//===-- SIISelLowering.cpp - SI DAG Lowering Implementation ---------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // /// \file /// \brief Custom DAG lowering for SI // //===----------------------------------------------------------------------===// #ifdef _MSC_VER // Provide M_PI. #define _USE_MATH_DEFINES #include <cmath> #endif #include "AMDGPU.h" #include "AMDGPUIntrinsicInfo.h" #include "AMDGPUSubtarget.h" #include "SIISelLowering.h" #include "SIInstrInfo.h" #include "SIMachineFunctionInfo.h" #include "SIRegisterInfo.h" #include "llvm/ADT/BitVector.h" #include "llvm/ADT/StringSwitch.h" #include "llvm/CodeGen/CallingConvLower.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/SelectionDAG.h" #include "llvm/IR/DiagnosticInfo.h" #include "llvm/IR/Function.h" using namespace llvm; // -amdgpu-fast-fdiv - Command line option to enable faster 2.5 ulp fdiv. static cl::opt<bool> EnableAMDGPUFastFDIV( "amdgpu-fast-fdiv", cl::desc("Enable faster 2.5 ulp fdiv"), cl::init(false)); static unsigned findFirstFreeSGPR(CCState &CCInfo) { unsigned NumSGPRs = AMDGPU::SGPR_32RegClass.getNumRegs(); for (unsigned Reg = 0; Reg < NumSGPRs; ++Reg) { if (!CCInfo.isAllocated(AMDGPU::SGPR0 + Reg)) { return AMDGPU::SGPR0 + Reg; } } llvm_unreachable("Cannot allocate sgpr"); } SITargetLowering::SITargetLowering(const TargetMachine &TM, const SISubtarget &STI) : AMDGPUTargetLowering(TM, STI) { addRegisterClass(MVT::i1, &AMDGPU::VReg_1RegClass); addRegisterClass(MVT::i64, &AMDGPU::SReg_64RegClass); addRegisterClass(MVT::i32, &AMDGPU::SReg_32RegClass); addRegisterClass(MVT::f32, &AMDGPU::VGPR_32RegClass); addRegisterClass(MVT::f64, &AMDGPU::VReg_64RegClass); addRegisterClass(MVT::v2i32, &AMDGPU::SReg_64RegClass); addRegisterClass(MVT::v2f32, &AMDGPU::VReg_64RegClass); addRegisterClass(MVT::v2i64, &AMDGPU::SReg_128RegClass); addRegisterClass(MVT::v2f64, &AMDGPU::SReg_128RegClass); addRegisterClass(MVT::v4i32, &AMDGPU::SReg_128RegClass); addRegisterClass(MVT::v4f32, &AMDGPU::VReg_128RegClass); addRegisterClass(MVT::v8i32, &AMDGPU::SReg_256RegClass); addRegisterClass(MVT::v8f32, &AMDGPU::VReg_256RegClass); addRegisterClass(MVT::v16i32, &AMDGPU::SReg_512RegClass); addRegisterClass(MVT::v16f32, &AMDGPU::VReg_512RegClass); computeRegisterProperties(STI.getRegisterInfo()); // We need to custom lower vector stores from local memory setOperationAction(ISD::LOAD, MVT::v2i32, Custom); setOperationAction(ISD::LOAD, MVT::v4i32, Custom); setOperationAction(ISD::LOAD, MVT::v8i32, Custom); setOperationAction(ISD::LOAD, MVT::v16i32, Custom); setOperationAction(ISD::LOAD, MVT::i1, Custom); setOperationAction(ISD::STORE, MVT::v2i32, Custom); setOperationAction(ISD::STORE, MVT::v4i32, Custom); setOperationAction(ISD::STORE, MVT::v8i32, Custom); setOperationAction(ISD::STORE, MVT::v16i32, Custom); setOperationAction(ISD::STORE, MVT::i1, Custom); setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); setOperationAction(ISD::FrameIndex, MVT::i32, Custom); setOperationAction(ISD::ConstantPool, MVT::v2i64, Expand); setOperationAction(ISD::SELECT, MVT::i1, Promote); setOperationAction(ISD::SELECT, MVT::i64, Custom); setOperationAction(ISD::SELECT, MVT::f64, Promote); AddPromotedToType(ISD::SELECT, MVT::f64, MVT::i64); setOperationAction(ISD::SELECT_CC, MVT::f32, Expand); setOperationAction(ISD::SELECT_CC, MVT::i32, Expand); setOperationAction(ISD::SELECT_CC, MVT::i64, Expand); setOperationAction(ISD::SELECT_CC, MVT::f64, Expand); setOperationAction(ISD::SELECT_CC, MVT::i1, Expand); setOperationAction(ISD::SETCC, MVT::i1, Promote); setOperationAction(ISD::SETCC, MVT::v2i1, Expand); setOperationAction(ISD::SETCC, MVT::v4i1, Expand); setOperationAction(ISD::TRUNCATE, MVT::v2i32, Expand); setOperationAction(ISD::FP_ROUND, MVT::v2f32, Expand); setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i1, Custom); setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i1, Custom); setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Custom); setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Custom); setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Custom); setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Custom); setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::Other, Custom); setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::f32, Custom); setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v4f32, Custom); setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); setOperationAction(ISD::BRCOND, MVT::Other, Custom); setOperationAction(ISD::BR_CC, MVT::i1, Expand); setOperationAction(ISD::BR_CC, MVT::i32, Expand); setOperationAction(ISD::BR_CC, MVT::i64, Expand); setOperationAction(ISD::BR_CC, MVT::f32, Expand); setOperationAction(ISD::BR_CC, MVT::f64, Expand); // We only support LOAD/STORE and vector manipulation ops for vectors // with > 4 elements. for (MVT VT : {MVT::v8i32, MVT::v8f32, MVT::v16i32, MVT::v16f32, MVT::v2i64, MVT::v2f64}) { for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) { switch (Op) { case ISD::LOAD: case ISD::STORE: case ISD::BUILD_VECTOR: case ISD::BITCAST: case ISD::EXTRACT_VECTOR_ELT: case ISD::INSERT_VECTOR_ELT: case ISD::INSERT_SUBVECTOR: case ISD::EXTRACT_SUBVECTOR: case ISD::SCALAR_TO_VECTOR: break; case ISD::CONCAT_VECTORS: setOperationAction(Op, VT, Custom); break; default: setOperationAction(Op, VT, Expand); break; } } } // Most operations are naturally 32-bit vector operations. We only support // load and store of i64 vectors, so promote v2i64 vector operations to v4i32. for (MVT Vec64 : { MVT::v2i64, MVT::v2f64 }) { setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote); AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v4i32); setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote); AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v4i32); setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote); AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v4i32); setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote); AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v4i32); } setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i32, Expand); setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8f32, Expand); setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i32, Expand); setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16f32, Expand); // BUFFER/FLAT_ATOMIC_CMP_SWAP on GCN GPUs needs input marshalling, // and output demarshalling setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom); setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Custom); // We can't return success/failure, only the old value, // let LLVM add the comparison setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i32, Expand); setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i64, Expand); if (getSubtarget()->hasFlatAddressSpace()) { setOperationAction(ISD::ADDRSPACECAST, MVT::i32, Custom); setOperationAction(ISD::ADDRSPACECAST, MVT::i64, Custom); } setOperationAction(ISD::BSWAP, MVT::i32, Legal); setOperationAction(ISD::BITREVERSE, MVT::i32, Legal); // On SI this is s_memtime and s_memrealtime on VI. setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Legal); setOperationAction(ISD::TRAP, MVT::Other, Custom); setOperationAction(ISD::FMINNUM, MVT::f64, Legal); setOperationAction(ISD::FMAXNUM, MVT::f64, Legal); if (Subtarget->getGeneration() >= SISubtarget::SEA_ISLANDS) { setOperationAction(ISD::FTRUNC, MVT::f64, Legal); setOperationAction(ISD::FCEIL, MVT::f64, Legal); setOperationAction(ISD::FRINT, MVT::f64, Legal); } setOperationAction(ISD::FFLOOR, MVT::f64, Legal); setOperationAction(ISD::FSIN, MVT::f32, Custom); setOperationAction(ISD::FCOS, MVT::f32, Custom); setOperationAction(ISD::FDIV, MVT::f32, Custom); setOperationAction(ISD::FDIV, MVT::f64, Custom); setTargetDAGCombine(ISD::FADD); setTargetDAGCombine(ISD::FSUB); setTargetDAGCombine(ISD::FMINNUM); setTargetDAGCombine(ISD::FMAXNUM); setTargetDAGCombine(ISD::SMIN); setTargetDAGCombine(ISD::SMAX); setTargetDAGCombine(ISD::UMIN); setTargetDAGCombine(ISD::UMAX); setTargetDAGCombine(ISD::SETCC); setTargetDAGCombine(ISD::AND); setTargetDAGCombine(ISD::OR); setTargetDAGCombine(ISD::UINT_TO_FP); setTargetDAGCombine(ISD::FCANONICALIZE); // All