//==- AArch64SchedKryo.td - Qualcomm Kryo Scheduling Defs ---*- tablegen -*-==// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the machine model for Qualcomm Kryo to support // instruction scheduling and other instruction cost heuristics. // //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // The issue width is set to five, matching the five issue queues for expanded // uops. Now, the latency spreadsheet has information based on fragmented uops, // but these do not actually take up an issue queue. def KryoModel : SchedMachineModel { let IssueWidth = 5; // 5-wide issue for expanded uops let MicroOpBufferSize = 128; // Out-of-order with temporary unified issue buffer let LoadLatency = 4; // Optimistic load latency let MispredictPenalty = 14; // Fetch + Decode/Rename/Dispatch + Branch // Enable partial & runtime unrolling. The magic number is chosen based on // experiments and benchmarking data. let LoopMicroOpBufferSize = 16; let CompleteModel = 1; } //===----------------------------------------------------------------------===// // Define each kind of processor resource and number available on Kryo. let SchedModel = KryoModel in { def KryoUnitXA : ProcResource<1>; // Type X(A) micro-ops def KryoUnitXB : ProcResource<1>; // Type X(B) micro-ops def KryoUnitYA : ProcResource<1>; // Type Y(A) micro-ops def KryoUnitYB : ProcResource<1>; // Type Y(B) micro-ops def KryoUnitX : ProcResGroup<[KryoUnitXA, // Type X micro-ops KryoUnitXB]>; def KryoUnitY : ProcResGroup<[KryoUnitYA, // Type Y micro-ops KryoUnitYB]>; def KryoUnitXY : ProcResGroup<[KryoUnitXA, // Type XY micro-ops KryoUnitXB, KryoUnitYA, KryoUnitYB]>; def KryoUnitLSA : ProcResource<1>; // Type LS(A) micro-ops def KryoUnitLSB : ProcResource<1>; // Type LS(B) micro-ops def KryoUnitLS : ProcResGroup<[KryoUnitLSA, // Type LS micro-ops KryoUnitLSB]>; } let SchedModel = KryoModel in { //===----------------------------------------------------------------------===// // Map the target-defined scheduler read/write resources and latency for // Kryo. def : WriteRes<WriteImm, [KryoUnitXY]> { let Latency = 1; } def : WriteRes<WriteI, [KryoUnitXY]> { let Latency = 1; } def : WriteRes<WriteISReg, [KryoUnitXY, KryoUnitXY]> { let Latency = 2; let NumMicroOps = 2; } def : WriteRes<WriteIEReg, [KryoUnitXY, KryoUnitXY]> { let Latency = 2; let NumMicroOps = 2; } def : WriteRes<WriteExtr, [KryoUnitXY, KryoUnitX]> { let Latency = 2; let NumMicroOps = 2; } def : WriteRes<WriteIS, [KryoUnitXY]> { let Latency = 2; } def : WriteRes<WriteID32, [KryoUnitXA, KryoUnitY]> { let Latency = 8; let NumMicroOps = 1; } // Fragent -1 def : WriteRes<WriteID64, [KryoUnitXA, KryoUnitY]> { let Latency = 8; let NumMicroOps = 1; } // Fragent -1 def : WriteRes<WriteIM32, [KryoUnitX]> { let Latency = 5; } def : WriteRes<WriteIM64, [KryoUnitX]> { let Latency = 5; } def : WriteRes<WriteBr, [KryoUnitXY]> { let Latency = 1; } def : WriteRes<WriteBrReg, [KryoUnitXY]> { let Latency = 1; } def : WriteRes<WriteLD, [KryoUnitLS]> { let Latency = 4; } def : WriteRes<WriteST, [KryoUnitLS]> { let Latency = 4; } def : WriteRes<WriteSTP, [KryoUnitLS]> { let Latency = 4; } def : WriteRes<WriteAdr, [KryoUnitXY]> { let Latency = 6; } def : WriteRes<WriteLDIdx, [KryoUnitLS]> { let Latency = 4; } def : WriteRes<WriteSTIdx, [KryoUnitLS]> { let Latency = 4; } def : WriteRes<WriteF, [KryoUnitXY, KryoUnitXY]> { let Latency = 3; let NumMicroOps = 2; } def : WriteRes<WriteFCmp, [KryoUnitXY]> { let Latency = 2; } def : WriteRes<WriteFCvt, [KryoUnitX]> { let Latency = 4; } def : WriteRes<WriteFCopy, [KryoUnitXY]> { let Latency = 6; } def : WriteRes<WriteFImm, [KryoUnitXY]> { let Latency = 6; } def : WriteRes<WriteFMul, [KryoUnitX, KryoUnitX]> { let Latency = 6; let NumMicroOps = 2; } def : WriteRes<WriteFDiv, [KryoUnitXA, KryoUnitY]> { let Latency = 12; let NumMicroOps = 2; } // Fragent -1 / NoRSV +1 def : WriteRes<WriteV, [KryoUnitXY]> { let Latency = 6; } def : WriteRes<WriteVLD, [KryoUnitLS]> { let Latency = 4; } def : WriteRes<WriteVST, [KryoUnitLS]> { let Latency = 4; } def : WriteRes<WriteSys, []> { let Latency = 1; } def : WriteRes<WriteBarrier, []> { let Latency = 1; } def : WriteRes<WriteHint, []> { let Latency = 1; } def : WriteRes<WriteLDHi, []> { let Latency = 4; } def : WriteRes<WriteAtomic, []> { let Unsupported = 1; } // No forwarding logic is modelled yet. def : ReadAdvance<ReadI, 0>; def : ReadAdvance<ReadISReg, 0>; def : ReadAdvance<ReadIEReg, 0>; def : ReadAdvance<ReadIM, 0>; def : ReadAdvance<ReadIMA, 0>; def : ReadAdvance<ReadID, 0>; def : ReadAdvance<ReadExtrHi, 0>; def : ReadAdvance<ReadAdrBase, 0>; def : ReadAdvance<ReadVLD, 0>; //===----------------------------------------------------------------------===// // Specialize the coarse model by associating instruction groups with the // subtarget-defined types. As the modeled is refined, this will override most // of the above SchedWriteRes and SchedAlias mappings. // Miscellaneous // ----------------------------------------------------------------------------- def : InstRW<[WriteI], (instrs COPY)>; // Detailed Refinedments // ----------------------------------------------------------------------------- include "AArch64SchedKryoDetails.td" } // SchedModel = KryoModel