//===-- AMDGPUISelLowering.cpp - AMDGPU Common DAG lowering functions -----===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // /// \file /// \brief This is the parent TargetLowering class for hardware code gen /// targets. // //===----------------------------------------------------------------------===// #include "AMDGPUISelLowering.h" #include "AMDGPU.h" #include "AMDGPUFrameLowering.h" #include "AMDGPUIntrinsicInfo.h" #include "AMDGPURegisterInfo.h" #include "AMDGPUSubtarget.h" #include "R600MachineFunctionInfo.h" #include "SIMachineFunctionInfo.h" #include "llvm/CodeGen/CallingConvLower.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/SelectionDAG.h" #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DiagnosticInfo.h" #include "SIInstrInfo.h" using namespace llvm; static bool allocateKernArg(unsigned ValNo, MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, CCState &State) { MachineFunction &MF = State.getMachineFunction(); AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>(); uint64_t Offset = MFI->allocateKernArg(ValVT.getStoreSize(), ArgFlags.getOrigAlign()); State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, LocInfo)); return true; } #include "AMDGPUGenCallingConv.inc" // Find a larger type to do a load / store of a vector with. EVT AMDGPUTargetLowering::getEquivalentMemType(LLVMContext &Ctx, EVT VT) { unsigned StoreSize = VT.getStoreSizeInBits(); if (StoreSize <= 32) return EVT::getIntegerVT(Ctx, StoreSize); assert(StoreSize % 32 == 0 && "Store size not a multiple of 32"); return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32); } EVT AMDGPUTargetLowering::getEquivalentBitType(LLVMContext &Ctx, EVT VT) { unsigned StoreSize = VT.getStoreSizeInBits(); if (StoreSize <= 32) return EVT::getIntegerVT(Ctx, StoreSize); return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32); } AMDGPUTargetLowering::AMDGPUTargetLowering(const TargetMachine &TM, const AMDGPUSubtarget &STI) : TargetLowering(TM), Subtarget(&STI) { // Lower floating point store/load to integer store/load to reduce the number // of patterns in tablegen. setOperationAction(ISD::LOAD, MVT::f32, Promote); AddPromotedToType(ISD::LOAD, MVT::f32, MVT::i32); setOperationAction(ISD::LOAD, MVT::v2f32, Promote); AddPromotedToType(ISD::LOAD, MVT::v2f32, MVT::v2i32); setOperationAction(ISD::LOAD, MVT::v4f32, Promote); AddPromotedToType(ISD::LOAD, MVT::v4f32, MVT::v4i32); setOperationAction(ISD::LOAD, MVT::v8f32, Promote); AddPromotedToType(ISD::LOAD, MVT::v8f32, MVT::v8i32); setOperationAction(ISD::LOAD, MVT::v16f32, Promote); AddPromotedToType(ISD::LOAD, MVT::v16f32, MVT::v16i32); setOperationAction(ISD::LOAD, MVT::i64, Promote); AddPromotedToType(ISD::LOAD, MVT::i64, MVT::v2i32); setOperationAction(ISD::LOAD, MVT::v2i64, Promote); AddPromotedToType(ISD::LOAD, MVT::v2i64, MVT::v4i32); setOperationAction(ISD::LOAD, MVT::f64, Promote); AddPromotedToType(ISD::LOAD, MVT::f64, MVT::v2i32); setOperationAction(ISD::LOAD, MVT::v2f64, Promote); AddPromotedToType(ISD::LOAD, MVT::v2f64, MVT::v4i32); // There are no 64-bit extloads. These should be done as a 32-bit extload and // an extension to 64-bit. for (MVT VT : MVT::integer_valuetypes()) { setLoadExtAction(ISD::EXTLOAD, MVT::i64, VT, Expand); setLoadExtAction(ISD::SEXTLOAD, MVT::i64, VT, Expand); setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, VT, Expand); } for (MVT VT : MVT::integer_valuetypes()) { if (VT == MVT::i64) continue; setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Legal); setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Legal); setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand); setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i8, Legal); setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Legal); setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand); setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); setLoadExtAction(ISD::EXTLOAD, VT, MVT::i8, Legal); setLoadExtAction(ISD::EXTLOAD, VT, MVT::i16, Legal); setLoadExtAction(ISD::EXTLOAD, VT, MVT::i32, Expand); } for (MVT VT : MVT::integer_vector_valuetypes()) { setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i8, Expand); setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i8, Expand); setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i8, Expand); setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i8, Expand); setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i8, Expand); setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i8, Expand); setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i16, Expand); setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i16, Expand); setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i16, Expand); setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i16, Expand); setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i16, Expand); setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i16, Expand); } setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand); setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand); setLoadExtAction(ISD::EXTLOAD, MVT::v8f32, MVT::v8f16, Expand); setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Expand); setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Expand); setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f32, Expand); setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand); setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand); setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f16, Expand); setOperationAction(ISD::STORE, MVT::f32, Promote); AddPromotedToType(ISD::STORE, MVT::f32, MVT::i32); setOperationAction(ISD::STORE, MVT::v2f32, Promote); AddPromotedToType(ISD::STORE, MVT::v2f32, MVT::v2i32); setOperationAction(ISD::STORE, MVT::v4f32, Promote); AddPromotedToType(ISD::STORE, MVT::v4f32, MVT::v4i32); setOperationAction(ISD::STORE, MVT::v8f32, Promote); AddPromotedToType(ISD::STORE, MVT::v8f32, MVT::v8i32); setOperationAction(ISD::STORE, MVT::v16f32, Promote); AddPromotedToType(ISD::STORE, MVT::v16f32, MVT::v16i32); setOperationAction(ISD::STORE, MVT::i64, Promote); AddPromotedToType(ISD::STORE, MVT::i64, MVT::v2i32); setOperationAction(ISD::STORE, MVT::v2i64, Promote); AddPromotedToType(ISD::STORE, MVT::v2i64, MVT::v4i32); setOperationAction(ISD::STORE, MVT::f64, Promote); AddPromotedToType(ISD::STORE, MVT::f64, MVT::v2i32); setOperationAction(ISD::STORE, MVT::v2f64, Promote); AddPromotedToType(ISD::STORE, MVT::v2f64, MVT::v4i32); setTruncStoreAction(MVT::v2i32, MVT::v2i8, Custom); setTruncStoreAction(MVT::v2i32, MVT::v2i16, Custom); setTruncStoreAction(MVT::v4i32, MVT::v4i8, Custom); setTruncStoreAction(MVT::v4i32, MVT::v4i16, Expand); setTruncStoreAction(MVT::v8i32, MVT::v8i16, Expand); setTruncStoreAction(MVT::v16i32, MVT::v16i8, Expand); setTruncStoreAction(MVT::v16i32, MVT::v16i16, Expand); setTruncStoreAction(MVT::i64, MVT::i1, Expand); setTruncStoreAction(MVT::i64, MVT::i8, Expand); setTruncStoreAction(MVT::i64, MVT::i16, Expand); setTruncStoreAction(MVT::i64, MVT::i32, Expand); setTruncStoreAction(MVT::v2i64, MVT::v2i1, Expand); setTruncStoreAction(MVT::v2i64, MVT::v2i8, Expand); setTruncStoreAction(MVT::v2i64, MVT::v2i16, Expand); setTruncStoreAction(MVT::v2i64, MVT::v2i32, Expand); setTruncStoreAction(MVT::f32, MVT::f16, Expand); setTruncStoreAction(MVT::v2f32, MVT::v2f16, Expand); setTruncStoreAction(MVT::v4f32, MVT::v4f16, Expand); setTruncStoreAction(MVT::v8f32, MVT::v8f16, Expand); setTruncStoreAction(MVT::f64, MVT::f16, Expand); setTruncStoreAction(MVT::f64, MVT::f32, Expand); setTruncStoreAction(MVT::v2f64, MVT::v2f32, Expand); setTruncStoreAction(MVT::v2f64, MVT::v2f16, Expand); setTruncStoreAction(MVT::v4f64, MVT::v4f32, Expand); setTruncStoreAction(MVT::v4f64, MVT::v4f16, Expand); setTruncStoreAction(MVT::v8f64, MVT::v8f32, Expand); setTruncStoreAction(MVT::v8f64, MVT::v8f16, Expand); setOperationAction(ISD::Constant, MVT::i32, Legal); setOperationAction(ISD::Constant, MVT::i64, Legal); setOperationAction(ISD::ConstantFP, MVT::f32, Legal); setOperationAction(ISD::ConstantFP, MVT::f64, Legal); setOperationAction(ISD::BR_JT, MVT::Other, Expand); setOperationAction(ISD::BRIND, MVT::Other, Expand); // This is totally unsupported, just custom lower to produce an error. setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom); // We need to custom lower some of the intrinsics setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); // Library functions. These default to Expand, but we have instructions // for them. setOperationAction(ISD::FCEIL, MVT::f32, Legal); setOperationAction(ISD::FEXP2, MVT::f32, Legal); setOperationAction(ISD::FPOW, MVT::f32, Legal); setOperationAction(ISD::FLOG2, MVT::f32, Legal); setOperationAction(ISD::FABS, MVT::f32, Legal); setOperationAction(ISD::FFLOOR, MVT::f32, Legal); setOperationAction(ISD::FRINT, MVT::f32, Legal); setOperationAction(ISD::FTRUNC, MVT::f32, Legal); setOperationAction(ISD::FMINNUM, MVT::f32, Legal); setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); setOperationAction(ISD::FROUND, MVT::f32, Custom); setOperationAction(ISD::FROUND, MVT::f64, Custom); setOperationAction(ISD::FNEARBYINT, MVT::f32, Custom); setOperationAction(ISD::FNEARBYINT, MVT::f64, Custom); setOperationAction(ISD::FREM, MVT::f32, Custom); setOperationAction(ISD::FREM, MVT::f64, Custom); // v_mad_f32 does not support denormals according to some sources. if (!Subtarget->hasFP32Denormals()) setOperationAction(ISD::FMAD, MVT::f32, Legal); // Expand to fneg + fadd. setOperationAction(ISD::FSUB, MVT::f64, Expand); setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom); setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f32, Custom); setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i32, Custom); setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f32, Custom); setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f32, Custom); setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i32, Custom); setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f32, Custom); setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i32, Custom); setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f32, Custom); setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i32, Custom); if (Subtarget->getGeneration() < AMDGPUSubtarget::SEA_ISLANDS) { setOperationAction(ISD::FCEIL, MVT::f64, Custom); setOperationAction(ISD::FTRUNC, MVT::f64, Custom); setOperationAction(ISD::FRINT, MVT::f64, Custom); setOperationAction(ISD::FFLOOR, MVT::f64, Custom); } if (!Subtarget->hasBFI()) { // fcopysign can be done in a single instruction with BFI. setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); } setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 }; for (MVT VT : ScalarIntVTs) { // These should use [SU]DIVREM, so set them to expand setOperationAction(ISD::SDIV, VT, Expand); setOperationAction(ISD::UDIV, VT, Expand); setOperationAction(ISD::SREM, VT, Expand); setOperationAction(ISD::UREM, VT, Expand); // GPU does not have divrem function for signed or unsigned. setOperationAction(ISD::SDIVREM, VT, Custom); setOperationAction(ISD::UDIVREM, VT, Custom); // GPU does not have [S|U]MUL_LOHI functions as a single instruction. setOperationAction(ISD::SMUL_LOHI, VT, Expand); setOperationAction(ISD::UMUL_LOHI, VT, Expand); setOperationAction(ISD::BSWAP, VT, Expand); setOperationAction(ISD::CTTZ, VT, Expand); setOperationAction(ISD::CTLZ, VT, Expand); } if (!Subtarget->hasBCNT(32)) setOperationAction(ISD::CTPOP, MVT::i32, Expand); if (!Subtarget->hasBCNT(64)) setOperationAction(ISD::CTPOP, MVT::i64, Expand); // The