I->isTerminator()) break; // Scan the operands of this machine instruction, replacing any uses of Old // with New. for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) if (I->getOperand(i).isMBB() && I->getOperand(i).getMBB() == Old) I->getOperand(i).setMBB(New); } // Update the successor information. replaceSuccessor(Old, New); } /// Various pieces of code can cause excess edges in the CFG to be inserted. If /// we have proven that MBB can only branch to DestA and DestB, remove any other /// MBB successors from the CFG. DestA and DestB can be null. /// /// Besides DestA and DestB, retain other edges leading to LandingPads /// (currently there can be only one; we don't check or require that here). /// Note it is possible that DestA and/or DestB are LandingPads. bool MachineBasicBlock::CorrectExtraCFGEdges(MachineBasicBlock *DestA, MachineBasicBlock *DestB, bool IsCond) { // The values of DestA and DestB frequently come from a call to the // 'TargetInstrInfo::AnalyzeBranch' method. We take our meaning of the initial // values from there. // // 1. If both DestA and DestB are null, then the block ends with no branches // (it falls through to its successor). // 2. If DestA is set, DestB is null, and IsCond is false, then the block ends // with only an unconditional branch. // 3. If DestA is set, DestB is null, and IsCond is true, then the block ends // with a conditional branch that falls through to a successor (DestB). // 4. If DestA and DestB is set and IsCond is true, then the block ends with a // conditional branch followed by an unconditional branch. DestA is the // 'true' destination and DestB is the 'false' destination. bool Changed = false; MachineFunction::iterator FallThru = std::next(getIterator()); if (!DestA && !DestB) { // Block falls through to successor. DestA = &*FallThru; DestB = &*FallThru; } else if (DestA && !DestB) { if (IsCond) // Block ends in conditional jump that falls through to successor. DestB = &*FallThru; } else { assert(DestA && DestB && IsCond && "CFG in a bad state. Cannot correct CFG edges"); } // Remove superfluous edges. I.e., those which aren't destinations of this // basic block, duplicate edges, or landing pads. SmallPtrSet<const MachineBasicBlock*, 8> SeenMBBs; MachineBasicBlock::succ_iterator SI = succ_begin(); while (SI != succ_end()) { const MachineBasicBlock *MBB = *SI; if (!SeenMBBs.insert(MBB).second || (MBB != DestA && MBB != DestB && !MBB->isEHPad())) { // This is a superfluous edge, remove it. SI = removeSuccessor(SI); Changed = true; } else { ++SI; } } if (Changed) normalizeSuccProbs(); return Changed; } /// Find the next valid DebugLoc starting at MBBI, skipping any DBG_VALUE /// instructions. Return UnknownLoc if there is none. DebugLoc MachineBasicBlock::findDebugLoc(instr_iterator MBBI) { DebugLoc DL; instr_iterator E = instr_end(); if (MBBI == E) return DL; // Skip debug declarations, we don't want a DebugLoc from them. while (MBBI != E && MBBI->isDebugValue()) MBBI++; if (MBBI != E) DL = MBBI->getDebugLoc(); return DL; } /// Return probability of the edge from this block to MBB. BranchProbability MachineBasicBlock::getSuccProbability(const_succ_iterator Succ) const { if (Probs.empty()) return BranchProbability(1, succ_size()); const auto &Prob = *getProbabilityIterator(Succ); if (Prob.isUnknown()) { // For unknown probabilities, collect the sum of all known ones, and evenly // ditribute the complemental of the sum to each unknown probability. unsigned KnownProbNum = 0; auto Sum = BranchProbability::getZero(); for (auto &P : Probs) { if (!P.isUnknown()) { Sum += P; KnownProbNum++; } } return Sum.getCompl() / (Probs.size() - KnownProbNum); } else return Prob; } /// Set successor probability of a given iterator. void MachineBasicBlock::setSuccProbability(succ_iterator I, BranchProbability Prob) { assert(!Prob.isUnknown()); if (Probs.empty()) return; *getProbabilityIterator(I) = Prob; } /// Return