memory operations. Some folding on the pointer operand is done to help // matching the constant offsets in the addressing modes. setTargetDAGCombine(ISD::LOAD); setTargetDAGCombine(ISD::STORE); setTargetDAGCombine(ISD::ATOMIC_LOAD); setTargetDAGCombine(ISD::ATOMIC_STORE); setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP); setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS); setTargetDAGCombine(ISD::ATOMIC_SWAP); setTargetDAGCombine(ISD::ATOMIC_LOAD_ADD); setTargetDAGCombine(ISD::ATOMIC_LOAD_SUB); setTargetDAGCombine(ISD::ATOMIC_LOAD_AND); setTargetDAGCombine(ISD::ATOMIC_LOAD_OR); setTargetDAGCombine(ISD::ATOMIC_LOAD_XOR); setTargetDAGCombine(ISD::ATOMIC_LOAD_NAND); setTargetDAGCombine(ISD::ATOMIC_LOAD_MIN); setTargetDAGCombine(ISD::ATOMIC_LOAD_MAX); setTargetDAGCombine(ISD::ATOMIC_LOAD_UMIN); setTargetDAGCombine(ISD::ATOMIC_LOAD_UMAX); setSchedulingPreference(Sched::RegPressure); } const SISubtarget *SITargetLowering::getSubtarget() const { return static_cast<const SISubtarget *>(Subtarget); } //===----------------------------------------------------------------------===// // TargetLowering queries //===----------------------------------------------------------------------===// bool SITargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, const CallInst &CI, unsigned IntrID) const { switch (IntrID) { case Intrinsic::amdgcn_atomic_inc: case Intrinsic::amdgcn_atomic_dec: Info.opc = ISD::INTRINSIC_W_CHAIN; Info.memVT = MVT::getVT(CI.getType()); Info.ptrVal = CI.getOperand(0); Info.align = 0; Info.vol = false; Info.readMem = true; Info.writeMem = true; return true; default: return false; } } bool SITargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &, EVT) const { // SI has some legal vector types, but no legal vector operations. Say no // shuffles are legal in order to prefer scalarizing some vector operations. return false; } bool SITargetLowering::isLegalFlatAddressingMode(const AddrMode &AM) const { // Flat instructions do not have offsets, and only have the register // address. return AM.BaseOffs == 0 && (AM.Scale == 0 || AM.Scale == 1); } bool SITargetLowering::isLegalMUBUFAddressingMode(const AddrMode &AM) const { // MUBUF / MTBUF instructions have a 12-bit unsigned byte offset, and // additionally can do r + r + i with addr64. 32-bit has more addressing // mode options. Depending on the resource constant, it can also do // (i64 r0) + (i32 r1) * (i14 i). // // Private arrays end up using a scratch buffer most of the time, so also // assume those use MUBUF instructions. Scratch loads / stores are currently // implemented as mubuf instructions with offen bit set, so slightly // different than the normal addr64. if (!isUInt<12>(AM.BaseOffs)) return false; // FIXME: Since we can split immediate into soffset and immediate offset, // would it make sense to allow any immediate? switch (AM.Scale) { case 0: // r + i or just i, depending on HasBaseReg. return true; case 1: return true; // We have r + r or r + i. case 2: if (AM.HasBaseReg) { // Reject 2 * r + r. return false; } // Allow 2 * r as r + r // Or 2 * r + i is allowed as r + r + i. return true; default: // Don't allow n * r return false; } } bool SITargetLowering::isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM, Type *Ty, unsigned AS) const { // No global is ever allowed as a base. if (AM.BaseGV) return false; switch (AS) { case AMDGPUAS::GLOBAL_ADDRESS: { if (Subtarget->getGeneration() >= SISubtarget::VOLCANIC_ISLANDS) { // Assume the we will use FLAT for all global memory accesses // on VI. // FIXME: This assumption is currently wrong. On VI we still use // MUBUF instructions for the r + i addressing mode. As currently // implemented, the MUBUF instructions only work on buffer < 4GB. // It may be possible to support > 4GB buffers with MUBUF instructions, // by setting the stride value in the resource descriptor which would // increase the size limit to (stride * 4GB). However, this is risky, // because it has never been validated. return isLegalFlatAddressingMode(AM); } return isLegalMUBUFAddressingMode(AM); } case AMDGPUAS::CONSTANT_ADDRESS: { // If the offset isn't a multiple of 4, it probably isn't going to be // correctly aligned. if (AM.BaseOffs % 4 != 0) return isLegalMUBUFAddressingMode(AM); // There are no SMRD extloads, so if we have to do a small type access we // will use a MUBUF load. // FIXME?: We also need to do this if unaligned, but we don't know the // alignment here. if (DL.getTypeStoreSize(Ty) < 4) return isLegalMUBUFAddressingMode(AM); if (Subtarget->getGeneration() == SISubtarget::SOUTHERN_ISLANDS) { // SMRD instructions have an 8-bit, dword offset on SI. if (!isUInt<8>(AM.BaseOffs / 4)) return false; } else if (Subtarget->getGeneration() == SISubtarget::SEA_ISLANDS) { // On CI+, this can also be a 32-bit literal constant offset. If it fits // in 8-bits, it can use a smaller encoding. if (!isUInt<32>(AM.BaseOffs / 4)) return false; } else if (Subtarget->getGeneration() == SISubtarget::VOLCANIC_ISLANDS) { // On VI, these use the SMEM format and the offset is 20-bit in bytes. if (!isUInt<20>(AM.BaseOffs)) return false; } else llvm_unreachable("unhandled generation"); if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg. return true; if (AM.Scale == 1 && AM.HasBaseReg) return true; return false; } case AMDGPUAS::PRIVATE_ADDRESS: return isLegalMUBUFAddressingMode(AM); case AMDGPUAS::LOCAL_ADDRESS: case AMDGPUAS::REGION_ADDRESS: { // Basic, single offset DS instructions allow a 16-bit unsigned immediate // field. // XXX - If doing a 4-byte aligned 8-byte type access, we effectively have // an 8-bit dword offset but we don't know the alignment here. if (!isUInt<16>(AM.BaseOffs)) return false; if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg. return true; if (AM.Scale == 1 && AM.HasBaseReg) return true; return false; } case AMDGPUAS::FLAT_ADDRESS: case AMDGPUAS::UNKNOWN_ADDRESS_SPACE: // For an unknown address space, this usually means that this is for some // reason being used for pure arithmetic, and not based on some addressing // computation. We don't have instructions that compute pointers with any // addressing modes, so treat them as having no offset like flat // instructions. return isLegalFlatAddressingMode(AM); default: llvm_unreachable("unhandled address space"); } } bool SITargetLowering::allowsMisalignedMemoryAccesses(EVT VT, unsigned AddrSpace, unsigned Align, bool *IsFast) const { if (IsFast) *IsFast = false; // TODO: I think v3i32 should allow unaligned accesses on CI with DS_READ_B96, // which isn't a simple VT. if (!VT.isSimple() || VT == MVT::Other) return false; if (AddrSpace == AMDGPUAS::LOCAL_ADDRESS || AddrSpace == AMDGPUAS::REGION_ADDRESS) { // ds_read/write_b64 require 8-byte alignment, but we can do a 4 byte // aligned, 8 byte access in a single operation using ds_read2/write2_b32 // with adjacent offsets. bool AlignedBy4 = (Align % 4 == 0); if (IsFast) *IsFast = AlignedBy4; return AlignedBy4; } if (Subtarget->hasUnalignedBufferAccess()) { // If we have an uniform constant load, it still requires using a slow // buffer instruction if unaligned. if (IsFast) { *IsFast = (AddrSpace == AMDGPUAS::CONSTANT_ADDRESS) ? (Align % 4 == 0) : true; } return true; } // Smaller than dword value must be aligned. if (VT.bitsLT(MVT::i32)) return false; // 8.1.6 - For Dword or larger reads or writes, the two LSBs of the // byte-address