hardware supports 32-bit ROTR, but not ROTL. setOperationAction(ISD::ROTL, MVT::i32, Expand); setOperationAction(ISD::ROTL, MVT::i64, Expand); setOperationAction(ISD::ROTR, MVT::i64, Expand); setOperationAction(ISD::MUL, MVT::i64, Expand); setOperationAction(ISD::MULHU, MVT::i64, Expand); setOperationAction(ISD::MULHS, MVT::i64, Expand); setOperationAction(ISD::UDIV, MVT::i32, Expand); setOperationAction(ISD::UREM, MVT::i32, Expand); setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); setOperationAction(ISD::SELECT_CC, MVT::i64, Expand); setOperationAction(ISD::SMIN, MVT::i32, Legal); setOperationAction(ISD::UMIN, MVT::i32, Legal); setOperationAction(ISD::SMAX, MVT::i32, Legal); setOperationAction(ISD::UMAX, MVT::i32, Legal); if (Subtarget->hasFFBH()) setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom); if (Subtarget->hasFFBL()) setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Legal); setOperationAction(ISD::CTLZ, MVT::i64, Custom); setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom); // We only really have 32-bit BFE instructions (and 16-bit on VI). // // On SI+ there are 64-bit BFEs, but they are scalar only and there isn't any // effort to match them now. We want this to be false for i64 cases when the // extraction isn't restricted to the upper or lower half. Ideally we would // have some pass reduce 64-bit extracts to 32-bit if possible. Extracts that // span the midpoint are probably relatively rare, so don't worry about them // for now. if (Subtarget->hasBFE()) setHasExtractBitsInsn(true); static const MVT::SimpleValueType VectorIntTypes[] = { MVT::v2i32, MVT::v4i32 }; for (MVT VT : VectorIntTypes) { // Expand the following operations for the current type by default. setOperationAction(ISD::ADD, VT, Expand); setOperationAction(ISD::AND, VT, Expand); setOperationAction(ISD::FP_TO_SINT, VT, Expand); setOperationAction(ISD::FP_TO_UINT, VT, Expand); setOperationAction(ISD::MUL, VT, Expand); setOperationAction(ISD::OR, VT, Expand); setOperationAction(ISD::SHL, VT, Expand); setOperationAction(ISD::SRA, VT, Expand); setOperationAction(ISD::SRL, VT, Expand); setOperationAction(ISD::ROTL, VT, Expand); setOperationAction(ISD::ROTR, VT, Expand); setOperationAction(ISD::SUB, VT, Expand); setOperationAction(ISD::SINT_TO_FP, VT, Expand); setOperationAction(ISD::UINT_TO_FP, VT, Expand); setOperationAction(ISD::SDIV, VT, Expand); setOperationAction(ISD::UDIV, VT, Expand); setOperationAction(ISD::SREM, VT, Expand); setOperationAction(ISD::UREM, VT, Expand); setOperationAction(ISD::SMUL_LOHI, VT, Expand); setOperationAction(ISD::UMUL_LOHI, VT, Expand); setOperationAction(ISD::SDIVREM, VT, Custom); setOperationAction(ISD::UDIVREM, VT, Expand); setOperationAction(ISD::ADDC, VT, Expand); setOperationAction(ISD::SUBC, VT, Expand); setOperationAction(ISD::ADDE, VT, Expand); setOperationAction(ISD::SUBE, VT, Expand); setOperationAction(ISD::SELECT, VT, Expand); setOperationAction(ISD::VSELECT, VT, Expand); setOperationAction(ISD::SELECT_CC, VT, Expand); setOperationAction(ISD::XOR, VT, Expand); setOperationAction(ISD::BSWAP, VT, Expand); setOperationAction(ISD::CTPOP, VT, Expand); setOperationAction(ISD::CTTZ, VT, Expand); setOperationAction(ISD::CTLZ, VT, Expand); setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); } static const MVT::SimpleValueType FloatVectorTypes[] = { MVT::v2f32, MVT::v4f32 }; for (MVT VT : FloatVectorTypes) { setOperationAction(ISD::FABS, VT, Expand); setOperationAction(ISD::FMINNUM, VT, Expand); setOperationAction(ISD::FMAXNUM, VT, Expand); setOperationAction(ISD::FADD, VT, Expand); setOperationAction(ISD::FCEIL, VT, Expand); setOperationAction(ISD::FCOS, VT, Expand); setOperationAction(ISD::FDIV, VT, Expand); setOperationAction(ISD::FEXP2, VT, Expand); setOperationAction(ISD::FLOG2, VT, Expand); setOperationAction(ISD::FREM, VT, Expand); setOperationAction(ISD::FPOW, VT, Expand); setOperationAction(ISD::FFLOOR, VT, Expand); setOperationAction(ISD::FTRUNC, VT, Expand); setOperationAction(ISD::FMUL, VT, Expand); setOperationAction(ISD::FMA, VT, Expand); setOperationAction(ISD::FRINT, VT, Expand); setOperationAction(ISD::FNEARBYINT, VT, Expand); setOperationAction(ISD::FSQRT, VT, Expand); setOperationAction(ISD::FSIN, VT, Expand); setOperationAction(ISD::FSUB, VT, Expand); setOperationAction(ISD::FNEG, VT, Expand); setOperationAction(ISD::VSELECT, VT, Expand); setOperationAction(ISD::SELECT_CC, VT, Expand); setOperationAction(ISD::FCOPYSIGN, VT, Expand); setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); } // This causes using an unrolled select operation rather than expansion with // bit operations. This is in general better, but the alternative using BFI // instructions may be better if the select sources are SGPRs. setOperationAction(ISD::SELECT, MVT::v2f32, Promote); AddPromotedToType(ISD::SELECT, MVT::v2f32, MVT::v2i32); setOperationAction(ISD::SELECT, MVT::v4f32, Promote); AddPromotedToType(ISD::SELECT, MVT::v4f32, MVT::v4i32); setBooleanContents(ZeroOrNegativeOneBooleanContent); setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); setSchedulingPreference(Sched::RegPressure); setJumpIsExpensive(true); // SI at least has hardware support for floating point exceptions, but no way // of using or handling them is implemented. They are also optional in OpenCL // (Section 7.3) setHasFloatingPointExceptions(Subtarget->hasFPExceptions()); setSelectIsExpensive(false); PredictableSelectIsExpensive = false; setFsqrtIsCheap(true); // We want to find all load dependencies for long chains of stores to enable // merging into very wide vectors. The problem is with vectors with > 4 // elements. MergeConsecutiveStores will attempt to merge these because x8/x16 // vectors are a legal type, even though we have to split the loads // usually. When we can more precisely specify load legality per address // space, we should be able to make FindBetterChain/MergeConsecutiveStores // smarter so that they can figure out what to do in 2 iterations without all // N > 4 stores on the same chain. GatherAllAliasesMaxDepth = 16; // FIXME: Need to really handle these. MaxStoresPerMemcpy = 4096; MaxStoresPerMemmove = 4096; MaxStoresPerMemset = 4096; setTargetDAGCombine(ISD::BITCAST); setTargetDAGCombine(ISD::AND); setTargetDAGCombine(ISD::SHL); setTargetDAGCombine(ISD::SRA); setTargetDAGCombine(ISD::SRL); setTargetDAGCombine(ISD::MUL); setTargetDAGCombine(ISD::SELECT); setTargetDAGCombine(ISD::SELECT_CC); setTargetDAGCombine(ISD::STORE); setTargetDAGCombine(ISD::FADD); setTargetDAGCombine(ISD::FSUB); } //===----------------------------------------------------------------------===// // Target Information //===----------------------------------------------------------------------===// MVT AMDGPUTargetLowering::getVectorIdxTy(const DataLayout &) const { return MVT::i32; } bool AMDGPUTargetLowering::isSelectSupported(SelectSupportKind SelType) const { return true; } // The backend supports 32 and 64 bit floating point immediates. // FIXME: Why are we reporting vectors of FP immediates as legal? bool AMDGPUTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const { EVT ScalarVT = VT.getScalarType(); return (ScalarVT == MVT::f32 || ScalarVT == MVT::f64); } // We don't want to shrink f64 / f32 constants. bool AMDGPUTargetLowering::ShouldShrinkFPConstant(EVT VT) const { EVT ScalarVT = VT.getScalarType(); return (ScalarVT != MVT::f32 && ScalarVT != MVT::f64); } bool AMDGPUTargetLowering::shouldReduceLoadWidth(SDNode *N, ISD::LoadExtType, EVT NewVT) const { unsigned NewSize = NewVT.getStoreSizeInBits(); // If we are reducing to a 32-bit load, this is always better. if (NewSize == 32) return true; EVT OldVT = N->getValueType(0); unsigned OldSize = OldVT.getStoreSizeInBits(); // Don't produce extloads from sub 32-bit types. SI doesn't have scalar // extloads, so doing one requires using a buffer_load. In cases where we // still couldn't use a scalar load, using the wider load shouldn't really // hurt anything. // If the old size already had to be an extload, there's no harm in continuing // to reduce the width. return (OldSize < 32); } bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy, EVT CastTy) const { assert(LoadTy.getSizeInBits() == CastTy.getSizeInBits()); if (LoadTy.getScalarType() == MVT::i32) return false; unsigned LScalarSize = LoadTy.getScalarSizeInBits(); unsigned CastScalarSize = CastTy.getScalarSizeInBits(); return (LScalarSize < CastScalarSize) || (CastScalarSize >= 32); } // SI+ has instructions for cttz / ctlz for 32-bit values. This is probably also // profitable with the expansion for 64-bit since it's generally good to // speculate things. // FIXME: These should really have the size as a parameter. bool AMDGPUTargetLowering::isCheapToSpeculateCttz() const { return true; } bool AMDGPUTargetLowering::isCheapToSpeculateCtlz() const { return true; } //===---------------------------------------------------------------------===// // Target Properties //===---------------------------------------------------------------------===// bool AMDGPUTargetLowering::isFAbsFree(EVT VT) const { assert(VT.isFloatingPoint()); return VT == MVT::f32 || VT == MVT::f64; } bool AMDGPUTargetLowering::isFNegFree(EVT VT) const { assert(VT.isFloatingPoint()); return VT == MVT::f32 || VT == MVT::f64; } bool AMDGPUTargetLowering:: storeOfVectorConstantIsCheap(EVT MemVT, unsigned NumElem, unsigned AS) const { return true; } bool AMDGPUTargetLowering::aggressivelyPreferBuildVectorSources(EVT VecVT) const { // There are few operations which truly have vector input operands. Any vector // operation is going to involve operations on each component, and a // build_vector will be a copy per element, so it always makes sense to use a // build_vector input in place of the extracted element to avoid a copy into a // super register. // // We should probably only do this if all users are extracts only, but this // should be the common case. return true; } bool AMDGPUTargetLowering::isTruncateFree(EVT Source, EVT Dest) const { // Truncate is just accessing a subregister. return Dest.bitsLT(Source) && (Dest.getSizeInBits() % 32 == 0); } bool AMDGPUTargetLowering::isTruncateFree(Type *Source, Type *Dest) const { // Truncate is just accessing a subregister. return Dest->getPrimitiveSizeInBits() < Source->getPrimitiveSizeInBits() && (Dest->getPrimitiveSizeInBits() % 32 == 0); } bool AMDGPUTargetLowering::isZExtFree(Type *Src, Type *Dest) const { unsigned SrcSize = Src->getScalarSizeInBits(); unsigned DestSize = Dest->getScalarSizeInBits(); return SrcSize == 32 && DestSize == 64; } bool AMDGPUTargetLowering::isZExtFree(EVT Src, EVT Dest) const { // Any register load of a 64-bit value really requires 2 32-bit moves. For all // practical purposes, the extra mov 0 to load a 64-bit is free. As used, // this will enable reducing 64-bit operations the 32-bit, which is always // good. return Src == MVT::i32 && Dest == MVT::i64; } bool AMDGPUTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { return isZExtFree(Val.getValueType(), VT2); } bool AMDGPUTargetLowering::isNarrowingProfitable(EVT SrcVT, EVT DestVT) const { // There aren't really 64-bit registers, but pairs of 32-bit ones and only a // limited number of native 64-bit operations. Shrinking an operation to fit // in a single 32-bit register should always be helpful. As currently used, // this is much less general than the name suggests, and is only used in // places trying to reduce the sizes of loads. Shrinking loads to < 32-bits is // not profitable, and may