probability iterator corresonding to the I successor iterator MachineBasicBlock::const_probability_iterator MachineBasicBlock::getProbabilityIterator( MachineBasicBlock::const_succ_iterator I) const { assert(Probs.size() == Successors.size() && "Async probability list!"); const size_t index = std::distance(Successors.begin(), I); assert(index < Probs.size() && "Not a current successor!"); return Probs.begin() + index; } /// Return probability iterator corresonding to the I successor iterator. MachineBasicBlock::probability_iterator MachineBasicBlock::getProbabilityIterator(MachineBasicBlock::succ_iterator I) { assert(Probs.size() == Successors.size() && "Async probability list!"); const size_t index = std::distance(Successors.begin(), I); assert(index < Probs.size() && "Not a current successor!"); return Probs.begin() + index; } /// Return whether (physical) register "Reg" has been <def>ined and not <kill>ed /// as of just before "MI". /// /// Search is localised to a neighborhood of /// Neighborhood instructions before (searching for defs or kills) and N /// instructions after (searching just for defs) MI. MachineBasicBlock::LivenessQueryResult MachineBasicBlock::computeRegisterLiveness(const TargetRegisterInfo *TRI, unsigned Reg, const_iterator Before, unsigned Neighborhood) const { unsigned N = Neighborhood; // Start by searching backwards from Before, looking for kills, reads or defs. const_iterator I(Before); // If this is the first insn in the block, don't search backwards. if (I != begin()) { do { --I; MachineOperandIteratorBase::PhysRegInfo Info = ConstMIOperands(*I).analyzePhysReg(Reg, TRI); // Defs happen after uses so they take precedence if both are present. // Register is dead after a dead def of the full register. if (Info.DeadDef) return LQR_Dead; // Register is (at least partially) live after a def. if (Info.Defined) { if (!Info.PartialDeadDef) return LQR_Live; // As soon as we saw a partial definition (dead or not), // we cannot tell if the value is partial live without // tracking the lanemasks. We are not going to do this, // so fall back on the remaining of the analysis. break; } // Register is dead after a full kill or clobber and no def. if (Info.Killed || Info.Clobbered) return LQR_Dead; // Register must be live if we read it. if (Info.Read) return LQR_Live; } while (I != begin() && --N > 0); } // Did we get to the start of the block? if (I == begin()) { // If so, the register's state is definitely defined by the live-in state. for (MCRegAliasIterator RAI(Reg, TRI, /*IncludeSelf=*/true); RAI.isValid(); ++RAI) if (isLiveIn(*RAI)) return LQR_Live; return LQR_Dead; } N = Neighborhood; // Try searching forwards from Before, looking for reads or defs. I = const_iterator(Before); // If this is the last insn in the block, don't search forwards. if (I != end()) { for (++I; I != end() && N > 0; ++I, --N) { MachineOperandIteratorBase::PhysRegInfo Info = ConstMIOperands(*I).analyzePhysReg(Reg, TRI); // Register is live when we read it here. if (Info.Read) return LQR_Live; // Register is dead if we can fully overwrite or clobber it here. if (Info.FullyDefined || Info.Clobbered) return LQR_Dead; } } // At this point we have no idea of the liveness of the register. return LQR_Unknown; } const uint32_t * MachineBasicBlock::getBeginClobberMask(const TargetRegisterInfo *TRI) const { // EH funclet entry does not preserve any registers. return isEHFuncletEntry() ? TRI->getNoPreservedMask() : nullptr; } const uint32_t * MachineBasicBlock::getEndClobberMask(const TargetRegisterInfo *TRI) const { // If we see a return block with successors, this must be a funclet return, // which does not preserve any registers. If there are no successors, we don't // care what kind of return it is, putting a mask after it is a no-op. return isReturnBlock() && !succ_empty() ? TRI->getNoPreservedMask() : nullptr; }