are ignored, thus forcing Dword alignment. // This applies to private, global, and constant memory. if (IsFast) *IsFast = true; return VT.bitsGT(MVT::i32) && Align % 4 == 0; } EVT SITargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign, unsigned SrcAlign, bool IsMemset, bool ZeroMemset, bool MemcpyStrSrc, MachineFunction &MF) const { // FIXME: Should account for address space here. // The default fallback uses the private pointer size as a guess for a type to // use. Make sure we switch these to 64-bit accesses. if (Size >= 16 && DstAlign >= 4) // XXX: Should only do for global return MVT::v4i32; if (Size >= 8 && DstAlign >= 4) return MVT::v2i32; // Use the default. return MVT::Other; } static bool isFlatGlobalAddrSpace(unsigned AS) { return AS == AMDGPUAS::GLOBAL_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS || AS == AMDGPUAS::CONSTANT_ADDRESS; } bool SITargetLowering::isNoopAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const { return isFlatGlobalAddrSpace(SrcAS) && isFlatGlobalAddrSpace(DestAS); } bool SITargetLowering::isMemOpUniform(const SDNode *N) const { const MemSDNode *MemNode = cast<MemSDNode>(N); const Value *Ptr = MemNode->getMemOperand()->getValue(); // UndefValue means this is a load of a kernel input. These are uniform. // Sometimes LDS instructions have constant pointers. // If Ptr is null, then that means this mem operand contains a // PseudoSourceValue like GOT. if (!Ptr || isa<UndefValue>(Ptr) || isa<Argument>(Ptr) || isa<Constant>(Ptr) || isa<GlobalValue>(Ptr)) return true; const Instruction *I = dyn_cast<Instruction>(Ptr); return I && I->getMetadata("amdgpu.uniform"); } TargetLoweringBase::LegalizeTypeAction SITargetLowering::getPreferredVectorAction(EVT VT) const { if (VT.getVectorNumElements() != 1 && VT.getScalarType().bitsLE(MVT::i16)) return TypeSplitVector; return TargetLoweringBase::getPreferredVectorAction(VT); } bool SITargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm, Type *Ty) const { const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); return TII->isInlineConstant(Imm); } bool SITargetLowering::isTypeDesirableForOp(unsigned Op, EVT VT) const { // SimplifySetCC uses this function to determine whether or not it should // create setcc with i1 operands. We don't have instructions for i1 setcc. if (VT == MVT::i1 && Op == ISD::SETCC) return false; return TargetLowering::isTypeDesirableForOp(Op, VT); } SDValue SITargetLowering::LowerParameterPtr(SelectionDAG &DAG, const SDLoc &SL, SDValue Chain, unsigned Offset) const { const DataLayout &DL = DAG.getDataLayout(); MachineFunction &MF = DAG.getMachineFunction(); const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo(); unsigned InputPtrReg = TRI->getPreloadedValue(MF, SIRegisterInfo::KERNARG_SEGMENT_PTR); MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); MVT PtrVT = getPointerTy(DL, AMDGPUAS::CONSTANT_ADDRESS); SDValue BasePtr = DAG.getCopyFromReg(Chain, SL, MRI.getLiveInVirtReg(InputPtrReg), PtrVT); return DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr, DAG.getConstant(Offset, SL, PtrVT)); } SDValue SITargetLowering::LowerParameter(SelectionDAG &DAG, EVT VT, EVT MemVT, const SDLoc &SL, SDValue Chain, unsigned Offset, bool Signed) const { const DataLayout &DL = DAG.getDataLayout(); Type *Ty = VT.getTypeForEVT(*DAG.getContext()); MVT PtrVT = getPointerTy(DL, AMDGPUAS::CONSTANT_ADDRESS); PointerType *PtrTy = PointerType::get(Ty, AMDGPUAS::CONSTANT_ADDRESS); SDValue PtrOffset = DAG.getUNDEF(PtrVT); MachinePointerInfo PtrInfo(UndefValue::get(PtrTy)); unsigned Align = DL.getABITypeAlignment(Ty); ISD::LoadExtType ExtTy = Signed ? ISD::SEXTLOAD : ISD::ZEXTLOAD; if (MemVT.isFloatingPoint()) ExtTy = ISD::EXTLOAD; SDValue Ptr = LowerParameterPtr(DAG, SL, Chain, Offset); return DAG.getLoad(ISD::UNINDEXED, ExtTy, VT, SL, Chain, Ptr, PtrOffset, PtrInfo, MemVT, false, // isVolatile true, // isNonTemporal true, // isInvariant Align); // Alignment } SDValue SITargetLowering::LowerFormalArguments( SDValue Chain, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo(); MachineFunction &MF = DAG.getMachineFunction(); FunctionType *FType = MF.getFunction()->getFunctionType(); SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); const SISubtarget &ST = MF.getSubtarget<SISubtarget>(); if (Subtarget->isAmdHsaOS() && AMDGPU::isShader(CallConv)) { const Function *Fn = MF.getFunction(); DiagnosticInfoUnsupported NoGraphicsHSA( *Fn, "unsupported non-compute shaders with HSA", DL.getDebugLoc()); DAG.getContext()->diagnose(NoGraphicsHSA); return DAG.getEntryNode(); } // Create stack objects that are used for emitting debugger prologue if // "amdgpu-debugger-emit-prologue" attribute was specified. if (ST.debuggerEmitPrologue()) createDebuggerPrologueStackObjects(MF); SmallVector<ISD::InputArg, 16> Splits; BitVector Skipped(Ins.size()); for (unsigned i = 0, e = Ins.size(), PSInputNum = 0; i != e; ++i) { const ISD::InputArg &Arg = Ins[i]; // First check if it's a PS input addr if (CallConv == CallingConv::AMDGPU_PS && !Arg.Flags.isInReg() && !Arg.Flags.isByVal() && PSInputNum <= 15) { if (!Arg.Used && !Info->isPSInputAllocated(PSInputNum)) { // We can safely skip PS inputs Skipped.set(i); ++PSInputNum; continue; } Info->markPSInputAllocated(PSInputNum); if (Arg.Used) Info->PSInputEna |= 1 << PSInputNum; ++PSInputNum; } if (AMDGPU::isShader(CallConv)) { // Second split vertices into their elements if (Arg.VT.isVector()) { ISD::InputArg NewArg = Arg; NewArg.Flags.setSplit(); NewArg.VT = Arg.VT.getVectorElementType(); // We REALLY want the ORIGINAL number of vertex elements here, e.g. a // three or five element vertex only needs three or five registers, // NOT four or eight. Type *ParamType = FType->getParamType(Arg.getOrigArgIndex()); unsigned NumElements = ParamType->getVectorNumElements(); for (unsigned j = 0; j != NumElements; ++j) { Splits.push_back(NewArg); NewArg.PartOffset += NewArg.VT.getStoreSize(); } } else { Splits.push_back(Arg); } } } SmallVector<CCValAssign, 16> ArgLocs; CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, *DAG.getContext()); // At least one interpolation mode must be enabled or else the GPU will hang. // // Check PSInputAddr instead of PSInputEna. The idea is that if the user set // PSInputAddr, the user wants to enable some bits after the compilation // based on run-time states. Since we can't know what the final PSInputEna // will look like, so we shouldn't do anything here and the user should take // responsibility for the correct programming. // // Otherwise, the following restrictions apply: // - At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled. // - If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be // enabled too. if (CallConv == CallingConv::AMDGPU_PS && ((Info->getPSInputAddr() & 0x7F) == 0 || ((Info->getPSInputAddr() & 0xF) == 0 && Info->isPSInputAllocated(11)))) { CCInfo.AllocateReg(AMDGPU::VGPR0); CCInfo.AllocateReg(AMDGPU::VGPR1); Info->markPSInputAllocated(0); Info->PSInputEna |= 1; } if (!AMDGPU::isShader(CallConv)) { getOriginalFunctionArgs(DAG, DAG.getMachineFunction().getFunction(), Ins, Splits); assert(Info->hasWorkGroupIDX() && Info->hasWorkItemIDX()); } else { assert(!Info->hasPrivateSegmentBuffer() && !Info->hasDispatchPtr() && !Info->hasKernargSegmentPtr() && !Info->hasFlatScratchInit() && !Info->hasWorkGroupIDX() && !Info->hasWorkGroupIDY() && !Info->hasWorkGroupIDZ() && !Info->hasWorkGroupInfo() && !Info->hasWorkItemIDX() && !Info->hasWorkItemIDY() && !Info->hasWorkItemIDZ()); } // FIXME: How should these inputs interact with inreg / custom SGPR inputs? if (Info->hasPrivateSegmentBuffer()) { unsigned PrivateSegmentBufferReg = Info->addPrivateSegmentBuffer(*TRI); MF.addLiveIn(PrivateSegmentBufferReg, &AMDGPU::SReg_128RegClass); CCInfo.AllocateReg(PrivateSegmentBufferReg); } if (Info->hasDispatchPtr()) { unsigned DispatchPtrReg = Info->addDispatchPtr(*TRI); MF.addLiveIn(DispatchPtrReg, &AMDGPU::SReg_64RegClass); CCInfo.AllocateReg(DispatchPtrReg); } if (Info->hasQueuePtr()) { unsigned QueuePtrReg = Info->addQueuePtr(*TRI); MF.addLiveIn(QueuePtrReg, &AMDGPU::SReg_64RegClass); CCInfo.AllocateReg(QueuePtrReg); } if (Info->hasKernargSegmentPtr()) { unsigned InputPtrReg = Info->addKernargSegmentPtr(*TRI); MF.addLiveIn(InputPtrReg, &AMDGPU::SReg_64RegClass); CCInfo.AllocateReg(InputPtrReg); } if (Info->hasFlatScratchInit()) { unsigned FlatScratchInitReg = Info->addFlatScratchInit(*TRI); MF.addLiveIn(FlatScratchInitReg, &AMDGPU::SReg_64RegClass); CCInfo.AllocateReg(FlatScratchInitReg); } AnalyzeFormalArguments(CCInfo, Splits); SmallVector<SDValue, 16> Chains; for (unsigned i = 0, e = Ins.size(), ArgIdx = 0; i != e; ++i) { const ISD::InputArg &Arg = Ins[i]; if (Skipped[i]) { InVals.push_back(DAG.getUNDEF(Arg.VT)); continue; } CCValAssign &VA = ArgLocs[ArgIdx++]; MVT VT = VA.getLocVT(); if (VA.isMemLoc()) { VT = Ins[i].VT; EVT MemVT = Splits[i].VT; const unsigned Offset = Subtarget->getExplicitKernelArgOffset() + VA.getLocMemOffset(); // The first 36 bytes of the input buffer contains information about // thread group and global sizes. SDValue Arg = LowerParameter(DAG, VT, MemVT, DL, Chain, Offset, Ins[i].Flags.isSExt()); Chains.push_back(Arg.getValue(1)); auto *ParamTy = dyn_cast<PointerType>(FType->getParamType(Ins[i].getOrigArgIndex())); if (Subtarget->getGeneration() == SISubtarget::SOUTHERN_ISLANDS && ParamTy && ParamTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) { // On SI local pointers are just offsets into LDS, so they are always // less than 16-bits. On CI and newer they could potentially be // real pointers, so we can't guarantee their size. Arg = DAG.getNode(ISD::AssertZext, DL, Arg.getValueType(), Arg, DAG.getValueType(MVT::i16)); } InVals.push_back(Arg); Info->ABIArgOffset = Offset + MemVT.getStoreSize(); continue; } assert(VA.isRegLoc() && "Parameter must be in a register!"); unsigned Reg = VA.getLocReg(); if (VT == MVT::i64) { // For now assume it is a pointer Reg = TRI->getMatchingSuperReg(Reg, AMDGPU::sub0, &AMDGPU::SReg_64RegClass); Reg = MF.addLiveIn(Reg, &AMDGPU::SReg_64RegClass); SDValue Copy = DAG.getCopyFromReg(Chain, DL, Reg, VT); InVals.push_back(Copy); continue; } const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT); Reg = MF.addLiveIn(Reg, RC); SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, VT); if (Arg.VT.isVector()) { // Build a vector from the registers Type *ParamType = FType->getParamType(Arg.getOrigArgIndex()); unsigned NumElements = ParamType->getVectorNumElements(); SmallVector<SDValue, 4> Regs; Regs.push_back(Val); for (unsigned j = 1; j != NumElements; ++j) { Reg = ArgLocs[ArgIdx++].getLocReg(); Reg = MF.addLiveIn(Reg, RC); SDValue Copy = DAG.getCopyFromReg(Chain, DL, Reg, VT); Regs.push_back(Copy); } // Fill up the missing vector elements NumElements = Arg.VT.getVectorNumElements() - NumElements; Regs.append(NumElements, DAG.getUNDEF(VT)); InVals.push_back(DAG.getBuildVector(Arg.VT, DL, Regs)); continue; } InVals.push_back(Val); } // TODO: Add GridWorkGroupCount user SGPRs when used. For now with HSA we read // these from the dispatch pointer. // Start adding system SGPRs. if (Info->hasWorkGroupIDX()) { unsigned Reg = Info->addWorkGroupIDX(); MF.addLiveIn(Reg, &AMDGPU::SReg_32RegClass); CCInfo.AllocateReg(Reg); } if (Info->hasWorkGroupIDY()) { unsigned Reg = Info->addWorkGroupIDY(); MF.addLiveIn(Reg, &AMDGPU::SReg_32RegClass); CCInfo.AllocateReg(Reg); } if (Info->hasWorkGroupIDZ()) { unsigned Reg = Info->addWorkGroupIDZ(); MF.addLiveIn(Reg, &AMDGPU::SReg_32RegClass); CCInfo.AllocateReg(Reg); } if (Info->hasWorkGroupInfo()) { unsigned Reg = Info->addWorkGroupInfo(); MF.addLiveIn(Reg, &AMDGPU::SReg_32RegClass); CCInfo.AllocateReg(Reg); } if (Info->hasPrivateSegmentWaveByteOffset()) { // Scratch wave offset passed in system SGPR. unsigned PrivateSegmentWaveByteOffsetReg; if (AMDGPU::isShader(CallConv)) { PrivateSegmentWaveByteOffsetReg = findFirstFreeSGPR(CCInfo); Info->setPrivateSegmentWaveByteOffset(PrivateSegmentWaveByteOffsetReg); } else PrivateSegmentWaveByteOffsetReg = Info->addPrivateSegmentWaveByteOffset(); MF.addLiveIn(PrivateSegmentWaveByteOffsetReg, &AMDGPU::SGPR_32RegClass); CCInfo.AllocateReg(PrivateSegmentWaveByteOffsetReg); } // Now that we've figured out where the scratch register inputs are, see if // should reserve the arguments and use them directly. bool HasStackObjects = MF.getFrameInfo()->hasStackObjects(); // Record that we know we have non-spill stack objects so we don't need to // check all stack objects later. if (HasStackObjects) Info->setHasNonSpillStackObjects(true); if (ST.isAmdHsaOS()) { // TODO: Assume we will spill without optimizations. if (HasStackObjects) { // If we have stack objects, we unquestionably need the private buffer // resource. For the HSA ABI, this will be the first 4 user SGPR // inputs. We can reserve those and use them directly. unsigned PrivateSegmentBufferReg = TRI->getPreloadedValue( MF, SIRegisterInfo::PRIVATE_SEGMENT_BUFFER); Info->setScratchRSrcReg(PrivateSegmentBufferReg); unsigned PrivateSegmentWaveByteOffsetReg = TRI->getPreloadedValue( MF, SIRegisterInfo::PRIVATE_SEGMENT_WAVE_BYTE_OFFSET); Info->setScratchWaveOffsetReg(PrivateSegmentWaveByteOffsetReg); } else { unsigned ReservedBufferReg = TRI->reservedPrivateSegmentBufferReg(MF); unsigned ReservedOffsetReg = TRI->reservedPrivateSegmentWaveByteOffsetReg(MF); // We tentatively reserve the last registers (skipping the last two // which may contain VCC). After register allocation, we'll replace // these with the ones immediately after those which were really // allocated. In the prologue copies will be inserted from the argument // to these reserved registers. Info->setScratchRSrcReg(ReservedBufferReg); Info->setScratchWaveOffsetReg(ReservedOffsetReg); } } else { unsigned ReservedBufferReg = TRI->reservedPrivateSegmentBufferReg(MF); // Without HSA, relocations are used for the scratch pointer and the // buffer resource setup is always inserted in the prologue. Scratch wave // offset is still in an input SGPR. Info->setScratchRSrcReg(ReservedBufferReg); if (HasStackObjects) { unsigned ScratchWaveOffsetReg = TRI->getPreloadedValue( MF, SIRegisterInfo::PRIVATE_SEGMENT_WAVE_BYTE_OFFSET); Info->setScratchWaveOffsetReg(ScratchWaveOffsetReg); } else { unsigned ReservedOffsetReg = TRI->reservedPrivateSegmentWaveByteOffsetReg(MF); Info->setScratchWaveOffsetReg(ReservedOffsetReg); } } if (Info->hasWorkItemIDX()) { unsigned Reg = TRI->getPreloadedValue(MF, SIRegisterInfo::WORKITEM_ID_X); MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass); CCInfo.AllocateReg(Reg); } if (Info->hasWorkItemIDY()) { unsigned Reg = TRI->getPreloadedValue(MF, SIRegisterInfo::WORKITEM_ID_Y); MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass); CCInfo.AllocateReg(Reg); } if (Info->hasWorkItemIDZ()) { unsigned Reg = TRI->getPreloadedValue(MF, SIRegisterInfo::WORKITEM_ID_Z); MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass); CCInfo.AllocateReg(Reg); } if (Chains.empty()) return Chain; return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); } SDValue SITargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl<ISD::OutputArg> &Outs, const SmallVectorImpl<SDValue> &OutVals, const SDLoc &DL, SelectionDAG &DAG) const { MachineFunction &MF = DAG.getMachineFunction(); SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); if (!AMDGPU::isShader(CallConv)) return AMDGPUTargetLowering::LowerReturn(Chain, CallConv, isVarArg, Outs, OutVals, DL, DAG); Info->setIfReturnsVoid(Outs.size() == 0); SmallVector<ISD::OutputArg, 48> Splits; SmallVector<SDValue, 48> SplitVals; // Split vectors into their