//===-- MachineSink.cpp - Sinking for machine instructions ----------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This pass moves instructions into successor blocks when possible, so that // they aren't executed on paths where their results aren't needed. // // This pass is not intended to be a replacement or a complete alternative // for an LLVM-IR-level sinking pass. It is only designed to sink simple // constructs that are not exposed before lowering and instruction selection. // //===----------------------------------------------------------------------===// #include "llvm/CodeGen/Passes.h" #include "llvm/ADT/SetVector.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/SparseBitVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" #include "llvm/CodeGen/MachineDominators.h" #include "llvm/CodeGen/MachineLoopInfo.h" #include "llvm/CodeGen/MachinePostDominators.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/IR/LLVMContext.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetRegisterInfo.h" #include "llvm/Target/TargetSubtargetInfo.h" using namespace llvm; #define DEBUG_TYPE "machine-sink" static cl::opt<bool> SplitEdges("machine-sink-split", cl::desc("Split critical edges during machine sinking"), cl::init(true), cl::Hidden); static cl::opt<bool> UseBlockFreqInfo("machine-sink-bfi", cl::desc("Use block frequency info to find successors to sink"), cl::init(true), cl::Hidden); STATISTIC(NumSunk, "Number of machine instructions sunk"); STATISTIC(NumSplit, "Number of critical edges split"); STATISTIC(NumCoalesces, "Number of copies coalesced"); namespace { class MachineSinking : public MachineFunctionPass { const TargetInstrInfo *TII; const TargetRegisterInfo *TRI; MachineRegisterInfo *MRI; // Machine register information MachineDominatorTree *DT; // Machine dominator tree MachinePostDominatorTree *PDT; // Machine post dominator tree MachineLoopInfo *LI; const MachineBlockFrequencyInfo *MBFI; AliasAnalysis *AA; // Remember which edges have been considered for breaking. SmallSet<std::pair<MachineBasicBlock*,MachineBasicBlock*>, 8> CEBCandidates; // Remember which edges we are about to split. // This is different from CEBCandidates since those edges // will be split. SetVector<std::pair<MachineBasicBlock*,MachineBasicBlock*> > ToSplit; SparseBitVector<> RegsToClearKillFlags; typedef std::map<MachineBasicBlock *, SmallVector<MachineBasicBlock *, 4>> AllSuccsCache; public: static char ID; // Pass identification MachineSinking() : MachineFunctionPass(ID) { initializeMachineSinkingPass(*PassRegistry::getPassRegistry()); } bool runOnMachineFunction(MachineFunction &MF) override; void getAnalysisUsage(AnalysisUsage &AU) const override { AU.setPreservesCFG(); MachineFunctionPass::getAnalysisUsage(AU); AU.addRequired<AAResultsWrapperPass>(); AU.addRequired<MachineDominatorTree>(); AU.addRequired<MachinePostDominatorTree>(); AU.addRequired<MachineLoopInfo>(); AU.addPreserved<MachineDominatorTree>(); AU.addPreserved<MachinePostDominatorTree>(); AU.addPreserved<MachineLoopInfo>(); if (UseBlockFreqInfo) AU.addRequired<MachineBlockFrequencyInfo>(); } void releaseMemory() override { CEBCandidates.clear(); } private: bool ProcessBlock(MachineBasicBlock &MBB); bool isWorthBreakingCriticalEdge(MachineInstr &MI, MachineBasicBlock *From, MachineBasicBlock *To); /// \brief Postpone the splitting of the given critical /// edge (\p From, \p To). /// /// We do not split the edges on the fly. Indeed, this invalidates /// the dominance information and thus triggers a lot of updates /// of that information underneath. /// Instead, we postpone all the splits after each iteration of /// the main loop. That way, the information is at least valid /// for the lifetime of an iteration. /// /// \return True if the edge is marked as toSplit, false otherwise. /// False can be returned if, for instance, this is not profitable. bool