actually be harmful. return SrcVT.getSizeInBits() > 32 && DestVT.getSizeInBits() == 32; } //===---------------------------------------------------------------------===// // TargetLowering Callbacks //===---------------------------------------------------------------------===// void AMDGPUTargetLowering::AnalyzeFormalArguments(CCState &State, const SmallVectorImpl<ISD::InputArg> &Ins) const { State.AnalyzeFormalArguments(Ins, CC_AMDGPU); } void AMDGPUTargetLowering::AnalyzeReturn(CCState &State, const SmallVectorImpl<ISD::OutputArg> &Outs) const { State.AnalyzeReturn(Outs, RetCC_SI); } SDValue AMDGPUTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl<ISD::OutputArg> &Outs, const SmallVectorImpl<SDValue> &OutVals, const SDLoc &DL, SelectionDAG &DAG) const { return DAG.getNode(AMDGPUISD::ENDPGM, DL, MVT::Other, Chain); } //===---------------------------------------------------------------------===// // Target specific lowering //===---------------------------------------------------------------------===// SDValue AMDGPUTargetLowering::LowerCall(CallLoweringInfo &CLI, SmallVectorImpl<SDValue> &InVals) const { SDValue Callee = CLI.Callee; SelectionDAG &DAG = CLI.DAG; const Function &Fn = *DAG.getMachineFunction().getFunction(); StringRef FuncName("<unknown>"); if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee)) FuncName = G->getSymbol(); else if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) FuncName = G->getGlobal()->getName(); DiagnosticInfoUnsupported NoCalls( Fn, "unsupported call to function " + FuncName, CLI.DL.getDebugLoc()); DAG.getContext()->diagnose(NoCalls); for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I) InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT)); return DAG.getEntryNode(); } SDValue AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const { const Function &Fn = *DAG.getMachineFunction().getFunction(); DiagnosticInfoUnsupported NoDynamicAlloca(Fn, "unsupported dynamic alloca", SDLoc(Op).getDebugLoc()); DAG.getContext()->diagnose(NoDynamicAlloca); auto Ops = {DAG.getConstant(0, SDLoc(), Op.getValueType()), Op.getOperand(0)}; return DAG.getMergeValues(Ops, SDLoc()); } SDValue AMDGPUTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { switch (Op.getOpcode()) { default: Op->dump(&DAG); llvm_unreachable("Custom lowering code for this" "instruction is not implemented yet!"); break; case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG); case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG); case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG); case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); case ISD::UDIVREM: return LowerUDIVREM(Op, DAG); case ISD::SDIVREM: return LowerSDIVREM(Op, DAG); case ISD::FREM: return LowerFREM(Op, DAG); case ISD::FCEIL: return LowerFCEIL(Op, DAG); case ISD::FTRUNC: return LowerFTRUNC(Op, DAG); case ISD::FRINT: return LowerFRINT(Op, DAG); case ISD::FNEARBYINT: return LowerFNEARBYINT(Op, DAG); case ISD::FROUND: return LowerFROUND(Op, DAG); case ISD::FFLOOR: return LowerFFLOOR(Op, DAG); case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG); case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG); case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG); case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG); case ISD::CTLZ: case ISD::CTLZ_ZERO_UNDEF: return LowerCTLZ(Op, DAG); case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); } return Op; } void AMDGPUTargetLowering::ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const { switch (N->getOpcode()) { case ISD::SIGN_EXTEND_INREG: // Different parts of legalization seem to interpret which type of // sign_extend_inreg is the one to check for custom lowering. The extended // from type is what really matters, but some places check for custom // lowering of the result type. This results in trying to use // ReplaceNodeResults to sext_in_reg to an illegal type, so we'll just do // nothing here and let the illegal result integer be handled normally. return; default: return; } } // FIXME: This implements accesses to initialized globals in the constant // address space by copying them to private and accessing that. It does not // properly handle illegal types or vectors. The private vector loads are not // scalarized, and the illegal scalars hit an assertion. This technique will not // work well with large initializers, and this should eventually be // removed. Initialized globals should be placed into a data section that the // runtime will load into a buffer before the kernel is executed. Uses of the // global need to be replaced with a pointer loaded from an implicit kernel // argument into this buffer holding the copy of the data, which will remove the // need for any of this. SDValue AMDGPUTargetLowering::LowerConstantInitializer(const Constant* Init, const GlobalValue *GV, const SDValue &InitPtr, SDValue Chain, SelectionDAG &DAG) const { const DataLayout &TD = DAG.getDataLayout(); SDLoc DL(InitPtr); Type *InitTy = Init->getType(); if (const ConstantInt *CI = dyn_cast<ConstantInt>(Init)) { EVT VT = EVT::getEVT(InitTy); PointerType *PtrTy = PointerType::get(InitTy, AMDGPUAS::PRIVATE_ADDRESS); return DAG.getStore(Chain, DL, DAG.getConstant(*CI, DL, VT), InitPtr, MachinePointerInfo(UndefValue::get(PtrTy)), false, false, TD.getPrefTypeAlignment(InitTy)); } if (const ConstantFP *CFP = dyn_cast<ConstantFP>(Init)) { EVT VT = EVT::getEVT(CFP->getType()); PointerType *PtrTy = PointerType::get(CFP->getType(), 0); return DAG.getStore(Chain, DL, DAG.getConstantFP(*CFP, DL, VT), InitPtr, MachinePointerInfo(UndefValue::get(PtrTy)), false, false, TD.getPrefTypeAlignment(CFP->getType())); } if (StructType *ST = dyn_cast<StructType>(InitTy)) { const StructLayout *SL = TD.getStructLayout(ST); EVT PtrVT = InitPtr.getValueType(); SmallVector<SDValue, 8> Chains; for (unsigned I = 0, N = ST->getNumElements(); I != N; ++I) { SDValue Offset = DAG.getConstant(SL->getElementOffset(I), DL, PtrVT); SDValue Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, InitPtr, Offset); Constant *Elt = Init->getAggregateElement(I); Chains.push_back(LowerConstantInitializer(Elt, GV, Ptr, Chain, DAG)); } return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); } if (SequentialType *SeqTy = dyn_cast<SequentialType>(InitTy)) { EVT PtrVT = InitPtr.getValueType(); unsigned NumElements; if (ArrayType *AT = dyn_cast<ArrayType>(SeqTy)) NumElements = AT->getNumElements(); else if (VectorType *VT = dyn_cast<VectorType>(SeqTy)) NumElements = VT->getNumElements(); else llvm_unreachable("Unexpected type"); unsigned EltSize = TD.getTypeAllocSize(SeqTy->getElementType()); SmallVector<SDValue, 8> Chains; for (unsigned i = 0; i < NumElements; ++i) { SDValue Offset = DAG.getConstant(i * EltSize, DL, PtrVT); SDValue Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, InitPtr, Offset); Constant *Elt = Init->getAggregateElement(i); Chains.push_back(LowerConstantInitializer(Elt, GV, Ptr, Chain, DAG)); } return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); } if (isa<UndefValue>(Init)) { EVT VT = EVT::getEVT(InitTy); PointerType *PtrTy = PointerType::get(InitTy, AMDGPUAS::PRIVATE_ADDRESS); return DAG.getStore(Chain, DL, DAG.getUNDEF(VT), InitPtr, MachinePointerInfo(UndefValue::get(PtrTy)), false, false, TD.getPrefTypeAlignment(InitTy)); } Init->dump(); llvm_unreachable("Unhandled constant initializer"); } static bool hasDefinedInitializer(const GlobalValue *GV) { const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV); if (!GVar || !GVar->hasInitializer()) return false; return !isa<UndefValue>(GVar->getInitializer()); } SDValue AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction* MFI, SDValue Op, SelectionDAG &DAG) const { const DataLayout &DL = DAG.getDataLayout(); GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Op); const GlobalValue *GV = G->getGlobal(); switch (G->getAddressSpace()) { case AMDGPUAS::CONSTANT_ADDRESS: { MVT ConstPtrVT = getPointerTy(DL, AMDGPUAS::CONSTANT_ADDRESS); SDValue GA = DAG.getTargetGlobalAddress(GV, SDLoc(G), ConstPtrVT); return DAG.getNode(AMDGPUISD::CONST_DATA_PTR, SDLoc(G), ConstPtrVT, GA); } case AMDGPUAS::LOCAL_ADDRESS: { // XXX: What does the value of G->getOffset() mean? assert(G->getOffset() == 0 && "Do not know what to do with an non-zero offset"); // TODO: We could emit code to handle the initialization somewhere. if (hasDefinedInitializer(GV)) break; unsigned Offset; if (MFI->LocalMemoryObjects.count(GV) == 0) { unsigned Align = GV->getAlignment(); if (Align == 0) Align = DL.getABITypeAlignment(GV->getValueType()); /// TODO: We should sort these to minimize wasted space due to alignment /// padding. Currently the padding is decided by the first encountered use /// during lowering. Offset = MFI->LDSSize = alignTo(MFI->LDSSize, Align); MFI->LocalMemoryObjects[GV] = Offset; MFI->LDSSize += DL.getTypeAllocSize(GV->getValueType()); } else { Offset = MFI->LocalMemoryObjects[GV]; } return DAG.getConstant(Offset, SDLoc(Op), getPointerTy(DL, AMDGPUAS::LOCAL_ADDRESS)); } } const Function &Fn = *DAG.getMachineFunction().getFunction(); DiagnosticInfoUnsupported BadInit( Fn, "unsupported initializer for address space", SDLoc(Op).getDebugLoc()); DAG.getContext()->diagnose(BadInit); return SDValue(); } SDValue AMDGPUTargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const { SmallVector<SDValue, 8> Args; for (const SDUse &U : Op->ops()) DAG.ExtractVectorElements(U.get(), Args); return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args); } SDValue AMDGPUTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const { SmallVector<SDValue, 8> Args; unsigned Start = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); EVT VT = Op.getValueType(); DAG.ExtractVectorElements(Op.getOperand(0), Args, Start, VT.getVectorNumElements()); return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args); } SDValue AMDGPUTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const { unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); SDLoc DL(Op); EVT VT = Op.getValueType(); switch (IntrinsicID) { default: return Op; case AMDGPUIntrinsic::AMDGPU_clamp: // Legacy name. return DAG.getNode(AMDGPUISD::CLAMP, DL, VT, Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); case Intrinsic::AMDGPU_ldexp: // Legacy name return DAG.getNode(AMDGPUISD::LDEXP, DL, VT, Op.getOperand(1), Op.getOperand(2)); case AMDGPUIntrinsic::AMDGPU_bfe_i32: return DAG.getNode(AMDGPUISD::BFE_I32, DL, VT, Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); case AMDGPUIntrinsic::AMDGPU_bfe_u32: return DAG.getNode(AMDGPUISD::BFE_U32, DL, VT, Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); case AMDGPUIntrinsic::AMDGPU_brev: // Legacy name return DAG.getNode(ISD::BITREVERSE, DL, VT, Op.getOperand(1)); } } /// \brief Generate Min/Max node SDValue AMDGPUTargetLowering::CombineFMinMaxLegacy(const SDLoc &DL, EVT VT, SDValue LHS, SDValue RHS, SDValue True, SDValue False, SDValue CC, DAGCombinerInfo &DCI) const { if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) return SDValue(); if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True)) return SDValue(); SelectionDAG &DAG = DCI.DAG; ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get(); switch (CCOpcode) { case ISD::SETOEQ: case ISD::SETONE: case ISD::SETUNE: case ISD::SETNE: case ISD::SETUEQ: case ISD::SETEQ: case ISD::SETFALSE: case ISD::SETFALSE2: case ISD::SETTRUE: case ISD::SETTRUE2: case ISD::SETUO: case ISD::SETO: break; case ISD::SETULE: case ISD::SETULT: { if (LHS == True) return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); } case