elements. for (unsigned i = 0, e = Outs.size(); i != e; ++i) { const ISD::OutputArg &Out = Outs[i]; if (Out.VT.isVector()) { MVT VT = Out.VT.getVectorElementType(); ISD::OutputArg NewOut = Out; NewOut.Flags.setSplit(); NewOut.VT = VT; // We want the original number of vector elements here, e.g. // three or five, not four or eight. unsigned NumElements = Out.ArgVT.getVectorNumElements(); for (unsigned j = 0; j != NumElements; ++j) { SDValue Elem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, OutVals[i], DAG.getConstant(j, DL, MVT::i32)); SplitVals.push_back(Elem); Splits.push_back(NewOut); NewOut.PartOffset += NewOut.VT.getStoreSize(); } } else { SplitVals.push_back(OutVals[i]); Splits.push_back(Out); } } // CCValAssign - represent the assignment of the return value to a location. SmallVector<CCValAssign, 48> RVLocs; // CCState - Info about the registers and stack slots. CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, *DAG.getContext()); // Analyze outgoing return values. AnalyzeReturn(CCInfo, Splits); SDValue Flag; SmallVector<SDValue, 48> RetOps; RetOps.push_back(Chain); // Operand #0 = Chain (updated below) // Copy the result values into the output registers. for (unsigned i = 0, realRVLocIdx = 0; i != RVLocs.size(); ++i, ++realRVLocIdx) { CCValAssign &VA = RVLocs[i]; assert(VA.isRegLoc() && "Can only return in registers!"); SDValue Arg = SplitVals[realRVLocIdx]; // Copied from other backends. switch (VA.getLocInfo()) { default: llvm_unreachable("Unknown loc info!"); case CCValAssign::Full: break; case CCValAssign::BCvt: Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg); break; } Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Arg, Flag); Flag = Chain.getValue(1); RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); } // Update chain and glue. RetOps[0] = Chain; if (Flag.getNode()) RetOps.push_back(Flag); unsigned Opc = Info->returnsVoid() ? AMDGPUISD::ENDPGM : AMDGPUISD::RETURN; return DAG.getNode(Opc, DL, MVT::Other, RetOps); } unsigned SITargetLowering::getRegisterByName(const char* RegName, EVT VT, SelectionDAG &DAG) const { unsigned Reg = StringSwitch<unsigned>(RegName) .Case("m0", AMDGPU::M0) .Case("exec", AMDGPU::EXEC) .Case("exec_lo", AMDGPU::EXEC_LO) .Case("exec_hi", AMDGPU::EXEC_HI) .Case("flat_scratch", AMDGPU::FLAT_SCR) .Case("flat_scratch_lo", AMDGPU::FLAT_SCR_LO) .Case("flat_scratch_hi", AMDGPU::FLAT_SCR_HI) .Default(AMDGPU::NoRegister); if (Reg == AMDGPU::NoRegister) { report_fatal_error(Twine("invalid register name \"" + StringRef(RegName) + "\".")); } if (Subtarget->getGeneration() == SISubtarget::SOUTHERN_ISLANDS && Subtarget->getRegisterInfo()->regsOverlap(Reg, AMDGPU::FLAT_SCR)) { report_fatal_error(Twine("invalid register \"" + StringRef(RegName) + "\" for subtarget.")); } switch (Reg) { case AMDGPU::M0: case AMDGPU::EXEC_LO: case AMDGPU::EXEC_HI: case AMDGPU::FLAT_SCR_LO: case AMDGPU::FLAT_SCR_HI: if (VT.getSizeInBits() == 32) return Reg; break; case AMDGPU::EXEC: case AMDGPU::FLAT_SCR: if (VT.getSizeInBits() == 64) return Reg; break; default: llvm_unreachable("missing register type checking"); } report_fatal_error(Twine("invalid type for register \"" + StringRef(RegName) + "\".")); } // If kill is not the last instruction, split the block so kill is always a // proper terminator. MachineBasicBlock *SITargetLowering::splitKillBlock(MachineInstr &MI, MachineBasicBlock *BB) const { const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); MachineBasicBlock::iterator SplitPoint(&MI); ++SplitPoint; if (SplitPoint == BB->end()) { // Don't bother with a new block. MI.setDesc(TII->get(AMDGPU::SI_KILL_TERMINATOR)); return BB; } MachineFunction *MF = BB->getParent(); MachineBasicBlock *SplitBB = MF->CreateMachineBasicBlock(BB->getBasicBlock()); SmallSet<unsigned, 8> SplitDefRegs; for (auto I = SplitPoint, E = BB->end(); I != E; ++I) { for (MachineOperand &Def : I->defs()) SplitDefRegs.insert(Def.getReg()); } // Fix the block phi references to point to the new block for the defs in the // second piece of the block. for (MachineBasicBlock *Succ : BB->successors()) { for (MachineInstr &MI : *Succ) { if (!MI.isPHI()) break; for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { unsigned IncomingReg = MI.getOperand(I).getReg(); MachineOperand &FromBB = MI.getOperand(I + 1); if (BB == FromBB.getMBB()) { if (SplitDefRegs.count(IncomingReg)) FromBB.setMBB(SplitBB); break; } } } } MF->insert(++MachineFunction::iterator(BB), SplitBB); SplitBB->splice(SplitBB->begin(), BB, SplitPoint, BB->end()); SplitBB->transferSuccessors(BB); BB->addSuccessor(SplitBB); MI.setDesc(TII->get(AMDGPU::SI_KILL_TERMINATOR)); return SplitBB; } MachineBasicBlock *SITargetLowering::EmitInstrWithCustomInserter( MachineInstr &MI, MachineBasicBlock *BB) const { switch (MI.getOpcode()) { case AMDGPU::SI_INIT_M0: { const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); BuildMI(*BB, MI.getIterator(), MI.getDebugLoc(), TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0) .addOperand(MI.getOperand(0)); MI.eraseFromParent(); break; } case AMDGPU::BRANCH: return BB; case AMDGPU::GET_GROUPSTATICSIZE: { const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); MachineFunction *MF = BB->getParent(); SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>(); DebugLoc DL = MI.getDebugLoc(); BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_MOVK_I32)) .addOperand(MI.getOperand(0)) .addImm(MFI->LDSSize); MI.eraseFromParent(); return BB; } case AMDGPU::SI_KILL: return splitKillBlock(MI, BB); default: return AMDGPUTargetLowering::EmitInstrWithCustomInserter(MI, BB); } return BB; } bool SITargetLowering::enableAggressiveFMAFusion(EVT VT) const { // This currently forces unfolding various combinations of fsub into fma with // free fneg'd operands. As long as we have fast FMA (controlled by // isFMAFasterThanFMulAndFAdd), we should perform these. // When fma is quarter rate, for f64 where add / sub are at best half rate, // most of these combines appear to be cycle neutral but save on instruction // count / code size. return true; } EVT SITargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &Ctx, EVT VT) const { if (!VT.isVector()) { return MVT::i1; } return EVT::getVectorVT(Ctx, MVT::i1, VT.getVectorNumElements()); } MVT SITargetLowering::getScalarShiftAmountTy(const DataLayout &, EVT) const { return MVT::i32; } // Answering this is somewhat tricky and depends on the specific device which // have different rates for fma or all f64 operations. // // v_fma_f64 and v_mul_f64 always take the same number of cycles as each other // regardless of which device (although the number of cycles differs between // devices), so it is always profitable for f64. // // v_fma_f32 takes 4 or 16 cycles depending on the device, so it is profitable // only on full rate devices. Normally, we should prefer selecting v_mad_f32 // which we can always do even without fused FP ops since it returns the same // result as the separate operations and since it is always full // rate. Therefore, we lie and report that it is not faster for f32. v_mad_f32 // however does not support denormals, so we do report fma as faster if we have // a fast fma device and require denormals. // bool SITargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const { VT = VT.getScalarType(); if (!VT.isSimple()) return false; switch (VT.getSimpleVT().SimpleTy) { case MVT::f32: // This is as fast on some subtargets. However, we always have full rate f32 // mad available which returns the same result as the separate operations // which we should prefer over fma. We can't use this if we want to support // denormals, so only report this in these cases. return Subtarget->hasFP32Denormals() && Subtarget->hasFastFMAF32(); case MVT::f64: return true; default: break; } return