PostponeSplitCriticalEdge(MachineInstr &MI, MachineBasicBlock *From, MachineBasicBlock *To, bool BreakPHIEdge); bool SinkInstruction(MachineInstr &MI, bool &SawStore, AllSuccsCache &AllSuccessors); bool AllUsesDominatedByBlock(unsigned Reg, MachineBasicBlock *MBB, MachineBasicBlock *DefMBB, bool &BreakPHIEdge, bool &LocalUse) const; MachineBasicBlock *FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB, bool &BreakPHIEdge, AllSuccsCache &AllSuccessors); bool isProfitableToSinkTo(unsigned Reg, MachineInstr &MI, MachineBasicBlock *MBB, MachineBasicBlock *SuccToSinkTo, AllSuccsCache &AllSuccessors); bool PerformTrivialForwardCoalescing(MachineInstr &MI, MachineBasicBlock *MBB); SmallVector<MachineBasicBlock *, 4> & GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB, AllSuccsCache &AllSuccessors) const; }; } // end anonymous namespace char MachineSinking::ID = 0; char &llvm::MachineSinkingID = MachineSinking::ID; INITIALIZE_PASS_BEGIN(MachineSinking, "machine-sink", "Machine code sinking", false, false) INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) INITIALIZE_PASS_END(MachineSinking, "machine-sink", "Machine code sinking", false, false) bool MachineSinking::PerformTrivialForwardCoalescing(MachineInstr &MI, MachineBasicBlock *MBB) { if (!MI.isCopy()) return false; unsigned SrcReg = MI.getOperand(1).getReg(); unsigned DstReg = MI.getOperand(0).getReg(); if (!TargetRegisterInfo::isVirtualRegister(SrcReg) || !TargetRegisterInfo::isVirtualRegister(DstReg) || !MRI->hasOneNonDBGUse(SrcReg)) return false; const TargetRegisterClass *SRC = MRI->getRegClass(SrcReg); const TargetRegisterClass *DRC = MRI->getRegClass(DstReg); if (SRC != DRC) return false; MachineInstr *DefMI = MRI->getVRegDef(SrcReg); if (DefMI->isCopyLike()) return false; DEBUG(dbgs() << "Coalescing: " << *DefMI); DEBUG(dbgs() << "*** to: " << MI); MRI->replaceRegWith(DstReg, SrcReg); MI.eraseFromParent(); // Conservatively, clear any kill flags, since it's possible that they are no // longer correct. MRI->clearKillFlags(SrcReg); ++NumCoalesces; return true; } /// AllUsesDominatedByBlock - Return true if all uses of the specified register /// occur in blocks dominated by the specified block. If any use is in the /// definition block, then return false since it is never legal to move def /// after uses. bool MachineSinking::AllUsesDominatedByBlock(unsigned Reg, MachineBasicBlock *MBB, MachineBasicBlock *DefMBB, bool &BreakPHIEdge, bool &LocalUse) const { assert(TargetRegisterInfo::isVirtualRegister(Reg) && "Only makes sense for vregs"); // Ignore debug uses because debug info doesn't affect the code. if (MRI->use_nodbg_empty(Reg)) return true; // BreakPHIEdge is true if all the uses are in the successor MBB being sunken // into and they are all PHI nodes. In this case, machine-sink must break // the critical edge first. e.g. // // BB#1: derived from LLVM BB %bb4.preheader // Predecessors according to CFG: BB#0 // ... // %reg16385<def> = DEC64_32r %reg16437, %EFLAGS<imp-def,dead> // ... // JE_4 <BB#37>, %EFLAGS<imp-use> // Successors according to CFG: BB#37 BB#2 // // BB#2: derived from LLVM BB %bb.nph // Predecessors according to CFG: BB#0 BB#1 // %reg16386<def> = PHI %reg16434, <BB#0>, %reg16385, <BB#1> BreakPHIEdge = true; for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) { MachineInstr *UseInst = MO.getParent(); unsigned OpNo = &MO - &UseInst->getOperand(0); MachineBasicBlock *UseBlock = UseInst->getParent(); if (!