ISD::SETOLE: case ISD::SETOLT: case ISD::SETLE: case ISD::SETLT: { // Ordered. Assume ordered for undefined. // Only do this after legalization to avoid interfering with other combines // which might occur. if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && !DCI.isCalledByLegalizer()) return SDValue(); // We need to permute the operands to get the correct NaN behavior. The // selected operand is the second one based on the failing compare with NaN, // so permute it based on the compare type the hardware uses. if (LHS == True) return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); } case ISD::SETUGE: case ISD::SETUGT: { if (LHS == True) return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); } case ISD::SETGT: case ISD::SETGE: case ISD::SETOGE: case ISD::SETOGT: { if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && !DCI.isCalledByLegalizer()) return SDValue(); if (LHS == True) return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); } case ISD::SETCC_INVALID: llvm_unreachable("Invalid setcc condcode!"); } return SDValue(); } std::pair<SDValue, SDValue> AMDGPUTargetLowering::split64BitValue(SDValue Op, SelectionDAG &DAG) const { SDLoc SL(Op); SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); const SDValue One = DAG.getConstant(1, SL, MVT::i32); SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); return std::make_pair(Lo, Hi); } SDValue AMDGPUTargetLowering::getLoHalf64(SDValue Op, SelectionDAG &DAG) const { SDLoc SL(Op); SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); } SDValue AMDGPUTargetLowering::getHiHalf64(SDValue Op, SelectionDAG &DAG) const { SDLoc SL(Op); SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); const SDValue One = DAG.getConstant(1, SL, MVT::i32); return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); } SDValue AMDGPUTargetLowering::SplitVectorLoad(const SDValue Op, SelectionDAG &DAG) const { LoadSDNode *Load = cast<LoadSDNode>(Op); EVT VT = Op.getValueType(); // If this is a 2 element vector, we really want to scalarize and not create // weird 1 element vectors. if (VT.getVectorNumElements() == 2) return scalarizeVectorLoad(Load, DAG); SDValue BasePtr = Load->getBasePtr(); EVT PtrVT = BasePtr.getValueType(); EVT MemVT = Load->getMemoryVT(); SDLoc SL(Op); const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo(); EVT LoVT, HiVT; EVT LoMemVT, HiMemVT; SDValue Lo, Hi; std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT); std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT); std::tie(Lo, Hi) = DAG.SplitVector(Op, SL, LoVT, HiVT); unsigned Size = LoMemVT.getStoreSize(); unsigned BaseAlign = Load->getAlignment(); unsigned HiAlign = MinAlign(BaseAlign, Size); SDValue LoLoad = DAG.getExtLoad(Load->getExtensionType(), SL, LoVT, Load->getChain(), BasePtr, SrcValue, LoMemVT, Load->isVolatile(), Load->isNonTemporal(), Load->isInvariant(), BaseAlign); SDValue HiPtr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr, DAG.getConstant(Size, SL, PtrVT)); SDValue HiLoad = DAG.getExtLoad(Load->getExtensionType(), SL, HiVT, Load->getChain(), HiPtr, SrcValue.getWithOffset(LoMemVT.getStoreSize()), HiMemVT, Load->isVolatile(), Load->isNonTemporal(), Load->isInvariant(), HiAlign); SDValue Ops[] = { DAG.getNode(ISD::CONCAT_VECTORS, SL, VT, LoLoad, HiLoad), DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoLoad.getValue(1), HiLoad.getValue(1)) }; return DAG.getMergeValues(Ops, SL); } // FIXME: This isn't doing anything for SI. This should be used in a target // combine during type legalization. SDValue AMDGPUTargetLowering::MergeVectorStore(const SDValue &Op, SelectionDAG &DAG) const { StoreSDNode *Store = cast<StoreSDNode>(Op); EVT MemVT = Store->getMemoryVT(); unsigned MemBits = MemVT.getSizeInBits(); // Byte stores are really expensive, so if possible, try to pack 32-bit vector // truncating store into an i32 store. // XXX: We could also handle optimize other vector bitwidths. if (!MemVT.isVector() || MemBits > 32) { return SDValue(); } SDLoc DL(Op); SDValue Value = Store->getValue(); EVT VT = Value.getValueType(); EVT ElemVT = VT.getVectorElementType(); SDValue Ptr = Store->getBasePtr(); EVT MemEltVT = MemVT.getVectorElementType(); unsigned MemEltBits = MemEltVT.getSizeInBits(); unsigned MemNumElements = MemVT.getVectorNumElements(); unsigned PackedSize = MemVT.getStoreSizeInBits(); SDValue Mask = DAG.getConstant((1 << MemEltBits) - 1, DL, MVT::i32); assert(Value.getValueType().getScalarSizeInBits() >= 32); SDValue PackedValue; for (unsigned i = 0; i < MemNumElements; ++i) { SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ElemVT, Value, DAG.getConstant(i, DL, MVT::i32)); Elt = DAG.getZExtOrTrunc(Elt, DL, MVT::i32); Elt = DAG.getNode(ISD::AND, DL, MVT::i32, Elt, Mask); // getZeroExtendInReg SDValue Shift = DAG.getConstant(MemEltBits * i, DL, MVT::i32); Elt = DAG.getNode(ISD::SHL, DL, MVT::i32, Elt, Shift); if (i == 0) { PackedValue = Elt; } else { PackedValue = DAG.getNode(ISD::OR, DL, MVT::i32, PackedValue, Elt); } } if (PackedSize < 32) { EVT PackedVT = EVT::getIntegerVT(*DAG.getContext(), PackedSize); return DAG.getTruncStore(Store->getChain(), DL, PackedValue, Ptr, Store->getMemOperand()->getPointerInfo(), PackedVT, Store->isNonTemporal(), Store->isVolatile(), Store->getAlignment()); } return DAG.getStore(Store->getChain(), DL, PackedValue, Ptr, Store->getMemOperand()->getPointerInfo(), Store->isVolatile(), Store->isNonTemporal(), Store->getAlignment()); } SDValue AMDGPUTargetLowering::SplitVectorStore(SDValue Op, SelectionDAG &DAG) const { StoreSDNode *Store = cast<StoreSDNode>(Op); SDValue Val = Store->getValue(); EVT VT = Val.getValueType(); // If this is a 2 element vector, we really want to scalarize and not create // weird 1 element vectors. if (VT.getVectorNumElements() == 2) return scalarizeVectorStore(Store, DAG); EVT MemVT = Store->getMemoryVT(); SDValue Chain = Store->getChain(); SDValue BasePtr = Store->getBasePtr(); SDLoc SL(Op); EVT LoVT, HiVT; EVT LoMemVT, HiMemVT; SDValue Lo, Hi; std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT); std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT); std::tie(Lo, Hi) = DAG.SplitVector(Val, SL, LoVT, HiVT); EVT PtrVT = BasePtr.getValueType(); SDValue HiPtr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr, DAG.getConstant(LoMemVT.getStoreSize(), SL, PtrVT)); const MachinePointerInfo &SrcValue = Store->getMemOperand()->getPointerInfo(); unsigned BaseAlign = Store->getAlignment(); unsigned Size = LoMemVT.getStoreSize(); unsigned HiAlign = MinAlign(BaseAlign, Size); SDValue LoStore = DAG.getTruncStore(Chain, SL, Lo, BasePtr, SrcValue, LoMemVT, Store->isNonTemporal(), Store->isVolatile(), BaseAlign); SDValue HiStore = DAG.getTruncStore(Chain, SL, Hi, HiPtr, SrcValue.getWithOffset(Size), HiMemVT, Store->isNonTemporal(), Store->isVolatile(), HiAlign); return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoStore, HiStore); } // This is a shortcut for integer division because we have fast i32<->f32 // conversions, and fast f32 reciprocal instructions. The fractional part of a // float is enough to accurately represent up to a 24-bit signed integer. SDValue AMDGPUTargetLowering::LowerDIVREM24(SDValue Op, SelectionDAG &DAG, bool Sign) const { SDLoc DL(Op); EVT VT = Op.getValueType(); SDValue LHS = Op.getOperand(0); SDValue RHS = Op.getOperand(1); MVT IntVT = MVT::i32; MVT FltVT = MVT::f32; unsigned LHSSignBits = DAG.ComputeNumSignBits(LHS); if (LHSSignBits < 9) return SDValue(); unsigned RHSSignBits = DAG.ComputeNumSignBits(RHS); if (RHSSignBits < 9) return SDValue(); unsigned BitSize = VT.getSizeInBits(); unsigned SignBits = std::min(LHSSignBits, RHSSignBits); unsigned DivBits = BitSize - SignBits; if (Sign) ++DivBits; ISD::NodeType ToFp = Sign ? ISD::SINT_TO_FP : ISD::UINT_TO_FP; ISD::NodeType ToInt = Sign ? ISD::FP_TO_SINT : ISD::FP_TO_UINT; SDValue jq = DAG.getConstant(1, DL, IntVT); if (Sign) { // char|short jq = ia ^ ib; jq = DAG.getNode(ISD::XOR, DL, VT, LHS, RHS); // jq = jq >> (bitsize - 2) jq = DAG.getNode(ISD::SRA, DL, VT, jq, DAG.getConstant(BitSize - 2, DL, VT)); // jq = jq | 0x1 jq = DAG.getNode(ISD::OR, DL, VT, jq, DAG.getConstant(1, DL, VT)); } // int ia = (int)LHS; SDValue ia = LHS; // int ib, (int)RHS; SDValue ib = RHS; // float fa = (float)ia; SDValue fa = DAG.getNode(ToFp, DL, FltVT, ia); // float fb = (float)ib; SDValue fb = DAG.getNode(ToFp, DL, FltVT, ib); SDValue fq = DAG.getNode(ISD::FMUL, DL, FltVT, fa, DAG.getNode(AMDGPUISD::RCP, DL, FltVT, fb)); // fq = trunc(fq); fq = DAG.getNode(ISD::FTRUNC, DL, FltVT, fq); // float fqneg = -fq; SDValue fqneg = DAG.getNode(ISD::FNEG, DL, FltVT, fq); // float fr = mad(fqneg, fb, fa); SDValue fr = DAG.getNode(ISD::FMAD, DL, FltVT, fqneg, fb, fa); // int iq = (int)fq; SDValue iq = DAG.getNode(ToInt, DL, IntVT, fq); // fr = fabs(fr); fr = DAG.getNode(ISD::FABS, DL, FltVT, fr); // fb = fabs(fb); fb = DAG.getNode(ISD::FABS, DL, FltVT, fb); EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); // int cv = fr >= fb; SDValue cv = DAG.getSetCC(DL, SetCCVT, fr, fb, ISD::SETOGE); // jq = (cv ? jq : 0); jq = DAG.getNode(ISD::SELECT, DL, VT, cv, jq, DAG.getConstant(0, DL, VT)); // dst = iq + jq; SDValue Div = DAG.getNode(ISD::ADD, DL, VT, iq, jq); // Rem needs compensation, it's easier to recompute it SDValue Rem = DAG.getNode(ISD::MUL, DL, VT, Div, RHS); Rem = DAG.getNode(ISD::SUB, DL, VT, LHS, Rem); // Truncate to number of bits this divide really is. if (Sign) { SDValue InRegSize = DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), DivBits)); Div = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Div, InRegSize); Rem = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Rem, InRegSize); } else { SDValue TruncMask = DAG.getConstant((UINT64_C(1) << DivBits) - 1, DL, VT); Div = DAG.getNode(ISD::AND, DL, VT, Div, TruncMask); Rem = DAG.getNode(ISD::AND, DL, VT, Rem, TruncMask); } return DAG.getMergeValues({ Div, Rem }, DL); } void AMDGPUTargetLowering::LowerUDIVREM64(SDValue Op, SelectionDAG &DAG, SmallVectorImpl<SDValue> &Results) const { assert(Op.getValueType() == MVT::i64); SDLoc DL(Op); EVT VT = Op.getValueType(); EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); SDValue one = DAG.getConstant(1, DL, HalfVT); SDValue zero = DAG.getConstant(0, DL, HalfVT); //HiLo split SDValue LHS = Op.getOperand(0); SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, zero); SDValue LHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, one); SDValue RHS = Op.getOperand(1); SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, zero); SDValue RHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, one); if (VT == MVT::i64 && DAG.MaskedValueIsZero(RHS, APInt::getHighBitsSet(64, 32)) && DAG.MaskedValueIsZero(LHS, APInt::getHighBitsSet(64, 32))) { SDValue Res = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), LHS_Lo, RHS_Lo); SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(0), zero}); SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(1), zero}); Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV)); Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM)); return; } // Get Speculative values SDValue DIV_Part = DAG.getNode(ISD::UDIV, DL, HalfVT, LHS_Hi, RHS_Lo); SDValue REM_Part = DAG.getNode(ISD::UREM, DL, HalfVT, LHS_Hi, RHS_Lo); SDValue REM_Lo = DAG.getSelectCC(DL, RHS_Hi, zero, REM_Part, LHS_Hi, ISD::SETEQ); SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {REM_Lo, zero}); REM = DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM); SDValue DIV_Hi = DAG.getSelectCC(DL, RHS_Hi, zero, DIV_Part, zero, ISD::SETEQ); SDValue