//=- AArch64PromoteConstant.cpp --- Promote constant to global for AArch64 -==// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the AArch64PromoteConstant pass which promotes constants // to global variables when this is likely to be more efficient. Currently only // types related to constant vector (i.e., constant vector, array of constant // vectors, constant structure with a constant vector field, etc.) are promoted // to global variables. Constant vectors are likely to be lowered in target // constant pool during instruction selection already; therefore, the access // will remain the same (memory load), but the structure types are not split // into different constant pool accesses for each field. A bonus side effect is // that created globals may be merged by the global merge pass. // // FIXME: This pass may be useful for other targets too. //===----------------------------------------------------------------------===// #include "AArch64.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/IR/Constants.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/Function.h" #include "llvm/IR/GlobalVariable.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/InlineAsm.h" #include "llvm/IR/InstIterator.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/Module.h" #include "llvm/Pass.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" using namespace llvm; #define DEBUG_TYPE "aarch64-promote-const" // Stress testing mode - disable heuristics. static cl::opt<bool> Stress("aarch64-stress-promote-const", cl::Hidden, cl::desc("Promote all vector constants")); STATISTIC(NumPromoted, "Number of promoted constants"); STATISTIC(NumPromotedUses, "Number of promoted constants uses"); //===----------------------------------------------------------------------===// // AArch64PromoteConstant //===----------------------------------------------------------------------===// namespace { /// Promotes interesting constant into global variables. /// The motivating example is: /// static const uint16_t TableA[32] = { /// 41944, 40330, 38837, 37450, 36158, 34953, 33826, 32768, /// 31776, 30841, 29960, 29128, 28340, 27595, 26887, 26215, /// 25576, 24967, 24386, 23832, 23302, 22796, 22311, 21846, /// 21400, 20972, 20561, 20165, 19785, 19419, 19066, 18725, /// }; /// /// uint8x16x4_t LoadStatic(void) { /// uint8x16x4_t ret; /// ret.val[0] = vld1q_u16(TableA + 0); /// ret.val[1] = vld1q_u16(TableA + 8); /// ret.val[2] = vld1q_u16(TableA + 16); /// ret.val[3] = vld1q_u16(TableA + 24); /// return ret; /// } /// /// The constants in this example are folded into the uses. Thus, 4 different /// constants are created. /// /// As their type is vector the cheapest way to create them is to load them /// for the memory. /// /// Therefore the final assembly final has 4 different loads. With this pass /// enabled, only one load is issued for the constants. class AArch64PromoteConstant : public ModulePass { public: struct PromotedConstant { bool ShouldConvert = false; GlobalVariable *GV = nullptr; }; typedef SmallDenseMap<Constant *, PromotedConstant, 16> PromotionCacheTy; struct UpdateRecord { Constant *C; Instruction *User; unsigned Op; UpdateRecord(Constant *C, Instruction *User, unsigned Op) : C(C), User(User), Op(Op) {} }; static char ID; AArch64PromoteConstant() : ModulePass(ID) {} const char *getPassName() const override { return "AArch64 Promote Constant"; } /// Iterate over the functions and promote the interesting constants into /// global variables with module scope. bool runOnModule(Module &M) override { DEBUG(dbgs() << getPassName() << '\n'); if (skipModule(M)) return false; bool Changed = false; PromotionCacheTy PromotionCache; for (auto &MF : M) { Changed |= runOnFunction(MF, PromotionCache); } return Changed; } private: /// Look for interesting constants used within the given function. /// Promote them into global variables, load these