(UseBlock == MBB && UseInst->isPHI() && UseInst->getOperand(OpNo+1).getMBB() == DefMBB)) { BreakPHIEdge = false; break; } } if (BreakPHIEdge) return true; for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) { // Determine the block of the use. MachineInstr *UseInst = MO.getParent(); unsigned OpNo = &MO - &UseInst->getOperand(0); MachineBasicBlock *UseBlock = UseInst->getParent(); if (UseInst->isPHI()) { // PHI nodes use the operand in the predecessor block, not the block with // the PHI. UseBlock = UseInst->getOperand(OpNo+1).getMBB(); } else if (UseBlock == DefMBB) { LocalUse = true; return false; } // Check that it dominates. if (!DT->dominates(MBB, UseBlock)) return false; } return true; } bool MachineSinking::runOnMachineFunction(MachineFunction &MF) { if (skipFunction(*MF.getFunction())) return false; DEBUG(dbgs() << "******** Machine Sinking ********\n"); TII = MF.getSubtarget().getInstrInfo(); TRI = MF.getSubtarget().getRegisterInfo(); MRI = &MF.getRegInfo(); DT = &getAnalysis<MachineDominatorTree>(); PDT = &getAnalysis<MachinePostDominatorTree>(); LI = &getAnalysis<MachineLoopInfo>(); MBFI = UseBlockFreqInfo ? &getAnalysis<MachineBlockFrequencyInfo>() : nullptr; AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); bool EverMadeChange = false; while (1) { bool MadeChange = false; // Process all basic blocks. CEBCandidates.clear(); ToSplit.clear(); for (auto &MBB: MF) MadeChange |= ProcessBlock(MBB); // If we have anything we marked as toSplit, split it now. for (auto &Pair : ToSplit) { auto NewSucc = Pair.first->SplitCriticalEdge(Pair.second, *this); if (NewSucc != nullptr) { DEBUG(dbgs() << " *** Splitting critical edge:" " BB#" << Pair.first->getNumber() << " -- BB#" << NewSucc->getNumber() << " -- BB#" << Pair.second->getNumber() << '\n'); MadeChange = true; ++NumSplit; } else DEBUG(dbgs() << " *** Not legal to break critical edge\n"); } // If this iteration over the code changed anything, keep iterating. if (!MadeChange) break; EverMadeChange = true; } // Now clear any kill flags for recorded registers. for (auto I : RegsToClearKillFlags) MRI->clearKillFlags(I); RegsToClearKillFlags.clear(); return EverMadeChange; } bool MachineSinking::ProcessBlock(MachineBasicBlock &MBB) { // Can't sink anything out of a block that has less than two successors. if (MBB.succ_size() <= 1 || MBB.empty()) return false; // Don't bother sinking code out of unreachable blocks. In addition to being // unprofitable, it can also lead to infinite looping, because in an // unreachable loop there may be nowhere to stop. if (!DT->isReachableFromEntry(&MBB)) return false; bool MadeChange = false; // Cache all successors, sorted by frequency info and loop depth. AllSuccsCache AllSuccessors; // Walk the basic block bottom-up. Remember if we saw a store. MachineBasicBlock::iterator I = MBB.end(); --I; bool ProcessedBegin, SawStore = false; do { MachineInstr &MI = *I; // The instruction to sink. // Predecrement I (if it's not begin) so that it isn't invalidated by // sinking. ProcessedBegin = I == MBB.begin(); if (!ProcessedBegin) --I; if (MI.isDebugValue()) continue; bool Joined = PerformTrivialForwardCoalescing(MI, &MBB); if (Joined) { MadeChange = true; continue; } if (SinkInstruction(MI, SawStore, AllSuccessors)) { ++NumSunk; MadeChange = true; } // If we just processed the first instruction in the block, we're done. } while (!ProcessedBegin); return MadeChange; } bool MachineSinking::isWorthBreakingCriticalEdge(MachineInstr &MI, MachineBasicBlock *From, MachineBasicBlock *To) { // FIXME: Need much better heuristics. // If the pass has already considered breaking this edge (during this pass // through the function), then let's go ahead and break it. This means // sinking multiple "cheap" instructions into the same block. if (!CEBCandidates.insert(std::make_pair(From, To)).second) return true; if (!MI.isCopy() && !TII->isAsCheapAsAMove(MI)) return true; // MI is cheap, we probably don't want to break the critical edge for it. // However, if this would allow some definitions of its source operands // to be sunk then it's probably worth it. for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { const MachineOperand &MO = MI.getOperand(i); if (!MO.isReg() || !MO.isUse()) continue; unsigned Reg = MO.getReg(); if (Reg == 