DIV_Lo = zero; const unsigned halfBitWidth = HalfVT.getSizeInBits(); for (unsigned i = 0; i < halfBitWidth; ++i) { const unsigned bitPos = halfBitWidth - i - 1; SDValue POS = DAG.getConstant(bitPos, DL, HalfVT); // Get value of high bit SDValue HBit = DAG.getNode(ISD::SRL, DL, HalfVT, LHS_Lo, POS); HBit = DAG.getNode(ISD::AND, DL, HalfVT, HBit, one); HBit = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, HBit); // Shift REM = DAG.getNode(ISD::SHL, DL, VT, REM, DAG.getConstant(1, DL, VT)); // Add LHS high bit REM = DAG.getNode(ISD::OR, DL, VT, REM, HBit); SDValue BIT = DAG.getConstant(1ULL << bitPos, DL, HalfVT); SDValue realBIT = DAG.getSelectCC(DL, REM, RHS, BIT, zero, ISD::SETUGE); DIV_Lo = DAG.getNode(ISD::OR, DL, HalfVT, DIV_Lo, realBIT); // Update REM SDValue REM_sub = DAG.getNode(ISD::SUB, DL, VT, REM, RHS); REM = DAG.getSelectCC(DL, REM, RHS, REM_sub, REM, ISD::SETUGE); } SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {DIV_Lo, DIV_Hi}); DIV = DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV); Results.push_back(DIV); Results.push_back(REM); } SDValue AMDGPUTargetLowering::LowerUDIVREM(SDValue Op, SelectionDAG &DAG) const { SDLoc DL(Op); EVT VT = Op.getValueType(); if (VT == MVT::i64) { SmallVector<SDValue, 2> Results; LowerUDIVREM64(Op, DAG, Results); return DAG.getMergeValues(Results, DL); } if (VT == MVT::i32) { if (SDValue Res = LowerDIVREM24(Op, DAG, false)) return Res; } SDValue Num = Op.getOperand(0); SDValue Den = Op.getOperand(1); // RCP = URECIP(Den) = 2^32 / Den + e // e is rounding error. SDValue RCP = DAG.getNode(AMDGPUISD::URECIP, DL, VT, Den); // RCP_LO = mul(RCP, Den) */ SDValue RCP_LO = DAG.getNode(ISD::MUL, DL, VT, RCP, Den); // RCP_HI = mulhu (RCP, Den) */ SDValue RCP_HI = DAG.getNode(ISD::MULHU, DL, VT, RCP, Den); // NEG_RCP_LO = -RCP_LO SDValue NEG_RCP_LO = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), RCP_LO); // ABS_RCP_LO = (RCP_HI == 0 ? NEG_RCP_LO : RCP_LO) SDValue ABS_RCP_LO = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT), NEG_RCP_LO, RCP_LO, ISD::SETEQ); // Calculate the rounding error from the URECIP instruction // E = mulhu(ABS_RCP_LO, RCP) SDValue E = DAG.getNode(ISD::MULHU, DL, VT, ABS_RCP_LO, RCP); // RCP_A_E = RCP + E SDValue RCP_A_E = DAG.getNode(ISD::ADD, DL, VT, RCP, E); // RCP_S_E = RCP - E SDValue RCP_S_E = DAG.getNode(ISD::SUB, DL, VT, RCP, E); // Tmp0 = (RCP_HI == 0 ? RCP_A_E : RCP_SUB_E) SDValue Tmp0 = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT), RCP_A_E, RCP_S_E, ISD::SETEQ); // Quotient = mulhu(Tmp0, Num) SDValue Quotient = DAG.getNode(ISD::MULHU, DL, VT, Tmp0, Num); // Num_S_Remainder = Quotient * Den SDValue Num_S_Remainder = DAG.getNode(ISD::MUL, DL, VT, Quotient, Den); // Remainder = Num - Num_S_Remainder SDValue Remainder = DAG.getNode(ISD::SUB, DL, VT, Num, Num_S_Remainder); // Remainder_GE_Den = (Remainder >= Den ? -1 : 0) SDValue Remainder_GE_Den = DAG.getSelectCC(DL, Remainder, Den, DAG.getConstant(-1, DL, VT), DAG.getConstant(0, DL, VT), ISD::SETUGE); // Remainder_GE_Zero = (Num >= Num_S_Remainder ? -1 : 0) SDValue Remainder_GE_Zero = DAG.getSelectCC(DL, Num, Num_S_Remainder, DAG.getConstant(-1, DL, VT), DAG.getConstant(0, DL, VT), ISD::SETUGE); // Tmp1 = Remainder_GE_Den & Remainder_GE_Zero SDValue Tmp1 = DAG.getNode(ISD::AND, DL, VT, Remainder_GE_Den, Remainder_GE_Zero); // Calculate Division result: // Quotient_A_One = Quotient + 1 SDValue Quotient_A_One = DAG.getNode(ISD::ADD, DL, VT, Quotient, DAG.getConstant(1, DL, VT)); // Quotient_S_One = Quotient - 1 SDValue Quotient_S_One = DAG.getNode(ISD::SUB, DL, VT, Quotient, DAG.getConstant(1, DL, VT)); // Div = (Tmp1 == 0 ? Quotient : Quotient_A_One) SDValue Div = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT), Quotient, Quotient_A_One, ISD::SETEQ); // Div = (Remainder_GE_Zero == 0 ? Quotient_S_One : Div) Div = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT), Quotient_S_One, Div, ISD::SETEQ); // Calculate Rem result: // Remainder_S_Den = Remainder - Den SDValue Remainder_S_Den = DAG.getNode(ISD::SUB, DL, VT, Remainder, Den); // Remainder_A_Den = Remainder + Den SDValue Remainder_A_Den = DAG.getNode(ISD::ADD, DL, VT, Remainder, Den); // Rem = (Tmp1 == 0 ? Remainder : Remainder_S_Den) SDValue Rem = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT), Remainder, Remainder_S_Den, ISD::SETEQ); // Rem = (Remainder_GE_Zero == 0 ? Remainder_A_Den : Rem) Rem = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT), Remainder_A_Den, Rem, ISD::SETEQ); SDValue Ops[2] = { Div, Rem }; return DAG.getMergeValues(Ops, DL); } SDValue AMDGPUTargetLowering::LowerSDIVREM(SDValue Op, SelectionDAG &DAG) const { SDLoc DL(Op); EVT VT = Op.getValueType(); SDValue LHS = Op.getOperand(0); SDValue RHS = Op.getOperand(1); SDValue Zero = DAG.getConstant(0, DL, VT); SDValue NegOne = DAG.getConstant(-1, DL, VT); if (VT == MVT::i32) { if (SDValue Res = LowerDIVREM24(Op, DAG, true)) return Res; } if (VT == MVT::i64 && DAG.ComputeNumSignBits(LHS) > 32 && DAG.ComputeNumSignBits(RHS) > 32) { EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); //HiLo split SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero); SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero); SDValue DIVREM = DAG.getNode(ISD::SDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), LHS_Lo, RHS_Lo); SDValue Res[2] = { DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(0)), DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(1)) }; return DAG.getMergeValues(Res, DL); } SDValue LHSign = DAG.getSelectCC(DL, LHS, Zero, NegOne, Zero, ISD::SETLT); SDValue RHSign = DAG.getSelectCC(DL, RHS, Zero, NegOne, Zero, ISD::SETLT); SDValue DSign = DAG.getNode(ISD::XOR, DL, VT, LHSign, RHSign); SDValue RSign = LHSign; // Remainder sign is the same as LHS LHS = DAG.getNode(ISD::ADD, DL, VT, LHS, LHSign); RHS = DAG.getNode(ISD::ADD, DL, VT, RHS, RHSign); LHS = DAG.getNode(ISD::XOR, DL, VT, LHS, LHSign); RHS = DAG.getNode(ISD::XOR, DL, VT, RHS, RHSign); SDValue Div = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(VT, VT), LHS, RHS); SDValue Rem = Div.getValue(1); Div = DAG.getNode(ISD::XOR, DL, VT, Div, DSign); Rem = DAG.getNode(ISD::XOR, DL, VT, Rem, RSign); Div = DAG.getNode(ISD::SUB, DL, VT, Div, DSign); Rem = DAG.getNode(ISD::SUB, DL, VT, Rem, RSign); SDValue Res[2] = { Div, Rem }; return DAG.getMergeValues(Res, DL); } // (frem x, y) -> (fsub x, (fmul (ftrunc (fdiv x, y)), y)) SDValue AMDGPUTargetLowering::LowerFREM(SDValue Op, SelectionDAG &DAG) const { SDLoc SL(Op); EVT VT = Op.getValueType(); SDValue X = Op.getOperand(0); SDValue Y = Op.getOperand(1); // TODO: Should this propagate fast-math-flags? SDValue Div = DAG.getNode(ISD::FDIV, SL, VT, X, Y); SDValue Floor = DAG.getNode(ISD::FTRUNC, SL, VT, Div); SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Floor, Y); return DAG.getNode(ISD::FSUB, SL, VT, X, Mul); } SDValue AMDGPUTargetLowering::LowerFCEIL(SDValue Op, SelectionDAG &DAG) const { SDLoc SL(Op); SDValue Src = Op.getOperand(0); // result = trunc(src) // if (src > 0.0 && src != result) // result += 1.0 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64); EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOGT); SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, One, Zero); // TODO: Should this propagate fast-math-flags? return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); } static SDValue extractF64Exponent(SDValue Hi, const SDLoc &SL, SelectionDAG &DAG) { const unsigned FractBits = 52; const unsigned ExpBits = 11; SDValue ExpPart = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32, Hi, DAG.getConstant(FractBits - 32, SL, MVT::i32), DAG.getConstant(ExpBits, SL, MVT::i32)); SDValue Exp = DAG.getNode(ISD::SUB, SL, MVT::i32, ExpPart, DAG.getConstant(1023, SL, MVT::i32)); return Exp; } SDValue AMDGPUTargetLowering::LowerFTRUNC(SDValue Op, SelectionDAG &DAG) const { SDLoc SL(Op); SDValue Src = Op.getOperand(0); assert(Op.getValueType() == MVT::f64); const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); const SDValue One = DAG.getConstant(1, SL, MVT::i32); SDValue VecSrc = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); // Extract the upper half, since this is where we will find the sign and // exponent. SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecSrc, One); SDValue Exp = extractF64Exponent(Hi, SL, DAG); const unsigned FractBits = 52; // Extract the sign bit. const SDValue SignBitMask = DAG.getConstant(UINT32_C(1) << 31, SL, MVT::i32); SDValue SignBit = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, SignBitMask); // Extend back to to 64-bits. SDValue SignBit64 = DAG.getBuildVector(MVT::v2i32, SL, {Zero, SignBit}); SignBit64 = DAG.getNode(ISD::BITCAST, SL, MVT::i64, SignBit64); SDValue BcInt = DAG.getNode(ISD::BITCAST, SL, MVT::i64, Src); const SDValue FractMask = DAG.getConstant((UINT64_C(1) << FractBits) - 1, SL, MVT::i64); SDValue Shr = DAG.getNode(ISD::SRA, SL, MVT::i64, FractMask, Exp); SDValue Not = DAG.getNOT(SL, Shr, MVT::i64); SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, BcInt, Not); EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32); const SDValue FiftyOne = DAG.getConstant(FractBits - 1, SL, MVT::i32); SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT); SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT); SDValue Tmp1 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpLt0, SignBit64, Tmp0); SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpGt51, BcInt, Tmp1); return DAG.getNode(ISD::BITCAST, SL, MVT::f64, Tmp2); } SDValue AMDGPUTargetLowering::LowerFRINT(SDValue Op, SelectionDAG &DAG) const { SDLoc SL(Op); SDValue Src = Op.getOperand(0); assert(Op.getValueType() == MVT::f64); APFloat C1Val(APFloat::IEEEdouble, "0x1.0p+52"); SDValue C1 = DAG.getConstantFP(C1Val, SL, MVT::f64); SDValue CopySign = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, C1, Src); // TODO: Should this propagate fast-math-flags? SDValue Tmp1 = DAG.getNode(ISD::FADD, SL, MVT::f64, Src, CopySign); SDValue Tmp2 = DAG.getNode(ISD::FSUB, SL, MVT::f64, Tmp1, CopySign); SDValue Fabs = DAG.getNode(ISD::FABS, SL, MVT::f64, Src); APFloat C2Val(APFloat::IEEEdouble, "0x1.fffffffffffffp+51"); SDValue C2 = DAG.getConstantFP(C2Val, SL, MVT::f64); EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); SDValue Cond = DAG.getSetCC(SL, SetCCVT, Fabs, C2, ISD::SETOGT); return DAG.getSelect(SL, MVT::f64, Cond, Src, Tmp2); } SDValue AMDGPUTargetLowering::LowerFNEARBYINT(SDValue Op, SelectionDAG &DAG) const { // FNEARBYINT and FRINT are the same, except in their handling of FP // exceptions. Those aren't really meaningful for us, and OpenCL only has // rint, so just treat them as equivalent. return DAG.getNode(ISD::FRINT, SDLoc(Op), Op.getValueType(), Op.getOperand(0)); } // XXX - May require not supporting f32 denormals? SDValue AMDGPUTargetLowering::LowerFROUND32(SDValue Op, SelectionDAG &DAG) const { SDLoc SL(Op); SDValue X = Op.getOperand(0); SDValue T = DAG.getNode(ISD::FTRUNC, SL, MVT::f32, X); // TODO: Should this propagate fast-math-flags? SDValue Diff = DAG.getNode(ISD::FSUB, SL, MVT::f32, X, T); SDValue AbsDiff = DAG.getNode(ISD::FABS, SL, MVT::f32, Diff); const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f32); const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32); const SDValue Half = DAG.getConstantFP(0.5, SL, MVT::f32); SDValue SignOne = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f32, One, X); EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f32); SDValue Cmp = DAG.getSetCC(SL, SetCCVT, AbsDiff, Half, ISD::SETOGE); SDValue Sel = DAG.getNode(ISD::SELECT, SL, MVT::f32, Cmp, SignOne, Zero); return DAG.getNode(ISD::FADD, SL, MVT::f32, T, Sel); } SDValue AMDGPUTargetLowering::LowerFROUND64(SDValue Op, SelectionDAG &DAG) const { SDLoc SL(Op); SDValue X = Op.getOperand(0); SDValue L = DAG.getNode(ISD::BITCAST, SL, MVT::i64, X); const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); const SDValue One = DAG.getConstant(1, SL, MVT::i32); const SDValue NegOne = DAG.getConstant(-1, SL, MVT::i32); const SDValue FiftyOne = DAG.getConstant(51, SL, MVT::i32); EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32); SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X); SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, One); SDValue Exp = extractF64Exponent(Hi, SL, DAG); const SDValue Mask = DAG.getConstant(INT64_C(0x000fffffffffffff), SL, MVT::i64); SDValue M = DAG.getNode(ISD::SRA, SL, MVT::i64, Mask, Exp); SDValue D = DAG.getNode(ISD::SRA, SL, MVT::i64, DAG.getConstant(INT64_C(0x0008000000000000), SL, MVT::i64), Exp); SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, L, M); SDValue Tmp1 = DAG.getSetCC(SL, SetCCVT, DAG.getConstant(0, SL, MVT::i64), Tmp0, ISD::SETNE); SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, Tmp1, D, DAG.getConstant(0, SL, MVT::i64)); SDValue K = DAG.getNode(ISD::ADD, SL, MVT::i64, L, Tmp2); K = DAG.getNode(ISD::AND, SL, MVT::i64, K, DAG.getNOT(SL, M, MVT::i64)); K = DAG.getNode(ISD::BITCAST, SL, MVT::f64, K); SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT); SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT); SDValue ExpEqNegOne = DAG.getSetCC(SL, SetCCVT, NegOne, Exp, ISD::SETEQ); SDValue Mag = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpEqNegOne, DAG.getConstantFP(1.0, SL, MVT::f64), DAG.getConstantFP(0.0, SL, MVT::f64)); SDValue S = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, Mag, X); K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpLt0, S, K); K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpGt51, X, K); return K; } SDValue AMDGPUTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const { EVT VT = Op.getValueType(); if (VT == MVT::f32) return LowerFROUND32(Op, DAG); if (VT == MVT::f64) return LowerFROUND64(Op, DAG); llvm_unreachable("unhandled type"); } SDValue AMDGPUTargetLowering::LowerFFLOOR(SDValue Op, SelectionDAG &DAG) const { SDLoc SL(Op); SDValue Src = Op.getOperand(0); // result = trunc(src); // if (src < 0.0 && src != result) // result += -1.0. SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); const SDValue NegOne = DAG.getConstantFP(-1.0, SL, MVT::f64); EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOLT); SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, NegOne, Zero); // TODO: Should this propagate fast-math-flags? return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); } SDValue AMDGPUTargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) const { SDLoc SL(Op); SDValue Src = Op.getOperand(0); bool ZeroUndef = Op.getOpcode() == ISD::CTLZ_ZERO_UNDEF; if (ZeroUndef && Src.getValueType() == MVT::i32) return DAG.getNode(AMDGPUISD::FFBH_U32, SL, MVT::i32, Src); SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); const SDValue One = DAG.getConstant(1, SL, MVT::i32); SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32); SDValue Hi0 = DAG.getSetCC(SL, SetCCVT, Hi, Zero, ISD::SETEQ); SDValue CtlzLo = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i32, Lo); SDValue CtlzHi = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i32, Hi); const SDValue Bits32 = DAG.getConstant(32, SL, MVT::i32); SDValue Add = DAG.getNode(ISD::ADD, SL, MVT::i32, CtlzLo, Bits32); // ctlz(x) = hi_32(x) == 0 ? ctlz(lo_32(x)) + 32 : ctlz(hi_32(x)) SDValue NewCtlz = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0, Add, CtlzHi); if (!ZeroUndef) { // Test if the full 64-bit input is zero. // FIXME: DAG combines turn what should be an s_and_b64 into a v_or_b32, // which we probably don't want. SDValue Lo0 = DAG.getSetCC(SL, SetCCVT, Lo, Zero, ISD::SETEQ); SDValue SrcIsZero = DAG.getNode(ISD::AND, SL, SetCCVT, Lo0, Hi0); // TODO: If i64 setcc is half rate, it can result in 1 fewer instruction // with the same cycles, otherwise it is slower. // SDValue SrcIsZero = DAG.getSetCC(SL, SetCCVT, Src, // DAG.getConstant(0, SL, MVT::i64), ISD::SETEQ); const SDValue Bits32 = DAG.getConstant(64, SL, MVT::i32); // The instruction returns -1 for 0 input, but the defined intrinsic // behavior is to return the number of bits. NewCtlz = DAG.getNode(ISD::SELECT, SL, MVT::i32, SrcIsZero, Bits32, NewCtlz); } return DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i64, NewCtlz); } SDValue AMDGPUTargetLowering::LowerINT_TO_FP32(SDValue Op, SelectionDAG &DAG, bool Signed) const { // Unsigned // cul2f(ulong u) //{ // uint lz = clz(u); // uint e = (u != 0) ? 127U + 63U - lz : 0; // u = (u << lz) & 0x7fffffffffffffffUL; // ulong t = u & 0xffffffffffUL; // uint v = (e << 23) | (uint)(u >> 40); // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U); // return as_float(v + r); //} // Signed // cl2f(long l) //{ // long s = l >> 63; // float r = cul2f((l + s) ^ s); // return s ? -r : r; //} SDLoc SL(Op); SDValue Src = Op.getOperand(0); SDValue L = Src; SDValue S; if (Signed) { const SDValue SignBit = DAG.getConstant(63, SL, MVT::i64); S = DAG.getNode(ISD::SRA, SL, MVT::i64, L, SignBit); SDValue LPlusS = DAG.getNode(ISD::ADD, SL, MVT::i64, L, S); L = DAG.getNode(ISD::XOR, SL, MVT::i64, LPlusS, S); } EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f32); SDValue ZeroI32 = DAG.getConstant(0, SL, MVT::i32); SDValue ZeroI64 = DAG.getConstant(0, SL, MVT::i64); SDValue LZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i64, L); LZ = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LZ); SDValue K = DAG.getConstant(127U + 63U, SL, MVT::i32); SDValue E = DAG.getSelect(SL, MVT::i32, DAG.getSetCC(SL, SetCCVT, L, ZeroI64, ISD::SETNE), DAG.getNode(ISD::SUB, SL, MVT::i32, K, LZ), ZeroI32); SDValue U = DAG.getNode(ISD::AND, SL, MVT::i64, DAG.getNode(ISD::SHL, SL, MVT::i64, L, LZ), DAG.getConstant((-1ULL) >> 1, SL, MVT::i64)); SDValue T = DAG.getNode(ISD::AND, SL, MVT::i64, U, DAG.getConstant(0xffffffffffULL, SL, MVT::i64)); SDValue UShl = DAG.getNode(ISD::SRL, SL, MVT::i64, U, DAG.getConstant(40, SL, MVT::i64)); SDValue V = DAG.getNode(ISD::OR, SL, MVT::i32, DAG.getNode(ISD::SHL, SL, MVT::i32, E, DAG.getConstant(23, SL, MVT::i32)), DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, UShl)); SDValue C = DAG.getConstant(0x8000000000ULL, SL, MVT::i64); SDValue RCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETUGT); SDValue TCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETEQ); SDValue One = DAG.getConstant(1, SL, MVT::i32); SDValue VTrunc1 = DAG.getNode(ISD::AND, SL, MVT::i32, V, One); SDValue R = DAG.getSelect(SL, MVT::i32, RCmp, One, DAG.getSelect(SL, MVT::i32, TCmp, VTrunc1, ZeroI32)); R = DAG.getNode(ISD::ADD, SL, MVT::i32, V, R); R = DAG.getNode(ISD::BITCAST, SL, MVT::f32, R); if (!Signed) return R; SDValue RNeg = DAG.getNode(ISD::FNEG, SL, MVT::f32, R); return DAG.getSelect(SL, MVT::f32, DAG.getSExtOrTrunc(S, SL, SetCCVT), RNeg, R); } SDValue AMDGPUTargetLowering::LowerINT_TO_FP64(SDValue Op, SelectionDAG &DAG, bool Signed) const { SDLoc SL(Op); SDValue Src = Op.getOperand(0); SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, DAG.getConstant(0, SL, MVT::i32)); SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, DAG.getConstant(1, SL, MVT::i32)); SDValue CvtHi = DAG.getNode(Signed ? ISD::SINT_TO_FP : ISD::UINT_TO_FP, SL, MVT::f64, Hi); SDValue CvtLo = DAG.getNode(ISD::UINT_TO_FP, SL, MVT::f64, Lo); SDValue LdExp = DAG.getNode(AMDGPUISD::LDEXP, SL, MVT::f64, CvtHi, DAG.getConstant(32, SL, MVT::i32)); // TODO: Should this propagate fast-math-flags? return DAG.getNode(ISD::FADD, SL, MVT::f64, LdExp, CvtLo); } SDValue AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op, SelectionDAG &DAG) const { assert(Op.getOperand(0).getValueType() == MVT::i64 && "operation should be legal"); EVT DestVT = Op.getValueType(); if (DestVT == MVT::f64) return LowerINT_TO_FP64(Op, DAG, false); if (DestVT == MVT::f32) return LowerINT_TO_FP32(Op, DAG, false); return SDValue(); } SDValue AMDGPUTargetLowering::LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) const { assert(Op.getOperand(0).getValueType() == MVT::i64 && "operation should be legal"); EVT DestVT = Op.getValueType(); if (DestVT == MVT::f32) return LowerINT_TO_FP32(Op, DAG, true); if (DestVT == MVT::f64) return LowerINT_TO_FP64(Op, DAG, true); return SDValue(); } SDValue AMDGPUTargetLowering::LowerFP64_TO_INT(SDValue Op, SelectionDAG &DAG, bool Signed) const { SDLoc SL(Op); SDValue Src = Op.getOperand(0); SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); SDValue K0 = DAG.getConstantFP(BitsToDouble(UINT64_C(0x3df0000000000000)), SL, MVT::f64); SDValue K1 = DAG.getConstantFP(BitsToDouble(UINT64_C(0xc1f0000000000000)), SL, MVT::f64); // TODO: Should this propagate fast-math-flags? SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, Trunc, K0); SDValue FloorMul = DAG.getNode(ISD::FFLOOR, SL, MVT::f64, Mul); SDValue Fma = DAG.getNode(ISD::FMA, SL, MVT::f64, FloorMul, K1, Trunc); SDValue Hi = DAG.getNode(Signed ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, SL, MVT::i32, FloorMul); SDValue Lo = DAG.getNode(ISD::FP_TO_UINT, SL, MVT::i32, Fma); SDValue Result = DAG.getBuildVector(MVT::v2i32, SL, {Lo, Hi}); return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Result); } SDValue AMDGPUTargetLowering::LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) const { SDValue Src = Op.getOperand(0); if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64) return LowerFP64_TO_INT(Op, DAG, true); return SDValue(); } SDValue AMDGPUTargetLowering::LowerFP_TO_UINT(SDValue Op, SelectionDAG &DAG) const { SDValue Src = Op.getOperand(0); if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64) return LowerFP64_TO_INT(Op, DAG, false); return SDValue(); } SDValue AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, SelectionDAG &DAG) const { EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); MVT VT = Op.getSimpleValueType(); MVT ScalarVT = VT.getScalarType(); if (!VT.isVector()) return SDValue(); SDValue Src = Op.getOperand(0); SDLoc DL(Op); // TODO: Don't scalarize on Evergreen? unsigned NElts = VT.getVectorNumElements(); SmallVector<SDValue, 8> Args; DAG.ExtractVectorElements(Src, Args, 0, NElts); SDValue VTOp = DAG.getValueType(ExtraVT.getScalarType()); for (unsigned I = 0; I < NElts; ++I) Args[I] = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, ScalarVT, Args[I], VTOp); return DAG.getBuildVector(VT, DL, Args); } //===----------------------------------------------------------------------===// // Custom DAG optimizations //===----------------------------------------------------------------------===// static bool isU24(SDValue Op, SelectionDAG &DAG) { APInt KnownZero, KnownOne; EVT VT = Op.getValueType(); DAG.computeKnownBits(Op, KnownZero, KnownOne); return (VT.getSizeInBits() - KnownZero.countLeadingOnes()) <= 24; } static bool isI24(SDValue Op, SelectionDAG &DAG) { EVT VT = Op.getValueType(); // In order for this to be a signed 24-bit value, bit 23, must // be a sign bit. return VT.getSizeInBits() >= 24 && // Types less than 24-bit should be treated // as unsigned 24-bit values. (VT.getSizeInBits() - DAG.ComputeNumSignBits(Op)) < 24; } static void simplifyI24(SDValue Op, TargetLowering::DAGCombinerInfo &DCI) { SelectionDAG &DAG = DCI.DAG; const