global variables within /// the related function, so that the number of inserted load is minimal. bool runOnFunction(Function &F, PromotionCacheTy &PromotionCache); // This transformation requires dominator info void getAnalysisUsage(AnalysisUsage &AU) const override { AU.setPreservesCFG(); AU.addRequired<DominatorTreeWrapperPass>(); AU.addPreserved<DominatorTreeWrapperPass>(); } /// Type to store a list of Uses. typedef SmallVector<std::pair<Instruction *, unsigned>, 4> Uses; /// Map an insertion point to all the uses it dominates. typedef DenseMap<Instruction *, Uses> InsertionPoints; /// Find the closest point that dominates the given Use. Instruction *findInsertionPoint(Instruction &User, unsigned OpNo); /// Check if the given insertion point is dominated by an existing /// insertion point. /// If true, the given use is added to the list of dominated uses for /// the related existing point. /// \param NewPt the insertion point to be checked /// \param User the user of the constant /// \param OpNo the operand number of the use /// \param InsertPts existing insertion points /// \pre NewPt and all instruction in InsertPts belong to the same function /// \return true if one of the insertion point in InsertPts dominates NewPt, /// false otherwise bool isDominated(Instruction *NewPt, Instruction *User, unsigned OpNo, InsertionPoints &InsertPts); /// Check if the given insertion point can be merged with an existing /// insertion point in a common dominator. /// If true, the given use is added to the list of the created insertion /// point. /// \param NewPt the insertion point to be checked /// \param User the user of the constant /// \param OpNo the operand number of the use /// \param InsertPts existing insertion points /// \pre NewPt and all instruction in InsertPts belong to the same function /// \pre isDominated returns false for the exact same parameters. /// \return true if it exists an insertion point in InsertPts that could /// have been merged with NewPt in a common dominator, /// false otherwise bool tryAndMerge(Instruction *NewPt, Instruction *User, unsigned OpNo, InsertionPoints &InsertPts); /// Compute the minimal insertion points to dominates all the interesting /// uses of value. /// Insertion points are group per function and each insertion point /// contains a list of all the uses it dominates within the related function /// \param User the user of the constant /// \param OpNo the operand number of the constant /// \param[out] InsertPts output storage of the analysis void computeInsertionPoint(Instruction *User, unsigned OpNo, InsertionPoints &InsertPts); /// Insert a definition of a new global variable at each point contained in /// InsPtsPerFunc and update the related uses (also contained in /// InsPtsPerFunc). void insertDefinitions(Function &F, GlobalVariable &GV, InsertionPoints &InsertPts); /// Do the constant promotion indicated by the Updates records, keeping track /// of globals in PromotionCache. void promoteConstants(Function &F, SmallVectorImpl<UpdateRecord> &Updates, PromotionCacheTy &PromotionCache); /// Transfer the list of dominated uses of IPI to NewPt in InsertPts. /// Append Use to this list and delete the entry of IPI in InsertPts. static void appendAndTransferDominatedUses(Instruction *NewPt, Instruction *User, unsigned OpNo, InsertionPoints::iterator &IPI, InsertionPoints &InsertPts) { // Record the dominated use. IPI->second.emplace_back(User, OpNo); // Transfer the dominated uses of IPI to NewPt // Inserting into the DenseMap may invalidate existing iterator. // Keep a copy of the key to find the iterator to erase. Keep a copy of the // value so that we don't have to dereference IPI->second. Instruction *OldInstr = IPI->first; Uses OldUses = std::move(IPI->second); InsertPts[NewPt] = std::move(OldUses); // Erase IPI. InsertPts.erase(OldInstr); } }; } // end anonymous namespace char