0) continue; // We don't move live definitions of physical registers, // so sinking their uses won't enable any opportunities. if (TargetRegisterInfo::isPhysicalRegister(Reg)) continue; // If this instruction is the only user of a virtual register, // check if breaking the edge will enable sinking // both this instruction and the defining instruction. if (MRI->hasOneNonDBGUse(Reg)) { // If the definition resides in same MBB, // claim it's likely we can sink these together. // If definition resides elsewhere, we aren't // blocking it from being sunk so don't break the edge. MachineInstr *DefMI = MRI->getVRegDef(Reg); if (DefMI->getParent() == MI.getParent()) return true; } } return false; } bool MachineSinking::PostponeSplitCriticalEdge(MachineInstr &MI, MachineBasicBlock *FromBB, MachineBasicBlock *ToBB, bool BreakPHIEdge) { if (!isWorthBreakingCriticalEdge(MI, FromBB, ToBB)) return false; // Avoid breaking back edge. From == To means backedge for single BB loop. if (!SplitEdges || FromBB == ToBB) return false; // Check for backedges of more "complex" loops. if (LI->getLoopFor(FromBB) == LI->getLoopFor(ToBB) && LI->isLoopHeader(ToBB)) return false; // It's not always legal to break critical edges and sink the computation // to the edge. // // BB#1: // v1024 // Beq BB#3 // <fallthrough> // BB#2: // ... no uses of v1024 // <fallthrough> // BB#3: // ... // = v1024 // // If BB#1 -> BB#3 edge is broken and computation of v1024 is inserted: // // BB#1: // ... // Bne BB#2 // BB#4: // v1024 = // B BB#3 // BB#2: // ... no uses of v1024 // <fallthrough> // BB#3: // ... // = v1024 // // This is incorrect since v1024 is not computed along the BB#1->BB#2->BB#3 // flow. We need to ensure the new basic block where the computation is // sunk to dominates all the uses. // It's only legal to break critical edge and sink the computation to the // new block if all the predecessors of "To", except for "From", are // not dominated by "From". Given SSA property, this means these // predecessors are dominated by "To". // // There is no need to do this check if all the uses are PHI nodes. PHI // sources are only defined on the specific predecessor edges. if (!BreakPHIEdge) { for (MachineBasicBlock::pred_iterator PI = ToBB->pred_begin(), E = ToBB->pred_end(); PI != E; ++PI) { if (*PI == FromBB) continue; if (!DT->dominates(ToBB, *PI)) return false; } } ToSplit.insert(std::make_pair(FromBB, ToBB)); return true; } /// collectDebgValues - Scan instructions following MI and collect any /// matching DBG_VALUEs. static void collectDebugValues(MachineInstr &MI, SmallVectorImpl<MachineInstr *> &DbgValues) { DbgValues.clear(); if (!MI.getOperand(0).isReg()) return; MachineBasicBlock::iterator DI = MI; ++DI; for (MachineBasicBlock::iterator DE = MI.getParent()->end(); DI != DE; ++DI) { if (!DI->isDebugValue()) return; if (DI->getOperand(0).isReg() && DI->getOperand(0).getReg() == MI.getOperand(0).getReg()) DbgValues.push_back(&*DI); } } /// isProfitableToSinkTo - Return true if it is profitable to sink MI. bool MachineSinking::isProfitableToSinkTo(unsigned Reg, MachineInstr &MI, MachineBasicBlock *MBB, MachineBasicBlock *SuccToSinkTo, AllSuccsCache &AllSuccessors) { assert (SuccToSinkTo && "Invalid SinkTo Candidate BB"); if (MBB == SuccToSinkTo) return false; // It is profitable if SuccToSinkTo does not post dominate current block. if (!PDT->dominates(SuccToSinkTo, MBB)) return true; // It is profitable to sink an instruction from a deeper loop to a shallower // loop, even if the latter post-dominates the former (PR21115). if (LI->getLoopDepth(MBB) > LI->getLoopDepth(SuccToSinkTo)) return true; // Check if only use in post dominated block is PHI instruction. bool NonPHIUse = false; for (MachineInstr &UseInst : MRI->use_nodbg_instructions(Reg)) { MachineBasicBlock *UseBlock = UseInst.getParent(); if (UseBlock == SuccToSinkTo && !UseInst.isPHI()) NonPHIUse = true; } if (!NonPHIUse) return true; // If SuccToSinkTo post dominates then also it may be profitable if MI // can further profitably sinked into another block in next round. bool BreakPHIEdge = false; // FIXME - If finding successor is compile time expensive then cache results. if (MachineBasicBlock *MBB2 = FindSuccToSinkTo(MI, SuccToSinkTo, BreakPHIEdge, AllSuccessors)) return isProfitableToSinkTo(Reg, MI, SuccToSinkTo, MBB2, AllSuccessors); // If SuccToSinkTo is final destination and it is a post dominator of current // block then it is not profitable to sink MI into SuccToSinkTo block. return false; } /// Get the sorted sequence of successors for this MachineBasicBlock, possibly /// computing it if it was not already cached. SmallVector<MachineBasicBlock *, 4> & MachineSinking::GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB, AllSuccsCache &AllSuccessors) const { // Do we have the sorted successors in cache ? auto Succs = AllSuccessors.find(MBB); if (Succs != AllSuccessors.end()) return Succs->second; SmallVector<MachineBasicBlock *, 4> AllSuccs(MBB->succ_begin(), MBB->succ_end()); // Handle cases where sinking can happen but where the sink point isn't a // successor. For example: // // x = computation // if () {} else {} // use x // const std::vector<MachineDomTreeNode *> &Children = DT->getNode(MBB)->getChildren(); for (const auto &DTChild : Children) // DomTree children of MBB that have MBB as immediate dominator are added. if (DTChild->getIDom()->getBlock() == MI.getParent() && // Skip MBBs already added to the AllSuccs vector above. !MBB->isSuccessor(DTChild->getBlock())) AllSuccs.push_back(DTChild->getBlock()); // Sort Successors according to their loop depth or block frequency info. std::stable_sort( AllSuccs.begin(), AllSuccs.end(), [this](const MachineBasicBlock *L, const MachineBasicBlock *R) { uint64_t LHSFreq = MBFI ? MBFI->getBlockFreq(L).getFrequency() : 0; uint64_t RHSFreq = MBFI ? MBFI->getBlockFreq(R).getFrequency() : 0; bool HasBlockFreq = LHSFreq != 0 && RHSFreq != 0; return HasBlockFreq ? LHSFreq < RHSFreq : LI->getLoopDepth(L) < LI->getLoopDepth(R); }); auto it = AllSuccessors.insert(std::make_pair(MBB, AllSuccs)); return it.first->second; } /// FindSuccToSinkTo - Find a successor to sink this instruction to. MachineBasicBlock * MachineSinking::FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB, bool &BreakPHIEdge, AllSuccsCache &AllSuccessors) { assert (MBB && "Invalid MachineBasicBlock!"); // Loop over all the operands of the specified instruction. If there is // anything we can't handle, bail out. // SuccToSinkTo - This is the successor to sink this instruction to, once we // decide. MachineBasicBlock *SuccToSinkTo = nullptr; for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { const MachineOperand &MO = MI.getOperand(i); if (!MO.isReg()) continue; // Ignore non-register operands. unsigned Reg = MO.getReg(); if (Reg == 0) continue; if (TargetRegisterInfo::isPhysicalRegister(Reg)) { if (MO.isUse()) { // If the physreg has no defs anywhere, it's just an ambient register // and we can freely move its uses. Alternatively, if it's allocatable, // it could get allocated to something with a def during allocation. if (!MRI->isConstantPhysReg(Reg, *MBB->getParent())) return nullptr; } else if (!MO.isDead()) { // A def that isn't dead. We can't move it. return nullptr; } } else { // Virtual register uses are always safe to sink. if (MO.isUse()) continue; // If it's not safe to move defs of the register class, then abort. if (!TII->isSafeToMoveRegClassDefs(MRI->getRegClass(Reg))) return nullptr; // Virtual register defs can only be sunk if all their uses are in blocks // dominated by one of the successors. if (SuccToSinkTo) { // If a previous operand picked a block to sink to, then this operand // must be sinkable to the same block. bool LocalUse = false; if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, MBB, BreakPHIEdge, LocalUse)) return nullptr; continue; } // Otherwise, we should look at all the successors and decide which one // we should sink to. If we have reliable block frequency information // (frequency != 0) available, give successors with smaller frequencies // higher priority, otherwise prioritize smaller loop depths. for (MachineBasicBlock *SuccBlock : GetAllSortedSuccessors(MI, MBB, AllSuccessors)) { bool LocalUse = false; if (AllUsesDominatedByBlock(Reg, SuccBlock, MBB, BreakPHIEdge, LocalUse)) { SuccToSinkTo = SuccBlock; break; } if (LocalUse) // Def is used locally, it's never safe to move this def. return nullptr; } // If we couldn't find a block to sink to, ignore this instruction. if (!SuccToSinkTo) return nullptr; if (!isProfitableToSinkTo(Reg, MI, MBB, SuccToSinkTo, AllSuccessors)) return nullptr; } } // It is not possible to sink an instruction into its own block. This can // happen with loops. if (MBB == SuccToSinkTo) return nullptr; // It's not safe to sink instructions to EH landing pad. Control flow into // landing pad is implicitly defined. if (SuccToSinkTo && SuccToSinkTo->isEHPad()) return nullptr; return SuccToSinkTo; } /// \brief Return true if MI is likely to be usable as a memory operation by the /// implicit null check optimization. /// /// This is a "best effort" heuristic, and should not be relied upon for /// correctness. This returning true does not guarantee that the implicit null /// check optimization is legal over MI, and this returning false does not /// guarantee MI cannot possibly be used to do a null check. static bool SinkingPreventsImplicitNullCheck(MachineInstr &MI, const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) { typedef TargetInstrInfo::MachineBranchPredicate MachineBranchPredicate; auto *MBB = MI.getParent(); if (MBB->pred_size() != 1) return false; auto *PredMBB = *MBB->pred_begin(); auto *PredBB = PredMBB->getBasicBlock(); // Frontends that don't use implicit null checks have no reason to emit // branches with make.implicit metadata, and this function should always // return false for them. if (!PredBB || !PredBB->getTerminator()->getMetadata(LLVMContext::MD_make_implicit)) return false; unsigned BaseReg; int64_t Offset; if (!TII->getMemOpBaseRegImmOfs(MI, BaseReg, Offset, TRI)) return false; if (!(MI.mayLoad() && !MI.isPredicable())) return false; MachineBranchPredicate MBP; if (TII->analyzeBranchPredicate(*PredMBB, MBP, false)) return false; return MBP.LHS.isReg() && MBP.RHS.isImm() && MBP.RHS.getImm() == 0 && (MBP.Predicate == MachineBranchPredicate::PRED_NE || MBP.Predicate == MachineBranchPredicate::PRED_EQ) && MBP.LHS.getReg() == BaseReg; } /// SinkInstruction - Determine whether it is safe to sink the specified machine /// instruction out of its current block into a successor. bool MachineSinking::SinkInstruction(MachineInstr &MI, bool &SawStore, AllSuccsCache &AllSuccessors) { // Don't sink instructions that the target prefers not to sink. if (!TII->shouldSink(MI)) return false; // Check if it's safe to move the instruction. if (!MI.isSafeToMove(AA, SawStore)) return false; // Convergent operations may not be made control-dependent on additional // values. if (MI.isConvergent()) return false; // Don't break implicit null checks. This is a performance heuristic, and not // required for correctness. if (SinkingPreventsImplicitNullCheck(MI, TII, TRI)) return false; // FIXME: This should include support for sinking instructions within the // block they are currently in to shorten the live ranges. We often get // instructions sunk into the top of a large block, but it would be better to // also sink them down before their first use in the block. This xform has to // be careful not to *increase* register pressure though, e.g. sinking // "x = y + z" down if it kills y and z would increase