TargetLowering &TLI = DAG.getTargetLoweringInfo(); EVT VT = Op.getValueType(); APInt Demanded = APInt::getLowBitsSet(VT.getSizeInBits(), 24); APInt KnownZero, KnownOne; TargetLowering::TargetLoweringOpt TLO(DAG, true, true); if (TLI.SimplifyDemandedBits(Op, Demanded, KnownZero, KnownOne, TLO)) DCI.CommitTargetLoweringOpt(TLO); } template <typename IntTy> static SDValue constantFoldBFE(SelectionDAG &DAG, IntTy Src0, uint32_t Offset, uint32_t Width, const SDLoc &DL) { if (Width + Offset < 32) { uint32_t Shl = static_cast<uint32_t>(Src0) << (32 - Offset - Width); IntTy Result = static_cast<IntTy>(Shl) >> (32 - Width); return DAG.getConstant(Result, DL, MVT::i32); } return DAG.getConstant(Src0 >> Offset, DL, MVT::i32); } static bool hasVolatileUser(SDNode *Val) { for (SDNode *U : Val->uses()) { if (MemSDNode *M = dyn_cast<MemSDNode>(U)) { if (M->isVolatile()) return true; } } return false; } bool AMDGPUTargetLowering::shouldCombineMemoryType(EVT VT) const { // i32 vectors are the canonical memory type. if (VT.getScalarType() == MVT::i32 || isTypeLegal(VT)) return false; if (!VT.isByteSized()) return false; unsigned Size = VT.getStoreSize(); if ((Size == 1 || Size == 2 || Size == 4) && !VT.isVector()) return false; if (Size == 3 || (Size > 4 && (Size % 4 != 0))) return false; return true; } // Replace load of an illegal type with a store of a bitcast to a friendlier // type. SDValue AMDGPUTargetLowering::performLoadCombine(SDNode *N, DAGCombinerInfo &DCI) const { if (!DCI.isBeforeLegalize()) return SDValue(); LoadSDNode *LN = cast<LoadSDNode>(N); if (LN->isVolatile() || !ISD::isNormalLoad(LN) || hasVolatileUser(LN)) return SDValue(); SDLoc SL(N); SelectionDAG &DAG = DCI.DAG; EVT VT = LN->getMemoryVT(); unsigned Size = VT.getStoreSize(); unsigned Align = LN->getAlignment(); if (Align < Size && isTypeLegal(VT)) { bool IsFast; unsigned AS = LN->getAddressSpace(); // Expand unaligned loads earlier than legalization. Due to visitation order // problems during legalization, the emitted instructions to pack and unpack // the bytes again are not eliminated in the case of an unaligned copy. if (!allowsMisalignedMemoryAccesses(VT, AS, Align, &IsFast)) { SDValue Ops[2]; std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(LN, DAG); return DAG.getMergeValues(Ops, SDLoc(N)); } if (!IsFast) return SDValue(); } if (!shouldCombineMemoryType(VT)) return SDValue(); EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); SDValue NewLoad = DAG.getLoad(NewVT, SL, LN->getChain(), LN->getBasePtr(), LN->getMemOperand()); SDValue BC = DAG.getNode(ISD::BITCAST, SL, VT, NewLoad); DCI.CombineTo(N, BC, NewLoad.getValue(1)); return SDValue(N, 0); } // Replace store of an illegal type with a store of a bitcast to a friendlier // type. SDValue AMDGPUTargetLowering::performStoreCombine(SDNode *N, DAGCombinerInfo &DCI) const { if (!DCI.isBeforeLegalize()) return SDValue(); StoreSDNode *SN = cast<StoreSDNode>(N); if (SN->isVolatile() || !ISD::isNormalStore(SN)) return SDValue(); EVT VT = SN->getMemoryVT(); unsigned Size = VT.getStoreSize(); SDLoc SL(N); SelectionDAG &DAG = DCI.DAG; unsigned Align = SN->getAlignment(); if (Align < Size && isTypeLegal(VT)) { bool IsFast; unsigned AS = SN->getAddressSpace(); // Expand unaligned stores earlier than legalization. Due to visitation // order problems during legalization, the emitted instructions to pack and // unpack the bytes again are not eliminated in the case of an unaligned // copy. if (!allowsMisalignedMemoryAccesses(VT, AS, Align, &IsFast)) return expandUnalignedStore(SN, DAG); if (!IsFast) return SDValue(); } if (!shouldCombineMemoryType(VT)) return SDValue(); EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); SDValue Val = SN->getValue(); //DCI.AddToWorklist(Val.getNode()); bool OtherUses = !Val.hasOneUse(); SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NewVT, Val); if (OtherUses) { SDValue CastBack = DAG.getNode(ISD::BITCAST, SL, VT, CastVal); DAG.ReplaceAllUsesOfValueWith(Val, CastBack); } return DAG.getStore(SN->getChain(), SL, CastVal, SN->getBasePtr(), SN->getMemOperand()); } // TODO: Should repeat for other bit ops. SDValue AMDGPUTargetLowering::performAndCombine(SDNode *N, DAGCombinerInfo &DCI) const { if (N->getValueType(0) != MVT::i64) return SDValue(); // Break up 64-bit and of a constant into two 32-bit ands. This will typically // happen anyway for a VALU 64-bit and. This exposes other 32-bit integer // combine opportunities since most 64-bit operations are decomposed this way. // TODO: We won't want this for SALU especially if it is an inline immediate. const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); if (!RHS) return SDValue(); uint64_t Val = RHS->getZExtValue(); if (Lo_32(Val) != 0 && Hi_32(Val) != 0 && !RHS->hasOneUse()) { // If either half of the constant is 0, this is really a 32-bit and, so // split it. If we can re-use the full materialized constant, keep it. return SDValue(); } SDLoc SL(N); SelectionDAG &DAG = DCI.DAG; SDValue Lo, Hi; std::tie(Lo, Hi) = split64BitValue(N->getOperand(0), DAG); SDValue LoRHS = DAG.getConstant(Lo_32(Val), SL, MVT::i32); SDValue HiRHS = DAG.getConstant(Hi_32(Val), SL, MVT::i32); SDValue LoAnd = DAG.getNode(ISD::AND, SL, MVT::i32, Lo, LoRHS); SDValue HiAnd = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, HiRHS); // Re-visit the ands. It's possible we eliminated one of them and it could // simplify the vector. DCI.AddToWorklist(Lo.getNode()); DCI.AddToWorklist(Hi.getNode()); SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {LoAnd, HiAnd}); return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); } SDValue AMDGPUTargetLowering::performShlCombine(SDNode *N, DAGCombinerInfo &DCI) const { if (N->getValueType(0) != MVT::i64) return SDValue(); // i64 (shl x, C) -> (build_pair 0, (shl x, C -32)) // On some subtargets, 64-bit shift is a quarter rate instruction. In the // common case, splitting this into a move and a 32-bit shift is faster and // the same code size. const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); if (!RHS) return SDValue(); unsigned RHSVal = RHS->getZExtValue(); if (RHSVal < 32) return SDValue(); SDValue LHS = N->getOperand(0); SDLoc SL(N); SelectionDAG &DAG = DCI.DAG; SDValue ShiftAmt = DAG.getConstant(RHSVal - 32, SL, MVT::i32); SDValue Lo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LHS); SDValue NewShift = DAG.getNode(ISD::SHL, SL, MVT::i32, Lo, ShiftAmt); const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {Zero, NewShift}); return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); } SDValue AMDGPUTargetLowering::performSraCombine(SDNode *N, DAGCombinerInfo &DCI) const { if (N->getValueType(0) != MVT::i64) return SDValue(); const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); if (!RHS) return SDValue(); SelectionDAG &DAG = DCI.DAG; SDLoc SL(N); unsigned RHSVal = RHS->getZExtValue(); // (sra i64:x, 32) -> build_pair x, (sra hi_32(x), 31) if (RHSVal == 32) { SDValue Hi = getHiHalf64(N->getOperand(0), DAG); SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi, DAG.getConstant(31, SL, MVT::i32)); SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {Hi, NewShift}); return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec); } // (sra i64:x, 63) -> build_pair (sra hi_32(x), 31), (sra hi_32(x), 31) if (RHSVal == 63) { SDValue Hi = getHiHalf64(N->getOperand(0), DAG); SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi, DAG.getConstant(31, SL, MVT::i32)); SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, NewShift}); return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec); } return SDValue(); } SDValue AMDGPUTargetLowering::performSrlCombine(SDNode *N, DAGCombinerInfo &DCI) const { if (N->getValueType(0) != MVT::i64) return SDValue(); const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); if (!RHS) return SDValue(); unsigned ShiftAmt = RHS->getZExtValue(); if (ShiftAmt < 32) return SDValue(); // srl i64:x, C for C >= 32 // => // build_pair (srl hi_32(x), C - 32), 0 SelectionDAG &DAG = DCI.DAG; SDLoc SL(N); SDValue One = DAG.getConstant(1, SL, MVT::i32); SDValue Zero = DAG.getConstant(0, SL, MVT::i32); SDValue VecOp = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, N->getOperand(0)); SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecOp, One); SDValue NewConst = DAG.getConstant(ShiftAmt - 32, SL, MVT::i32); SDValue NewShift = DAG.getNode(ISD::SRL, SL, MVT::i32, Hi, NewConst); SDValue BuildPair = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, Zero}); return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildPair); } SDValue AMDGPUTargetLowering::performMulCombine(SDNode *N, DAGCombinerInfo &DCI) const { EVT VT = N->getValueType(0); if (VT.isVector() || VT.getSizeInBits() > 32) return SDValue(); SelectionDAG &DAG = DCI.DAG; SDLoc DL(N); SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); SDValue Mul; if (Subtarget->hasMulU24() && isU24(N0, DAG) && isU24(N1, DAG)) { N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32); N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32); Mul = DAG.getNode(AMDGPUISD::MUL_U24, DL, MVT::i32, N0, N1); } else if (Subtarget->hasMulI24() && isI24(N0, DAG) && isI24(N1, DAG)) { N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32); N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32); Mul = DAG.getNode(AMDGPUISD::MUL_I24, DL, MVT::i32, N0, N1); } else { return SDValue(); } // We need to use sext even for MUL_U24, because MUL_U24 is used // for signed multiply of 8 and 16-bit types. return DAG.getSExtOrTrunc(Mul, DL, VT); } static bool isNegativeOne(SDValue Val) { if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val)) return C->isAllOnesValue(); return false; } static bool isCtlzOpc(unsigned Opc) { return Opc == ISD::CTLZ || Opc == ISD::CTLZ_ZERO_UNDEF; } // Get FFBH node if the incoming op may have been type legalized from a smaller // type VT. // Need to match pre-legalized type because the generic legalization inserts the // add/sub between the select and compare. static SDValue getFFBH_U32(const TargetLowering &TLI, SelectionDAG &DAG, const SDLoc &SL, SDValue Op) { EVT VT = Op.getValueType(); EVT LegalVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT); if (LegalVT != MVT::i32) return SDValue(); if (VT != MVT::i32) Op = DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i32, Op); SDValue FFBH = DAG.getNode(AMDGPUISD::FFBH_U32, SL, MVT::i32, Op); if (VT != MVT::i32) FFBH = DAG.getNode(ISD::TRUNCATE, SL, VT, FFBH); return FFBH; } // The native instructions return -1 on 0 input. Optimize out a select that // produces -1 on 0. // // TODO: If zero is not undef, we could also do this if the output is compared // against the bitwidth. // // TODO: Should probably combine against FFBH_U32 instead of ctlz directly. SDValue AMDGPUTargetLowering::performCtlzCombine(const SDLoc &SL, SDValue Cond, SDValue LHS, SDValue RHS, DAGCombinerInfo &DCI) const { ConstantSDNode *CmpRhs = dyn_cast<ConstantSDNode>(Cond.getOperand(1)); if (!CmpRhs || !CmpRhs->isNullValue()) return SDValue(); SelectionDAG &DAG = DCI.DAG; ISD::CondCode CCOpcode = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); SDValue CmpLHS = Cond.getOperand(0); // select (setcc x, 0, eq), -1, (ctlz_zero_undef x) -> ffbh_u32 x if (CCOpcode == ISD::SETEQ && isCtlzOpc(RHS.getOpcode()) && RHS.getOperand(0) == CmpLHS && isNegativeOne(LHS)) { return getFFBH_U32(*this, DAG, SL, CmpLHS); } // select (setcc x, 0, ne), (ctlz_zero_undef x), -1 -> ffbh_u32 x if (CCOpcode == ISD::SETNE && isCtlzOpc(LHS.getOpcode()) && LHS.getOperand(0) == CmpLHS && isNegativeOne(RHS)) { return getFFBH_U32(*this, DAG, SL, CmpLHS); } return SDValue(); } SDValue AMDGPUTargetLowering::performSelectCombine(SDNode *N, DAGCombinerInfo &DCI) const { SDValue Cond = N->getOperand(0); if (Cond.getOpcode() != ISD::SETCC) return SDValue(); EVT VT = N->getValueType(0); SDValue LHS = Cond.getOperand(0); SDValue RHS = Cond.getOperand(1); SDValue CC = Cond.getOperand(2); SDValue True = N->getOperand(1); SDValue False = N->getOperand(2); if (VT == MVT::f32 && Cond.hasOneUse()) { SDValue MinMax = CombineFMinMaxLegacy(SDLoc(N), VT, LHS, RHS, True, False, CC, DCI); // Revisit this node so we can catch min3/max3/med3 patterns. //DCI.AddToWorklist(MinMax.getNode()); return MinMax; } // There's no reason to not do this if the condition has other uses. return performCtlzCombine(SDLoc(N), Cond, True, False, DCI); } SDValue AMDGPUTargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const { SelectionDAG &DAG = DCI.DAG; SDLoc DL(N); switch(N->getOpcode()) { default: break; case ISD::BITCAST: { EVT DestVT = N->getValueType(0); if (DestVT.getSizeInBits() != 64 && !DestVT.isVector()) break; // Fold bitcasts of constants. // // v2i32 (bitcast i64:k) -> build_vector lo_32(k), hi_32(k) // TODO: Generalize and move to DAGCombiner SDValue Src = N->getOperand(0); if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Src)) { assert(Src.getValueType() == MVT::i64); SDLoc SL(N); uint64_t CVal = C->getZExtValue(); return DAG.getNode(ISD::BUILD_VECTOR, SL, DestVT, DAG.getConstant(Lo_32(CVal), SL, MVT::i32), DAG.getConstant(Hi_32(CVal), SL, MVT::i32)); } if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Src)) { const APInt &Val = C->getValueAPF().bitcastToAPInt(); SDLoc SL(N); uint64_t CVal = Val.getZExtValue(); SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, DAG.getConstant(Lo_32(CVal), SL, MVT::i32), DAG.getConstant(Hi_32(CVal), SL, MVT::i32)); return DAG.getNode(ISD::BITCAST, SL, DestVT, Vec); } break; } case ISD::SHL: { if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) break; return performShlCombine(N, DCI); } case ISD::SRL: { if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) break; return performSrlCombine(N, DCI); } case ISD::SRA: { if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) break; return performSraCombine(N, DCI); } case ISD::AND: { if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) break; return performAndCombine(N, DCI); } case ISD::MUL: return performMulCombine(N, DCI); case AMDGPUISD::MUL_I24: case AMDGPUISD::MUL_U24: { SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); simplifyI24(N0, DCI); simplifyI24(N1, DCI); return SDValue(); } case ISD::SELECT: return performSelectCombine(N, DCI); case AMDGPUISD::BFE_I32: case AMDGPUISD::BFE_U32: { assert(!N->getValueType(0).isVector() && "Vector handling of BFE not implemented"); ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2)); if (!Width) break; uint32_t WidthVal = Width->getZExtValue() & 0x1f; if (WidthVal == 0) return DAG.getConstant(0, DL, MVT::i32); ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); if (!Offset) break; SDValue BitsFrom = N->getOperand(0); uint32_t OffsetVal = Offset->getZExtValue() & 0x1f; bool Signed = N->getOpcode() == AMDGPUISD::BFE_I32; if (OffsetVal == 0) { // This is already sign / zero extended, so try to fold away extra BFEs. unsigned SignBits = Signed ? (32 - WidthVal + 1) : (32 - WidthVal); unsigned OpSignBits = DAG.ComputeNumSignBits(BitsFrom); if (OpSignBits >= SignBits) return BitsFrom; EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), WidthVal); if (Signed) { // This is a sign_extend_inreg. Replace it to take advantage of existing // DAG Combines. If not eliminated, we will match back to BFE during // selection. // TODO: The sext_inreg of extended types ends, although we can could // handle them in a single BFE. return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, BitsFrom, DAG.getValueType(SmallVT)); } return DAG.getZeroExtendInReg(BitsFrom, DL, SmallVT); } if (ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(BitsFrom)) { if (Signed) { return constantFoldBFE<int32_t>(DAG, CVal->getSExtValue(), OffsetVal, WidthVal, DL); } return constantFoldBFE<uint32_t>(DAG, CVal->getZExtValue(), OffsetVal, WidthVal, DL); } if ((OffsetVal + WidthVal) >= 32) { SDValue ShiftVal = DAG.getConstant(OffsetVal, DL, MVT::i32); return DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, MVT::i32, BitsFrom, ShiftVal); } if (BitsFrom.hasOneUse()) { APInt Demanded = APInt::getBitsSet(32, OffsetVal, OffsetVal + WidthVal); APInt KnownZero, KnownOne; TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), !DCI.isBeforeLegalizeOps()); const TargetLowering &TLI = DAG.getTargetLoweringInfo(); if (TLO.ShrinkDemandedConstant(BitsFrom, Demanded) || TLI.SimplifyDemandedBits(BitsFrom, Demanded, KnownZero, KnownOne, TLO)) { DCI.CommitTargetLoweringOpt(TLO); } } break; } case ISD::LOAD: return performLoadCombine(N, DCI); case ISD::STORE: return performStoreCombine(N, DCI); } return SDValue(); } //===----------------------------------------------------------------------===// // Helper functions //===----------------------------------------------------------------------===// void AMDGPUTargetLowering::getOriginalFunctionArgs( SelectionDAG &DAG, const Function *F, const SmallVectorImpl<ISD::InputArg> &Ins, SmallVectorImpl<ISD::InputArg> &OrigIns) const { for (unsigned i = 0, e = Ins.size(); i < e; ++i) { if (Ins[i].ArgVT == Ins[i].VT) { OrigIns.push_back(Ins[i]); continue; } EVT VT; if (Ins[i].ArgVT.isVector() && !Ins[i].VT.isVector()) { // Vector has been split into scalars. VT = Ins[i].ArgVT.getVectorElementType(); } else if (Ins[i].VT.isVector() && Ins[i].ArgVT.isVector() && Ins[i].ArgVT.getVectorElementType() != Ins[i].VT.getVectorElementType()) { // Vector elements have been promoted VT = Ins[i].ArgVT; } else { // Vector has been spilt into smaller vectors. VT = Ins[i].VT; } ISD::InputArg Arg(Ins[i].Flags, VT, VT, Ins[i].Used, Ins[i].OrigArgIndex, Ins[i].PartOffset); OrigIns.push_back(Arg); } } SDValue AMDGPUTargetLowering::CreateLiveInRegister(SelectionDAG &DAG, const TargetRegisterClass *RC, unsigned Reg, EVT VT) const { MachineFunction &MF = DAG.getMachineFunction(); MachineRegisterInfo &MRI = MF.getRegInfo(); unsigned VirtualRegister; if (!MRI.isLiveIn(Reg)) { VirtualRegister = MRI.createVirtualRegister(RC); MRI.addLiveIn(Reg, VirtualRegister); } else { VirtualRegister = MRI.getLiveInVirtReg(Reg); } return DAG.getRegister(VirtualRegister, VT); } uint32_t AMDGPUTargetLowering::getImplicitParameterOffset( const AMDGPUMachineFunction *MFI, const ImplicitParameter Param) const { uint64_t ArgOffset = MFI->ABIArgOffset; switch (Param) { case GRID_DIM: return ArgOffset; case GRID_OFFSET: return ArgOffset + 4; } llvm_unreachable("unexpected implicit parameter type"); } #define NODE_NAME_CASE(node) case AMDGPUISD::node: return #node; const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode) const { switch ((AMDGPUISD::NodeType)Opcode) { case AMDGPUISD::FIRST_NUMBER: break; // AMDIL DAG nodes NODE_NAME_CASE(CALL); NODE_NAME_CASE(UMUL); NODE_NAME_CASE(BRANCH_COND); // AMDGPU DAG nodes NODE_NAME_CASE(ENDPGM) NODE_NAME_CASE(RETURN) NODE_NAME_CASE(DWORDADDR) NODE_NAME_CASE(FRACT) NODE_NAME_CASE(CLAMP) NODE_NAME_CASE(COS_HW) NODE_NAME_CASE(SIN_HW) NODE_NAME_CASE(FMAX_LEGACY) NODE_NAME_CASE(FMIN_LEGACY) NODE_NAME_CASE(FMAX3) NODE_NAME_CASE(SMAX3) NODE_NAME_CASE(UMAX3) NODE_NAME_CASE(FMIN3) NODE_NAME_CASE(SMIN3) NODE_NAME_CASE(UMIN3) NODE_NAME_CASE(FMED3) NODE_NAME_CASE(SMED3) NODE_NAME_CASE(UMED3) NODE_NAME_CASE(URECIP) NODE_NAME_CASE(DIV_SCALE) NODE_NAME_CASE(DIV_FMAS) NODE_NAME_CASE(DIV_FIXUP) NODE_NAME_CASE(TRIG_PREOP) NODE_NAME_CASE(RCP) NODE_NAME_CASE(RSQ) NODE_NAME_CASE(RSQ_LEGACY) NODE_NAME_CASE(RSQ_CLAMP) NODE_NAME_CASE(LDEXP) NODE_NAME_CASE(FP_CLASS) NODE_NAME_CASE(DOT4) NODE_NAME_CASE(CARRY) NODE_NAME_CASE(BORROW) NODE_NAME_CASE(BFE_U32) NODE_NAME_CASE(BFE_I32) NODE_NAME_CASE(BFI) NODE_NAME_CASE(BFM) NODE_NAME_CASE(FFBH_U32) NODE_NAME_CASE(MUL_U24) NODE_NAME_CASE(MUL_I24) NODE_NAME_CASE(MAD_U24) NODE_NAME_CASE(MAD_I24) NODE_NAME_CASE(TEXTURE_FETCH) NODE_NAME_CASE(EXPORT) NODE_NAME_CASE(CONST_ADDRESS) NODE_NAME_CASE(REGISTER_LOAD) NODE_NAME_CASE(REGISTER_STORE) NODE_NAME_CASE(LOAD_INPUT) NODE_NAME_CASE(SAMPLE) NODE_NAME_CASE(SAMPLEB) NODE_NAME_CASE(SAMPLED) NODE_NAME_CASE(SAMPLEL) NODE_NAME_CASE(CVT_F32_UBYTE0) NODE_NAME_CASE(CVT_F32_UBYTE1) NODE_NAME_CASE(CVT_F32_UBYTE2) NODE_NAME_CASE(CVT_F32_UBYTE3) NODE_NAME_CASE(BUILD_VERTICAL_VECTOR) NODE_NAME_CASE(CONST_DATA_PTR) NODE_NAME_CASE(PC_ADD_REL_OFFSET) case AMDGPUISD::FIRST_MEM_OPCODE_NUMBER: break; NODE_NAME_CASE(SENDMSG) NODE_NAME_CASE(INTERP_MOV) NODE_NAME_CASE(INTERP_P1) NODE_NAME_CASE(INTERP_P2) NODE_NAME_CASE(STORE_MSKOR) NODE_NAME_CASE(LOAD_CONSTANT) NODE_NAME_CASE(TBUFFER_STORE_FORMAT) NODE_NAME_CASE(ATOMIC_CMP_SWAP) NODE_NAME_CASE(ATOMIC_INC) NODE_NAME_CASE(ATOMIC_DEC) case AMDGPUISD::LAST_AMDGPU_ISD_NUMBER: break; } return nullptr; } SDValue AMDGPUTargetLowering::getRsqrtEstimate(SDValue Operand, DAGCombinerInfo &DCI, unsigned &RefinementSteps, bool &UseOneConstNR) const { SelectionDAG &DAG = DCI.DAG; EVT VT = Operand.getValueType(); if (VT == MVT::f32) { RefinementSteps = 0; return DAG.getNode(AMDGPUISD::RSQ, SDLoc(Operand), VT, Operand); } // TODO: There is also f64 rsq instruction, but the documentation is less // clear on its precision. return SDValue(); } SDValue AMDGPUTargetLowering::getRecipEstimate(SDValue Operand, DAGCombinerInfo &DCI, unsigned &RefinementSteps) const { SelectionDAG &DAG = DCI.DAG; EVT VT = Operand.getValueType(); if (VT == MVT::f32) { // Reciprocal, < 1 ulp error. // // This reciprocal approximation converges to < 0.5 ulp error with one // newton rhapson performed with two fused multiple adds (FMAs). RefinementSteps = 0; return DAG.getNode(AMDGPUISD::RCP, SDLoc(Operand), VT, Operand); } // TODO: There is also f64 rcp instruction, but the documentation is less // clear on its precision. return SDValue(); } void AMDGPUTargetLowering::computeKnownBitsForTargetNode( const SDValue Op, APInt &KnownZero, APInt &KnownOne, const SelectionDAG &DAG, unsigned Depth) const { KnownZero = KnownOne = APInt(KnownOne.getBitWidth(), 0); // Don't know anything. APInt KnownZero2; APInt KnownOne2; unsigned Opc = Op.getOpcode(); switch (Opc) { default: break; case AMDGPUISD::CARRY: case AMDGPUISD::BORROW: { KnownZero = APInt::getHighBitsSet(32, 31); break; } case AMDGPUISD::BFE_I32: case AMDGPUISD::BFE_U32: { ConstantSDNode *CWidth = dyn_cast<ConstantSDNode>(Op.getOperand(2)); if (!CWidth) return; unsigned BitWidth = 32; uint32_t Width = CWidth->getZExtValue() & 0x1f; if (Opc == AMDGPUISD::BFE_U32) KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - Width); break; } } } unsigned AMDGPUTargetLowering::ComputeNumSignBitsForTargetNode( SDValue Op, const SelectionDAG &DAG, unsigned Depth) const { switch (Op.getOpcode()) { case AMDGPUISD::BFE_I32: { ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); if (!Width) return 1; unsigned SignBits = 32 - Width->getZExtValue() + 1; if (!isNullConstant(Op.getOperand(1))) return SignBits; // TODO: Could probably figure something out with non-0 offsets. unsigned Op0SignBits = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1); return std::max(SignBits, Op0SignBits); } case AMDGPUISD::BFE_U32: { ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); return Width ? 32 - (Width->getZExtValue() & 0x1f) : 1; } case AMDGPUISD::CARRY: case AMDGPUISD::BORROW: return 31; default: return 1; } }