AArch64PromoteConstant::ID = 0; namespace llvm { void initializeAArch64PromoteConstantPass(PassRegistry &); } INITIALIZE_PASS_BEGIN(AArch64PromoteConstant, "aarch64-promote-const", "AArch64 Promote Constant Pass", false, false) INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) INITIALIZE_PASS_END(AArch64PromoteConstant, "aarch64-promote-const", "AArch64 Promote Constant Pass", false, false) ModulePass *llvm::createAArch64PromoteConstantPass() { return new AArch64PromoteConstant(); } /// Check if the given type uses a vector type. static bool isConstantUsingVectorTy(const Type *CstTy) { if (CstTy->isVectorTy()) return true; if (CstTy->isStructTy()) { for (unsigned EltIdx = 0, EndEltIdx = CstTy->getStructNumElements(); EltIdx < EndEltIdx; ++EltIdx) if (isConstantUsingVectorTy(CstTy->getStructElementType(EltIdx))) return true; } else if (CstTy->isArrayTy()) return isConstantUsingVectorTy(CstTy->getArrayElementType()); return false; } /// Check if the given use (Instruction + OpIdx) of Cst should be converted into /// a load of a global variable initialized with Cst. /// A use should be converted if it is legal to do so. /// For instance, it is not legal to turn the mask operand of a shuffle vector /// into a load of a global variable. static bool shouldConvertUse(const Constant *Cst, const Instruction *Instr, unsigned OpIdx) { // shufflevector instruction expects a const for the mask argument, i.e., the // third argument. Do not promote this use in that case. if (isa<const ShuffleVectorInst>(Instr) && OpIdx == 2) return false; // extractvalue instruction expects a const idx. if (isa<const ExtractValueInst>(Instr) && OpIdx > 0) return false; // extractvalue instruction expects a const idx. if (isa<const InsertValueInst>(Instr) && OpIdx > 1) return false; if (isa<const AllocaInst>(Instr) && OpIdx > 0) return false; // Alignment argument must be constant. if (isa<const LoadInst>(Instr) && OpIdx > 0) return false; // Alignment argument must be constant. if (isa<const StoreInst>(Instr) && OpIdx > 1) return false; // Index must be constant. if (isa<const GetElementPtrInst>(Instr) && OpIdx > 0) return false; // Personality function and filters must be constant. // Give up on that instruction. if (isa<const LandingPadInst>(Instr)) return false; // Switch instruction expects constants to compare to. if (isa<const SwitchInst>(Instr)) return false; // Expected address must be a constant. if (isa<const IndirectBrInst>(Instr)) return false; // Do not mess with intrinsics. if (isa<const IntrinsicInst>(Instr)) return false; // Do not mess with inline asm. const CallInst *CI = dyn_cast<const CallInst>(Instr); return !(CI && isa<const InlineAsm>(CI->getCalledValue())); } /// Check if the given Cst should be converted into /// a load of a global variable initialized with Cst. /// A constant should be converted if it is likely that the materialization of /// the constant will be tricky. Thus, we give up on zero or undef values. /// /// \todo Currently, accept only vector related types. /// Also we give up on all simple vector type to keep the existing /// behavior. Otherwise, we should push here all the check of the lowering of /// BUILD_VECTOR. By giving up, we lose the potential benefit of merging /// constant via global merge and the fact that the same constant is stored /// only once with this method (versus, as many function that uses the constant /// for the regular approach, even for float). /// Again, the simplest solution would be to promote every /// constant and rematerialize them when they are actually cheap to create. static bool shouldConvertImpl(const Constant *Cst) { if (isa<const UndefValue>(Cst)) return false; // FIXME: In some cases, it may be interesting to promote in memory // a zero initialized constant. // E.g., when the type of Cst require more instructions than the // adrp/add/load sequence or when this sequence can