the live ranges of y // and z and only shrink the live range of x. bool BreakPHIEdge = false; MachineBasicBlock *ParentBlock = MI.getParent(); MachineBasicBlock *SuccToSinkTo = FindSuccToSinkTo(MI, ParentBlock, BreakPHIEdge, AllSuccessors); // If there are no outputs, it must have side-effects. if (!SuccToSinkTo) return false; // If the instruction to move defines a dead physical register which is live // when leaving the basic block, don't move it because it could turn into a // "zombie" define of that preg. E.g., EFLAGS. (<rdar://problem/8030636>) for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { const MachineOperand &MO = MI.getOperand(I); if (!MO.isReg()) continue; unsigned Reg = MO.getReg(); if (Reg == 0 || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue; if (SuccToSinkTo->isLiveIn(Reg)) return false; } DEBUG(dbgs() << "Sink instr " << MI << "\tinto block " << *SuccToSinkTo); // If the block has multiple predecessors, this is a critical edge. // Decide if we can sink along it or need to break the edge. if (SuccToSinkTo->pred_size() > 1) { // We cannot sink a load across a critical edge - there may be stores in // other code paths. bool TryBreak = false; bool store = true; if (!MI.isSafeToMove(AA, store)) { DEBUG(dbgs() << " *** NOTE: Won't sink load along critical edge.\n"); TryBreak = true; } // We don't want to sink across a critical edge if we don't dominate the // successor. We could be introducing calculations to new code paths. if (!TryBreak && !DT->dominates(ParentBlock, SuccToSinkTo)) { DEBUG(dbgs() << " *** NOTE: Critical edge found\n"); TryBreak = true; } // Don't sink instructions into a loop. if (!TryBreak && LI->isLoopHeader(SuccToSinkTo)) { DEBUG(dbgs() << " *** NOTE: Loop header found\n"); TryBreak = true; } // Otherwise we are OK with sinking along a critical edge. if (!TryBreak) DEBUG(dbgs() << "Sinking along critical edge.\n"); else { // Mark this edge as to be split. // If the edge can actually be split, the next iteration of the main loop // will sink MI in the newly created block. bool Status = PostponeSplitCriticalEdge(MI, ParentBlock, SuccToSinkTo, BreakPHIEdge); if (!Status) DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to " "break critical edge\n"); // The instruction will not be sunk this time. return false; } } if (BreakPHIEdge) { // BreakPHIEdge is true if all the uses are in the successor MBB being // sunken into and they are all PHI nodes. In this case, machine-sink must // break the critical edge first. bool Status = PostponeSplitCriticalEdge(MI, ParentBlock, SuccToSinkTo, BreakPHIEdge); if (!Status) DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to " "break critical edge\n"); // The instruction will not be sunk this time. return false; } // Determine where to insert into. Skip phi nodes. MachineBasicBlock::iterator InsertPos = SuccToSinkTo->begin(); while (InsertPos != SuccToSinkTo->end() && InsertPos->isPHI()) ++InsertPos; // collect matching debug values. SmallVector<MachineInstr *, 2> DbgValuesToSink; collectDebugValues(MI, DbgValuesToSink); // Move the instruction. SuccToSinkTo->splice(InsertPos, ParentBlock, MI, ++MachineBasicBlock::iterator(MI)); // Move debug values. for (SmallVectorImpl<MachineInstr *>::iterator DBI = DbgValuesToSink.begin(), DBE = DbgValuesToSink.end(); DBI != DBE; ++DBI) { MachineInstr *DbgMI = *DBI; SuccToSinkTo->splice(InsertPos, ParentBlock, DbgMI, ++MachineBasicBlock::iterator(DbgMI)); } // Conservatively, clear any kill flags, since it's possible that they are no // longer correct. // Note that we have to clear the kill flags for any register this instruction // uses as we may sink over another instruction which currently kills the // used registers. for (MachineOperand &MO : MI.operands()) { if (MO.isReg() && MO.isUse()) RegsToClearKillFlags.set(MO.getReg()); // Remember to clear kill flags. } return true; }