false; } //===----------------------------------------------------------------------===// // Custom DAG Lowering Operations //===----------------------------------------------------------------------===// SDValue SITargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { switch (Op.getOpcode()) { default: return AMDGPUTargetLowering::LowerOperation(Op, DAG); case ISD::FrameIndex: return LowerFrameIndex(Op, DAG); case ISD::BRCOND: return LowerBRCOND(Op, DAG); case ISD::LOAD: { SDValue Result = LowerLOAD(Op, DAG); assert((!Result.getNode() || Result.getNode()->getNumValues() == 2) && "Load should return a value and a chain"); return Result; } case ISD::FSIN: case ISD::FCOS: return LowerTrig(Op, DAG); case ISD::SELECT: return LowerSELECT(Op, DAG); case ISD::FDIV: return LowerFDIV(Op, DAG); case ISD::ATOMIC_CMP_SWAP: return LowerATOMIC_CMP_SWAP(Op, DAG); case ISD::STORE: return LowerSTORE(Op, DAG); case ISD::GlobalAddress: { MachineFunction &MF = DAG.getMachineFunction(); SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); return LowerGlobalAddress(MFI, Op, DAG); } case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); case ISD::INTRINSIC_W_CHAIN: return LowerINTRINSIC_W_CHAIN(Op, DAG); case ISD::INTRINSIC_VOID: return LowerINTRINSIC_VOID(Op, DAG); case ISD::ADDRSPACECAST: return lowerADDRSPACECAST(Op, DAG); case ISD::TRAP: return lowerTRAP(Op, DAG); } return SDValue(); } /// \brief Helper function for LowerBRCOND static SDNode *findUser(SDValue Value, unsigned Opcode) { SDNode *Parent = Value.getNode(); for (SDNode::use_iterator I = Parent->use_begin(), E = Parent->use_end(); I != E; ++I) { if (I.getUse().get() != Value) continue; if (I->getOpcode() == Opcode) return *I; } return nullptr; } SDValue SITargetLowering::LowerFrameIndex(SDValue Op, SelectionDAG &DAG) const { SDLoc SL(Op); FrameIndexSDNode *FINode = cast<FrameIndexSDNode>(Op); unsigned FrameIndex = FINode->getIndex(); // A FrameIndex node represents a 32-bit offset into scratch memory. If the // high bit of a frame index offset were to be set, this would mean that it // represented an offset of ~2GB * 64 = ~128GB from the start of the scratch // buffer, with 64 being the number of threads per wave. // // The maximum private allocation for the entire GPU is 4G, and we are // concerned with the largest the index could ever be for an individual // workitem. This will occur with the minmum dispatch size. If a program // requires more, the dispatch size will be reduced. // // With this limit, we can mark the high bit of the FrameIndex node as known // zero, which is important, because it means in most situations we can prove // that values derived from FrameIndex nodes are non-negative. This enables us // to take advantage of more addressing modes when accessing scratch buffers, // since for scratch reads/writes, the register offset must always be // positive. uint64_t MaxGPUAlloc = UINT64_C(4) * 1024 * 1024 * 1024; // XXX - It is unclear if partial dispatch works. Assume it works at half wave // granularity. It is probably a full wave. uint64_t MinGranularity = 32; unsigned KnownBits = Log2_64(MaxGPUAlloc / MinGranularity); EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), KnownBits); SDValue TFI = DAG.getTargetFrameIndex(FrameIndex, MVT::i32); return DAG.getNode(ISD::AssertZext, SL, MVT::i32, TFI, DAG.getValueType(ExtVT)); } bool SITargetLowering::isCFIntrinsic(const SDNode *Intr) const { if (Intr->getOpcode() != ISD::INTRINSIC_W_CHAIN) return false; switch (cast<ConstantSDNode>(Intr->getOperand(1))->getZExtValue()) { default: return false; case AMDGPUIntrinsic::amdgcn_if: case AMDGPUIntrinsic::amdgcn_else: case AMDGPUIntrinsic::amdgcn_break: case AMDGPUIntrinsic::amdgcn_if_break: case AMDGPUIntrinsic::amdgcn_else_break: case AMDGPUIntrinsic::amdgcn_loop: case AMDGPUIntrinsic::amdgcn_end_cf: return true; } } void SITargetLowering::createDebuggerPrologueStackObjects( MachineFunction &MF) const { // Create stack objects that are used for emitting debugger prologue. // // Debugger prologue writes work group IDs and work item IDs to scratch memory // at fixed location in the following format: // offset 0: work group ID x // offset 4: work group ID y // offset 8: work group ID z // offset 16: work item ID x // offset 20: work item ID y // offset 24: work item ID z SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); int ObjectIdx = 0; // For each dimension: for (unsigned i = 0; i < 3; ++i) { // Create fixed stack object for work group ID. ObjectIdx = MF.getFrameInfo()->CreateFixedObject(4, i * 4, true); Info->setDebuggerWorkGroupIDStackObjectIndex(i, ObjectIdx); // Create fixed stack object for work item ID. ObjectIdx = MF.getFrameInfo()->CreateFixedObject(4, i * 4 + 16, true); Info->setDebuggerWorkItemIDStackObjectIndex(i, ObjectIdx); } } /// This transforms the control flow intrinsics to get the branch destination as /// last parameter, also switches branch target with BR if the need arise SDValue SITargetLowering::LowerBRCOND(SDValue BRCOND, SelectionDAG &DAG) const { SDLoc DL(BRCOND); SDNode *Intr = BRCOND.getOperand(1).getNode(); SDValue Target = BRCOND.getOperand(2); SDNode *BR = nullptr; SDNode *SetCC = nullptr; if (Intr->getOpcode() == ISD::SETCC) { // As long as we negate the condition everything is fine SetCC = Intr; Intr = SetCC->getOperand(0).getNode(); } else { // Get the target from BR if we don't negate the condition BR = findUser(BRCOND, ISD::BR); Target = BR->getOperand(1); } if (!isCFIntrinsic(Intr)) { // This is a uniform branch so we don't need to legalize. return BRCOND; } assert(!SetCC || (SetCC->getConstantOperandVal(1) == 1 && cast<CondCodeSDNode>(SetCC->getOperand(2).getNode())->get() == ISD::SETNE)); // Build the result and ArrayRef<EVT> Res(Intr->value_begin() + 1, Intr->value_end()); // operands of the new intrinsic call SmallVector<SDValue, 4> Ops; Ops.push_back(BRCOND.getOperand(0)); Ops.append(Intr->op_begin() + 1, Intr->op_end()); Ops.push_back(Target); // build the new intrinsic call SDNode *Result = DAG.getNode( Res.size() > 1 ? ISD::INTRINSIC_W_CHAIN : ISD::INTRINSIC_VOID, DL, DAG.getVTList(Res), Ops).getNode(); if (BR) { // Give the branch instruction our target SDValue Ops[] = { BR->getOperand(0), BRCOND.getOperand(2) }; SDValue NewBR = DAG.getNode(ISD::BR, DL, BR->getVTList(), Ops); DAG.ReplaceAllUsesWith(BR, NewBR.getNode()); BR = NewBR.getNode(); } SDValue Chain = SDValue(Result, Result->getNumValues() - 1); // Copy the intrinsic results to registers for (unsigned i = 1, e = Intr->getNumValues() - 1; i != e; ++i) { SDNode *CopyToReg = findUser(SDValue(Intr, i), ISD::CopyToReg); if (!CopyToReg) continue; Chain = DAG.getCopyToReg( Chain, DL, CopyToReg->getOperand(1), SDValue(Result, i - 1), SDValue()); DAG.ReplaceAllUsesWith(SDValue(CopyToReg, 0), CopyToReg->getOperand(0)); } // Remove the old intrinsic from the chain DAG.ReplaceAllUsesOfValueWith( SDValue(Intr, Intr->getNumValues() - 1), Intr->getOperand(0)); return Chain; } SDValue SITargetLowering::getSegmentAperture(unsigned AS, SelectionDAG &DAG) const { SDLoc SL; MachineFunction &MF = DAG.getMachineFunction(); SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); unsigned UserSGPR = Info->getQueuePtrUserSGPR(); assert(UserSGPR != AMDGPU::NoRegister); SDValue QueuePtr = CreateLiveInRegister( DAG, &AMDGPU::SReg_64RegClass, UserSGPR, MVT::i64); // Offset into amd_queue_t for group_segment_aperture_base_hi / // private_segment_aperture_base_hi. uint32_t StructOffset = (AS == AMDGPUAS::LOCAL_ADDRESS) ? 