//===-- AMDGPUTargetTransformInfo.cpp - AMDGPU specific TTI pass ---------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // \file // This file implements a TargetTransformInfo analysis pass specific to the // AMDGPU target machine. It uses the target's detailed information to provide // more precise answers to certain TTI queries, while letting the target // independent and default TTI implementations handle the rest. // //===----------------------------------------------------------------------===// #include "AMDGPUTargetTransformInfo.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/TargetTransformInfo.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/CodeGen/BasicTTIImpl.h" #include "llvm/IR/Module.h" #include "llvm/IR/Intrinsics.h" #include "llvm/Support/Debug.h" #include "llvm/Target/CostTable.h" #include "llvm/Target/TargetLowering.h" using namespace llvm; #define DEBUG_TYPE "AMDGPUtti" void AMDGPUTTIImpl::getUnrollingPreferences(Loop *L, TTI::UnrollingPreferences &UP) { UP.Threshold = 300; // Twice the default. UP.MaxCount = UINT_MAX; UP.Partial = true; // TODO: Do we want runtime unrolling? for (const BasicBlock *BB : L->getBlocks()) { const DataLayout &DL = BB->getModule()->getDataLayout(); for (const Instruction &I : *BB) { const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I); if (!GEP || GEP->getAddressSpace() != AMDGPUAS::PRIVATE_ADDRESS) continue; const Value *Ptr = GEP->getPointerOperand(); const AllocaInst *Alloca = dyn_cast<AllocaInst>(GetUnderlyingObject(Ptr, DL)); if (Alloca) { // We want to do whatever we can to limit the number of alloca // instructions that make it through to the code generator. allocas // require us to use indirect addressing, which is slow and prone to // compiler bugs. If this loop does an address calculation on an // alloca ptr, then we want to use a higher than normal loop unroll // threshold. This will give SROA a better chance to eliminate these // allocas. // // Don't use the maximum allowed value here as it will make some // programs way too big. UP.Threshold = 800; } } } } unsigned AMDGPUTTIImpl::getNumberOfRegisters(bool Vec) { if (Vec) return 0; // Number of VGPRs on SI. if (ST->getGeneration() >= AMDGPUSubtarget::SOUTHERN_ISLANDS) return 256; return 4 * 128; // XXX - 4 channels. Should these count as vector instead? } unsigned AMDGPUTTIImpl::getRegisterBitWidth(bool Vector) { return Vector ? 0 : 32; } unsigned AMDGPUTTIImpl::getLoadStoreVecRegBitWidth(unsigned AddrSpace) { switch (AddrSpace) { case AMDGPUAS::GLOBAL_ADDRESS: case AMDGPUAS::CONSTANT_ADDRESS: case AMDGPUAS::FLAT_ADDRESS: return 128; case AMDGPUAS::LOCAL_ADDRESS: case AMDGPUAS::REGION_ADDRESS: return 64; case AMDGPUAS::PRIVATE_ADDRESS: return 8 * ST->getMaxPrivateElementSize(); default: if (ST->getGeneration() <= AMDGPUSubtarget::NORTHERN_ISLANDS && (AddrSpace == AMDGPUAS::PARAM_D_ADDRESS || AddrSpace == AMDGPUAS::PARAM_I_ADDRESS || (AddrSpace >= AMDGPUAS::CONSTANT_BUFFER_0 && AddrSpace <= AMDGPUAS::CONSTANT_BUFFER_15))) return 128; llvm_unreachable("unhandled address space"); } } unsigned AMDGPUTTIImpl::getMaxInterleaveFactor(unsigned VF) { // Semi-arbitrary large amount. return 64; } int AMDGPUTTIImpl::getArithmeticInstrCost( unsigned Opcode, Type *Ty, TTI::OperandValueKind Opd1Info, TTI::OperandValueKind Opd2Info, TTI::OperandValueProperties Opd1PropInfo, TTI::OperandValueProperties Opd2PropInfo) { EVT OrigTy = TLI->getValueType(DL, Ty); if (!OrigTy.isSimple()) { return BaseT::getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info, Opd1PropInfo, Opd2PropInfo); } // Legalize the type. std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty); int ISD = TLI->InstructionOpcodeToISD(Opcode); // Because we don't have any legal vector operations, but the legal types, we // need to account for split vectors. unsigned NElts = LT.second.isVector() ? LT.second.getVectorNumElements() : 1; MVT::SimpleValueType SLT = LT.second.getScalarType().SimpleTy; switch (ISD) { case ISD::SHL: case ISD::SRL: case ISD::SRA: { if (SLT == MVT::i64) return get64BitInstrCost() * LT.first * NElts; // i32 return getFullRateInstrCost() * LT.first * NElts; } case ISD::ADD: case ISD::SUB: case ISD::AND: case ISD::OR: case ISD::XOR: { if (SLT == MVT::i64){ // and, or and xor are typically split into 2 VALU instructions. return 2 * getFullRateInstrCost() * LT.first * NElts; } return LT.first * NElts * getFullRateInstrCost(); } case ISD::MUL: { const int QuarterRateCost = getQuarterRateInstrCost(); if (SLT == MVT::i64) { const int FullRateCost = getFullRateInstrCost(); return (4 * QuarterRateCost + (2 * 2) * FullRateCost) * LT.first * NElts; } // i32 return QuarterRateCost * NElts * LT.first; } case ISD::FADD: case ISD::FSUB: case ISD::FMUL: if (SLT == MVT::f64) return LT.first * NElts * get64BitInstrCost(); if (SLT == MVT::f32 || SLT == MVT::f16) return LT.first * NElts * getFullRateInstrCost(); break; case ISD::FDIV: case ISD::FREM: // FIXME: frem should be handled separately. The fdiv in it is most of it, // but the current lowering is also not entirely correct. if (SLT == MVT::f64) { int Cost = 4 * get64BitInstrCost() + 7 * getQuarterRateInstrCost(); // Add cost of workaround. if (ST->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS) Cost += 3 * getFullRateInstrCost(); return LT.first * Cost * NElts; } // Assuming no fp32 denormals lowering. if (SLT == MVT::f32 || SLT == MVT::f16) { assert(!ST->hasFP32Denormals() && "will change when supported"); int Cost = 7 * getFullRateInstrCost() + 1 * getQuarterRateInstrCost(); return LT.first * NElts * Cost; } break; default: break; } return BaseT::getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info, Opd1PropInfo, Opd2PropInfo); } unsigned AMDGPUTTIImpl::getCFInstrCost(unsigned Opcode) { // XXX - For some reason this isn't called for switch. switch (Opcode) { case Instruction::Br: case Instruction::Ret: return 10; default: return BaseT::getCFInstrCost(Opcode); } } int AMDGPUTTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy, unsigned Index) { switch (Opcode) { case Instruction::ExtractElement: case Instruction::InsertElement: // Extracts are just reads of a subregister, so are free. Inserts are // considered free because we don't want to have any cost for scalarizing // operations, and we don't have to copy into a different register class. // Dynamic indexing isn't free and is best avoided. return Index == ~0u ? 2 : 0; default: return BaseT::getVectorInstrCost(Opcode, ValTy, Index); } } static bool isIntrinsicSourceOfDivergence(const TargetIntrinsicInfo *TII, const IntrinsicInst *I) { switch (I->getIntrinsicID()) { default: return false; case Intrinsic::not_intrinsic: // This means we have an intrinsic that isn't defined in // IntrinsicsAMDGPU.td break; case Intrinsic::amdgcn_workitem_id_x: case Intrinsic::amdgcn_workitem_id_y: case Intrinsic::amdgcn_workitem_id_z: case Intrinsic::amdgcn_interp_p1: case Intrinsic::amdgcn_interp_p2: case Intrinsic::amdgcn_mbcnt_hi: case Intrinsic::amdgcn_mbcnt_lo: case Intrinsic::r600_read_tidig_x: case Intrinsic::r600_read_tidig_y: case Intrinsic::r600_read_tidig_z: case Intrinsic::amdgcn_image_atomic_swap: case Intrinsic::amdgcn_image_atomic_add: case Intrinsic::amdgcn_image_atomic_sub: case Intrinsic::amdgcn_image_atomic_smin: case Intrinsic::amdgcn_image_atomic_umin: case Intrinsic::amdgcn_image_atomic_smax: case Intrinsic::amdgcn_image_atomic_umax: case Intrinsic::amdgcn_image_atomic_and: case Intrinsic::amdgcn_image_atomic_or: case Intrinsic::amdgcn_image_atomic_xor: case Intrinsic::amdgcn_image_atomic_inc: case Intrinsic::amdgcn_image_atomic_dec: case Intrinsic::amdgcn_image_atomic_cmpswap: case Intrinsic::amdgcn_buffer_atomic_swap: case Intrinsic::amdgcn_buffer_atomic_add: case Intrinsic::amdgcn_buffer_atomic_sub: case Intrinsic::amdgcn_buffer_atomic_smin: case Intrinsic::amdgcn_buffer_atomic_umin: case Intrinsic::amdgcn_buffer_atomic_smax: case Intrinsic::amdgcn_buffer_atomic_umax: case Intrinsic::amdgcn_buffer_atomic_and: case Intrinsic::amdgcn_buffer_atomic_or: case Intrinsic::amdgcn_buffer_atomic_xor: case Intrinsic::amdgcn_buffer_atomic_cmpswap: case Intrinsic::amdgcn_ps_live: return true; } StringRef Name = I->getCalledFunction()->getName(); switch (TII->lookupName((const char *)Name.bytes_begin(), Name.size())) { default: return false; case AMDGPUIntrinsic::SI_fs_interp: case AMDGPUIntrinsic::SI_fs_constant: return true; } } static bool isArgPassedInSGPR(const Argument *A) { const Function *F = A->getParent(); // Arguments to compute shaders are never a source of divergence. if (!AMDGPU::isShader(F->getCallingConv())) return true; // For non-compute shaders, SGPR inputs are marked with either inreg or byval. if (F->getAttributes().hasAttribute(A->getArgNo() + 1, Attribute::InReg) || F->getAttributes().hasAttribute(A->getArgNo() + 1, Attribute::ByVal)) return true; // Everything else is in VGPRs. return false; } /// /// \returns true if the result of the value could potentially be /// different across workitems in a wavefront. bool AMDGPUTTIImpl::isSourceOfDivergence(const Value *V) const { if (const Argument *A = dyn_cast<Argument>(V)) return !isArgPassedInSGPR(A); // Loads from the private address space are divergent, because threads // can execute the load instruction with the same inputs and get different // results. // // All other loads are not divergent, because if threads issue loads with the // same arguments, they will always get the same result. if (const LoadInst *Load = dyn_cast<LoadInst>(V)) return Load->getPointerAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS; // Atomics are divergent because they are executed sequentially: when an // atomic operation refers to the same address in each thread, then each // thread after the first sees the value written by the previous thread as // original value. if (isa<AtomicRMWInst>(V) || isa<AtomicCmpXchgInst>(V)) return true; if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(V)) { const TargetMachine &TM = getTLI()->getTargetMachine(); return isIntrinsicSourceOfDivergence(TM.getIntrinsicInfo(), Intrinsic); } // Assume all function calls are a source of divergence. if (isa<CallInst>(V) || isa<InvokeInst>(V)) return true; return false; }