be shared by several // instances of Cst. // Ideally, we could promote this into a global and rematerialize the constant // when it was a bad idea. if (Cst->isZeroValue()) return false; if (Stress) return true; // FIXME: see function \todo if (Cst->getType()->isVectorTy()) return false; return isConstantUsingVectorTy(Cst->getType()); } static bool shouldConvert(Constant &C, AArch64PromoteConstant::PromotionCacheTy &PromotionCache) { auto Converted = PromotionCache.insert( std::make_pair(&C, AArch64PromoteConstant::PromotedConstant())); if (Converted.second) Converted.first->second.ShouldConvert = shouldConvertImpl(&C); return Converted.first->second.ShouldConvert; } Instruction *AArch64PromoteConstant::findInsertionPoint(Instruction &User, unsigned OpNo) { // If this user is a phi, the insertion point is in the related // incoming basic block. if (PHINode *PhiInst = dyn_cast<PHINode>(&User)) return PhiInst->getIncomingBlock(OpNo)->getTerminator(); return &User; } bool AArch64PromoteConstant::isDominated(Instruction *NewPt, Instruction *User, unsigned OpNo, InsertionPoints &InsertPts) { DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>( *NewPt->getParent()->getParent()).getDomTree(); // Traverse all the existing insertion points and check if one is dominating // NewPt. If it is, remember that. for (auto &IPI : InsertPts) { if (NewPt == IPI.first || DT.dominates(IPI.first, NewPt) || // When IPI.first is a terminator instruction, DT may think that // the result is defined on the edge. // Here we are testing the insertion point, not the definition. (IPI.first->getParent() != NewPt->getParent() && DT.dominates(IPI.first->getParent(), NewPt->getParent()))) { // No need to insert this point. Just record the dominated use. DEBUG(dbgs() << "Insertion point dominated by:\n"); DEBUG(IPI.first->print(dbgs())); DEBUG(dbgs() << '\n'); IPI.second.emplace_back(User, OpNo); return true; } } return false; } bool AArch64PromoteConstant::tryAndMerge(Instruction *NewPt, Instruction *User, unsigned OpNo, InsertionPoints &InsertPts) { DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>( *NewPt->getParent()->getParent()).getDomTree(); BasicBlock *NewBB = NewPt->getParent(); // Traverse all the existing insertion point and check if one is dominated by // NewPt and thus useless or can be combined with NewPt into a common // dominator. for (InsertionPoints::iterator IPI = InsertPts.begin(), EndIPI = InsertPts.end(); IPI != EndIPI; ++IPI) { BasicBlock *CurBB = IPI->first->getParent(); if (NewBB == CurBB) { // Instructions are in the same block. // By construction, NewPt is dominating the other. // Indeed, isDominated returned false with the exact same arguments. DEBUG(dbgs() << "Merge insertion point with:\n"); DEBUG(IPI->first->print(dbgs())); DEBUG(dbgs() << "\nat considered insertion point.\n"); appendAndTransferDominatedUses(NewPt, User, OpNo, IPI, InsertPts); return true; } // Look for a common dominator BasicBlock *CommonDominator = DT.findNearestCommonDominator(NewBB, CurBB); // If none exists, we cannot merge these two points. if (!CommonDominator) continue; if (CommonDominator != NewBB) { // By construction, the CommonDominator cannot be CurBB. assert(CommonDominator != CurBB && "Instruction has not been rejected during isDominated check!"); // Take the last instruction of the CommonDominator as insertion point NewPt = CommonDominator->getTerminator(); } // else, CommonDominator is the block of NewBB, hence NewBB is the last // possible insertion point in that block. DEBUG(dbgs() << "Merge insertion point with:\n"); DEBUG(IPI->first->print(dbgs())); DEBUG(dbgs() << '\n'); DEBUG(NewPt->print(dbgs())); DEBUG(dbgs() << '\n'); appendAndTransferDominatedUses(NewPt, User, OpNo, IPI, InsertPts); return true; } return false; } void AArch64PromoteConstant::computeInsertionPoint( Instruction *User, unsigned OpNo, InsertionPoints &InsertPts) { DEBUG(dbgs() << "Considered use, opidx " << OpNo << ":\n"); DEBUG(User->print(dbgs())); DEBUG(dbgs() << '\n'); Instruction *InsertionPoint = findInsertionPoint(*User, OpNo); DEBUG(dbgs() << "Considered insertion point:\n"); DEBUG(InsertionPoint->print(dbgs())); DEBUG(dbgs() << '\n'); if (isDominated(InsertionPoint, User, OpNo, InsertPts)) return; // This insertion point is useful, check if we can merge some insertion // point in a common dominator or if NewPt dominates an existing one. if (tryAndMerge(InsertionPoint, User, OpNo, InsertPts)) return; DEBUG(dbgs() << "Keep considered insertion point\n"); // It is definitely useful by its own InsertPts[InsertionPoint].emplace_back(User, OpNo); } static void ensurePromotedGV(Function &F, Constant &C, AArch64PromoteConstant::PromotedConstant &PC) { assert(PC.ShouldConvert && "Expected that we should convert this to a global"); if (PC.GV) return; PC.GV = new GlobalVariable( *F.getParent(), C.getType(), true, GlobalValue::InternalLinkage, nullptr, "_PromotedConst", nullptr, GlobalVariable::NotThreadLocal); PC.GV->setInitializer(&C); DEBUG(dbgs() << "Global replacement: "); DEBUG(PC.GV->print(dbgs())); DEBUG(dbgs() << '\n'); ++NumPromoted; } void AArch64PromoteConstant::insertDefinitions(Function &F, GlobalVariable &PromotedGV, InsertionPoints &InsertPts) { #ifndef NDEBUG // Do more checking for debug purposes. DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree(); #endif assert(!InsertPts.empty() && "Empty uses does not need a definition"); for (const auto &IPI : InsertPts) { // Create the load of the global variable. IRBuilder<> Builder(IPI.first); LoadInst *LoadedCst = Builder.CreateLoad(&PromotedGV); DEBUG(dbgs() << "**********\n"); DEBUG(dbgs() << "New def: "); DEBUG(LoadedCst->print(dbgs())); DEBUG(dbgs() << '\n'); // Update the dominated uses. for (auto Use : IPI.second) { #ifndef NDEBUG assert(DT.dominates(LoadedCst, findInsertionPoint(*Use.first, Use.second)) && "Inserted definition does not dominate all its uses!"); #endif DEBUG({ dbgs() << "Use to update " << Use.second << ":"; Use.first->print(dbgs()); dbgs() << '\n'; }); Use.first->setOperand(Use.second, LoadedCst); ++NumPromotedUses; } } } void AArch64PromoteConstant::promoteConstants( Function &F, SmallVectorImpl<UpdateRecord> &Updates, PromotionCacheTy &PromotionCache) { // Promote the constants. for (auto U = Updates.begin(), E = Updates.end(); U != E;) { DEBUG(dbgs() << "** Compute insertion points **\n"); auto First = U; Constant *C = First->C; InsertionPoints InsertPts; do { computeInsertionPoint(U->User, U->Op, InsertPts); } while (++U != E && U->C == C); auto &Promotion = PromotionCache[C]; ensurePromotedGV(F, *C, Promotion); insertDefinitions(F, *Promotion.GV, InsertPts); } } bool AArch64PromoteConstant::runOnFunction(Function &F, PromotionCacheTy &PromotionCache) { // Look for instructions using constant vector. Promote that constant to a // global variable. Create as few loads of this variable as possible and // update the uses accordingly. SmallVector<UpdateRecord, 64> Updates; for (Instruction &I : instructions(&F)) { // Traverse the operand, looking for constant vectors. Replace them by a // load of a global variable of constant vector type. for (Use &U : I.operands()) { Constant *Cst = dyn_cast<Constant>(U); // There is no point in promoting global values as they are already // global. Do not promote constant expressions either, as they may // require some code expansion. if (!Cst || isa<GlobalValue>(Cst) || isa<ConstantExpr>(Cst)) continue; // Check if this constant is worth promoting. if (!shouldConvert(*Cst, PromotionCache)) continue; // Check if this use should be promoted. unsigned OpNo = &U - I.op_begin(); if (!shouldConvertUse(Cst, &I, OpNo)) continue; Updates.emplace_back(Cst, &I, OpNo); } } if (Updates.empty()) return false; promoteConstants(F, Updates, PromotionCache); return true; }