0x40 : 0x44; SDValue Ptr = DAG.getNode(ISD::ADD, SL, MVT::i64, QueuePtr, DAG.getConstant(StructOffset, SL, MVT::i64)); // TODO: Use custom target PseudoSourceValue. // TODO: We should use the value from the IR intrinsic call, but it might not // be available and how do we get it? Value *V = UndefValue::get(PointerType::get(Type::getInt8Ty(*DAG.getContext()), AMDGPUAS::CONSTANT_ADDRESS)); MachinePointerInfo PtrInfo(V, StructOffset); return DAG.getLoad(MVT::i32, SL, QueuePtr.getValue(1), Ptr, PtrInfo, false, false, true, MinAlign(64, StructOffset)); } SDValue SITargetLowering::lowerADDRSPACECAST(SDValue Op, SelectionDAG &DAG) const { SDLoc SL(Op); const AddrSpaceCastSDNode *ASC = cast<AddrSpaceCastSDNode>(Op); SDValue Src = ASC->getOperand(0); // FIXME: Really support non-0 null pointers. SDValue SegmentNullPtr = DAG.getConstant(-1, SL, MVT::i32); SDValue FlatNullPtr = DAG.getConstant(0, SL, MVT::i64); // flat -> local/private if (ASC->getSrcAddressSpace() == AMDGPUAS::FLAT_ADDRESS) { if (ASC->getDestAddressSpace() == AMDGPUAS::LOCAL_ADDRESS || ASC->getDestAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS) { SDValue NonNull = DAG.getSetCC(SL, MVT::i1, Src, FlatNullPtr, ISD::SETNE); SDValue Ptr = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, Src); return DAG.getNode(ISD::SELECT, SL, MVT::i32, NonNull, Ptr, SegmentNullPtr); } } // local/private -> flat if (ASC->getDestAddressSpace() == AMDGPUAS::FLAT_ADDRESS) { if (ASC->getSrcAddressSpace() == AMDGPUAS::LOCAL_ADDRESS || ASC->getSrcAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS) { SDValue NonNull = DAG.getSetCC(SL, MVT::i1, Src, SegmentNullPtr, ISD::SETNE); SDValue Aperture = getSegmentAperture(ASC->getSrcAddressSpace(), DAG); SDValue CvtPtr = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, Src, Aperture); return DAG.getNode(ISD::SELECT, SL, MVT::i64, NonNull, DAG.getNode(ISD::BITCAST, SL, MVT::i64, CvtPtr), FlatNullPtr); } } // global <-> flat are no-ops and never emitted. const MachineFunction &MF = DAG.getMachineFunction(); DiagnosticInfoUnsupported InvalidAddrSpaceCast( *MF.getFunction(), "invalid addrspacecast", SL.getDebugLoc()); DAG.getContext()->diagnose(InvalidAddrSpaceCast); return DAG.getUNDEF(ASC->getValueType(0)); } static bool shouldEmitGOTReloc(const GlobalValue *GV, const TargetMachine &TM) { return GV->getType()->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS && !TM.shouldAssumeDSOLocal(*GV->getParent(), GV); } bool SITargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { // We can fold offsets for anything that doesn't require a GOT relocation. return GA->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS && !shouldEmitGOTReloc(GA->getGlobal(), getTargetMachine()); } static SDValue buildPCRelGlobalAddress(SelectionDAG &DAG, const GlobalValue *GV, SDLoc DL, unsigned Offset, EVT PtrVT, unsigned GAFlags = SIInstrInfo::MO_NONE) { // In order to support pc-relative addressing, the PC_ADD_REL_OFFSET SDNode is // lowered to the following code sequence: // s_getpc_b64 s[0:1] // s_add_u32 s0, s0, $symbol // s_addc_u32 s1, s1, 0 // // s_getpc_b64 returns the address of the s_add_u32 instruction and then // a fixup or relocation is emitted to replace $symbol with a literal // constant, which is a pc-relative offset from the encoding of the $symbol // operand to the global variable. // // What we want here is an offset from the value returned by s_getpc // (which is the address of the s_add_u32 instruction) to the global // variable, but since the encoding of $symbol starts 4 bytes after the start // of the s_add_u32 instruction, we end up with an offset that is 4 bytes too // small. This requires us to add 4 to the global variable offset in order to // compute the correct address. SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, Offset + 4, GAFlags); return DAG.getNode(AMDGPUISD::PC_ADD_REL_OFFSET, DL, PtrVT, GA); } SDValue SITargetLowering::LowerGlobalAddress(AMDGPUMachineFunction *MFI, SDValue Op, SelectionDAG &DAG) const { GlobalAddressSDNode *GSD = cast<GlobalAddressSDNode>(Op); if (GSD->getAddressSpace() != AMDGPUAS::CONSTANT_ADDRESS && GSD->getAddressSpace() != AMDGPUAS::GLOBAL_ADDRESS) return AMDGPUTargetLowering::LowerGlobalAddress(MFI, Op, DAG); SDLoc DL(GSD); const GlobalValue *GV = GSD->getGlobal(); EVT PtrVT = Op.getValueType(); if (!shouldEmitGOTReloc(GV, getTargetMachine())) return buildPCRelGlobalAddress(DAG, GV, DL, GSD->getOffset(), PtrVT); SDValue GOTAddr = buildPCRelGlobalAddress(DAG, GV, DL, 0, PtrVT, SIInstrInfo::MO_GOTPCREL); Type *Ty = PtrVT.getTypeForEVT(*DAG.getContext()); PointerType *PtrTy = PointerType::get(Ty, AMDGPUAS::CONSTANT_ADDRESS); const DataLayout &DataLayout = DAG.getDataLayout(); unsigned Align = DataLayout.getABITypeAlignment(PtrTy); // FIXME: Use a PseudoSourceValue once those can be assigned an address space. MachinePointerInfo PtrInfo(UndefValue::get(PtrTy)); return DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), GOTAddr, PtrInfo, false, false, true, Align); } SDValue SITargetLowering::lowerTRAP(SDValue Op, SelectionDAG &DAG) const { const MachineFunction &MF = DAG.getMachineFunction(); DiagnosticInfoUnsupported NoTrap(*MF.getFunction(), "trap handler not supported", Op.getDebugLoc(), DS_Warning); DAG.getContext()->diagnose(NoTrap); // Emit s_endpgm. // FIXME: This should really be selected to s_trap, but that requires // setting up the trap handler for it o do anything. return DAG.getNode(AMDGPUISD::ENDPGM, SDLoc(Op), MVT::Other, Op.getOperand(0)); } SDValue SITargetLowering::copyToM0(SelectionDAG &DAG, SDValue Chain, const SDLoc &DL, SDValue V) const { // We can't use S_MOV_B32 directly, because there is no way to specify m0 as // the destination register. // // We can't use CopyToReg, because MachineCSE won't combine COPY instructions, // so we will end up with redundant moves to m0. // // We use a pseudo to ensure we emit s_mov_b32 with m0 as the direct result. // A Null SDValue creates a glue result. SDNode *M0 = DAG.getMachineNode(AMDGPU::SI_INIT_M0, DL, MVT::Other, MVT::Glue, V, Chain); return SDValue(M0, 0); } SDValue SITargetLowering::lowerImplicitZextParam(SelectionDAG &DAG, SDValue Op, MVT VT, unsigned Offset) const { SDLoc SL(Op); SDValue Param = LowerParameter(DAG, MVT::i32, MVT::i32, SL, DAG.getEntryNode(), Offset, false); // The local size values will have the hi 16-bits as zero. return DAG.getNode(ISD::AssertZext, SL, MVT::i32, Param, DAG.getValueType(VT)); } static SDValue emitNonHSAIntrinsicError(SelectionDAG& DAG, SDLoc DL, EVT VT) { DiagnosticInfoUnsupported BadIntrin(*DAG.getMachineFunction().getFunction(), "non-hsa intrinsic with hsa target", DL.getDebugLoc()); DAG.getContext()->diagnose(BadIntrin); return DAG.getUNDEF(VT); } static SDValue emitRemovedIntrinsicError(SelectionDAG& DAG, SDLoc DL, EVT VT) { DiagnosticInfoUnsupported BadIntrin(*DAG.getMachineFunction().getFunction(), "intrinsic not supported on subtarget", DL.getDebugLoc()); DAG.getContext()->diagnose(BadIntrin); return DAG.getUNDEF(VT); } SDValue SITargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const { MachineFunction &MF = DAG.getMachineFunction(); auto MFI = MF.getInfo<SIMachineFunctionInfo>(); const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo(); EVT VT = Op.getValueType(); SDLoc DL(Op); unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); // TODO: Should this propagate fast-math-flags? switch (IntrinsicID) { case Intrinsic::amdgcn_dispatch_ptr: case Intrinsic::amdgcn_queue_ptr: { if (!Subtarget->isAmdHsaOS()) { DiagnosticInfoUnsupported BadIntrin( *MF.getFunction(), "unsupported hsa intrinsic without hsa target", DL.getDebugLoc()); DAG.getContext()->diagnose(BadIntrin); return DAG.getUNDEF(VT); } auto Reg = IntrinsicID == Intrinsic::amdgcn_dispatch_ptr ? SIRegisterInfo::DISPATCH_PTR : SIRegisterInfo::QUEUE_PTR; return CreateLiveInRegister(DAG, &AMDGPU::SReg_64RegClass, TRI->getPreloadedValue(MF, Reg), VT); } case Intrinsic::amdgcn_implicitarg_ptr: { unsigned offset = getImplicitParameterOffset(MFI, FIRST_IMPLICIT); return LowerParameterPtr(DAG, DL, DAG.getEntryNode(), offset); } case Intrinsic::amdgcn_kernarg_segment_ptr: { unsigned Reg = TRI->getPreloadedValue(MF, SIRegisterInfo::KERNARG_SEGMENT_PTR); return CreateLiveInRegister(DAG, &AMDGPU::SReg_64RegClass, Reg, VT); } case Intrinsic::amdgcn_rcp: return DAG.getNode(AMDGPUISD::RCP, DL, VT, Op.getOperand(1)); case Intrinsic::amdgcn_rsq: case AMDGPUIntrinsic::AMDGPU_rsq: // Legacy name return DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1)); case Intrinsic::amdgcn_rsq_legacy: { if (Subtarget->getGeneration() >= SISubtarget::VOLCANIC_ISLANDS) return emitRemovedIntrinsicError(DAG, DL, VT); return DAG.getNode(AMDGPUISD::RSQ_LEGACY, DL, VT, Op.getOperand(1)); } case Intrinsic::amdgcn_rsq_clamp: case AMDGPUIntrinsic::AMDGPU_rsq_clamped: { // Legacy name if (Subtarget->getGeneration() < SISubtarget::VOLCANIC_ISLANDS) return DAG.getNode(AMDGPUISD::RSQ_CLAMP, DL, VT, Op.getOperand(1)); Type *Type = VT.getTypeForEVT(*DAG.getContext()); APFloat Max = APFloat::getLargest(Type->getFltSemantics()); APFloat Min = APFloat::getLargest(Type->getFltSemantics(), true); SDValue Rsq = DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1)); SDValue Tmp = DAG.getNode(ISD::FMINNUM, DL, VT, Rsq, DAG.getConstantFP(Max, DL, VT)); return DAG.getNode(ISD::FMAXNUM, DL, VT, Tmp, DAG.getConstantFP(Min, DL, VT)); } case Intrinsic::r600_read_ngroups_x: if (Subtarget->isAmdHsaOS()) return emitNonHSAIntrinsicError(DAG, DL, VT); return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(), SI::KernelInputOffsets::NGROUPS_X, false); case Intrinsic::r600_read_ngroups_y: if (Subtarget->isAmdHsaOS()) return emitNonHSAIntrinsicError(DAG, DL, VT); return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(), SI::KernelInputOffsets::NGROUPS_Y, false); case Intrinsic::r600_read_ngroups_z: if (Subtarget->isAmdHsaOS()) return emitNonHSAIntrinsicError(DAG, DL, VT); return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(), SI::KernelInputOffsets::NGROUPS_Z, false); case Intrinsic::r600_read_global_size_x: if (Subtarget->isAmdHsaOS()) return emitNonHSAIntrinsicError(DAG, DL, VT); return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(), SI::KernelInputOffsets::GLOBAL_SIZE_X, false); case Intrinsic::r600_read_global_size_y: if (Subtarget->isAmdHsaOS()) return emitNonHSAIntrinsicError(DAG, DL, VT); return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(), SI::KernelInputOffsets::GLOBAL_SIZE_Y, false); case Intrinsic::r600_read_global_size_z: if (Subtarget->isAmdHsaOS()) return emitNonHSAIntrinsicError(DAG, DL, VT); return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(), SI::KernelInputOffsets::GLOBAL_SIZE_Z, false); case Intrinsic::r600_read_local_size_x: if (Subtarget->isAmdHsaOS()) return emitNonHSAIntrinsicError(DAG, DL, VT); return lowerImplicitZextParam(DAG, Op, MVT::i16, SI::KernelInputOffsets::LOCAL_SIZE_X); case Intrinsic::r600_read_local_size_y: if (Subtarget->isAmdHsaOS()) return emitNonHSAIntrinsicError(DAG, DL, VT); return lowerImplicitZextParam(DAG, Op, MVT::i16, SI::KernelInputOffsets::LOCAL_SIZE_Y); case Intrinsic::r600_read_local_size_z: if (Subtarget->isAmdHsaOS()) return emitNonHSAIntrinsicError(DAG, DL, VT); return lowerImplicitZextParam(DAG, Op, MVT::i16, SI::KernelInputOffsets::LOCAL_SIZE_Z); case Intrinsic::amdgcn_read_workdim: case AMDGPUIntrinsic::AMDGPU_read_workdim: // Legacy name. // Really only 2 bits. return lowerImplicitZextParam(DAG, Op, MVT::i8, getImplicitParameterOffset(MFI, GRID_DIM)); case Intrinsic::amdgcn_workgroup_id_x: case Intrinsic::r600_read_tgid_x: return CreateLiveInRegister(DAG, &AMDGPU::SReg_32RegClass, TRI->getPreloadedValue(MF, SIRegisterInfo::WORKGROUP_ID_X), VT); case Intrinsic::amdgcn_workgroup_id_y: case Intrinsic::r600_read_tgid_y: return CreateLiveInRegister(DAG, &AMDGPU::SReg_32RegClass, TRI->getPreloadedValue(MF, SIRegisterInfo::WORKGROUP_ID_Y), VT); case Intrinsic::amdgcn_workgroup_id_z: case Intrinsic::r600_read_tgid_z: return CreateLiveInRegister(DAG, &AMDGPU::SReg_32RegClass, TRI->getPreloadedValue(MF, SIRegisterInfo::WORKGROUP_ID_Z), VT); case Intrinsic::amdgcn_workitem_id_x: case Intrinsic::r600_read_tidig_x: return CreateLiveInRegister(DAG, &AMDGPU::VGPR_32RegClass, TRI->getPreloadedValue(MF, SIRegisterInfo::WORKITEM_ID_X), VT); case Intrinsic::amdgcn_workitem_id_y: case Intrinsic::r600_read_tidig_y: return CreateLiveInRegister(DAG, &AMDGPU::VGPR_32RegClass, TRI->getPreloadedValue(MF, SIRegisterInfo::WORKITEM_ID_Y), VT); case Intrinsic::amdgcn_workitem_id_z: case Intrinsic::r600_read_tidig_z: return CreateLiveInRegister(DAG, &AMDGPU::VGPR_32RegClass, TRI->getPreloadedValue(MF, SIRegisterInfo::WORKITEM_ID_Z), VT); case AMDGPUIntrinsic::SI_load_const: { SDValue Ops[] = { Op.getOperand(1), Op.getOperand(2) }; MachineMemOperand *MMO = MF.getMachineMemOperand( MachinePointerInfo(), MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant, VT.getStoreSize(), 4); return DAG.getMemIntrinsicNode(AMDGPUISD::LOAD_CONSTANT, DL, Op->getVTList(), Ops, VT, MMO); } case AMDGPUIntrinsic::SI_vs_load_input: return DAG.getNode(AMDGPUISD::LOAD_INPUT, DL, VT, Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); case AMDGPUIntrinsic::SI_fs_constant: { SDValue M0 = copyToM0(DAG, DAG.getEntryNode(), DL, Op.getOperand(3)); SDValue Glue = M0.getValue(1); return DAG.getNode(AMDGPUISD::INTERP_MOV, DL, MVT::f32, DAG.getConstant(2, DL, MVT::i32), // P0 Op.getOperand(1), Op.getOperand(2), Glue); } case AMDGPUIntrinsic::SI_packf16: if (Op.getOperand(1).isUndef() && Op.getOperand(2).isUndef()) return DAG.getUNDEF(MVT::i32); return Op; case AMDGPUIntrinsic::SI_fs_interp: { SDValue IJ = Op.getOperand(4); SDValue I = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, IJ, DAG.getConstant(0, DL, MVT::i32)); SDValue J = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, IJ, DAG.getConstant(1, DL, MVT::i32)); SDValue M0 = copyToM0(DAG, DAG.getEntryNode(), DL, Op.getOperand(3)); SDValue Glue = M0.getValue(1); SDValue P1 = DAG.getNode(AMDGPUISD::INTERP_P1, DL, DAG.getVTList(MVT::f32, MVT::Glue), I, Op.getOperand(1), Op.getOperand(2), Glue); Glue = SDValue(P1.getNode(), 1); return DAG.getNode(AMDGPUISD::INTERP_P2, DL, MVT::f32, P1, J, Op.getOperand(1), Op.getOperand(2), Glue); } case Intrinsic::amdgcn_interp_p1: { SDValue M0 = copyToM0(DAG, DAG.getEntryNode(), DL, Op.getOperand(4)); SDValue Glue = M0.getValue(1); return DAG.getNode(AMDGPUISD::INTERP_P1, DL, MVT::f32, Op.getOperand(1), Op.getOperand(2), Op.getOperand(3), Glue); } case Intrinsic::amdgcn_interp_p2: { SDValue M0 = copyToM0(DAG, DAG.getEntryNode(), DL, Op.getOperand(5)); SDValue Glue = SDValue(M0.getNode(), 1); return DAG.getNode(AMDGPUISD::INTERP_P2, DL, MVT::f32, Op.getOperand(1), Op.getOperand(2), Op.getOperand(3), Op.getOperand(4), Glue); } case Intrinsic::amdgcn_sin: return DAG.getNode(AMDGPUISD::SIN_HW, DL, VT, Op.getOperand(1)); case Intrinsic::amdgcn_cos: return DAG.getNode(AMDGPUISD::COS_HW, DL, VT, Op.getOperand(1)); case Intrinsic::amdgcn_log_clamp: { if (Subtarget->getGeneration() < SISubtarget::VOLCANIC_ISLANDS) return SDValue(); DiagnosticInfoUnsupported BadIntrin( *MF.getFunction(), "intrinsic not supported on subtarget", DL.getDebugLoc()); DAG.getContext()->diagnose(BadIntrin); return DAG.getUNDEF(VT); } case Intrinsic::amdgcn_ldexp: return DAG.getNode(AMDGPUISD::LDEXP, DL, VT, Op.getOperand(1), Op.getOperand(2)); case Intrinsic::amdgcn_fract: return DAG.getNode(AMDGPUISD::FRACT, DL, VT, Op.getOperand(1)); case Intrinsic::amdgcn_class: return DAG.getNode(AMDGPUISD::FP_CLASS, DL, VT, Op.getOperand(1), Op.getOperand(2)); case Intrinsic::amdgcn_div_fmas: return DAG.getNode(AMDGPUISD::DIV_FMAS, DL, VT, Op.getOperand(1), Op.getOperand(2), Op.getOperand(3), Op.getOperand(4)); case Intrinsic::amdgcn_div_fixup: return DAG.getNode(AMDGPUISD::DIV_FIXUP, DL, VT, Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); case Intrinsic::amdgcn_trig_preop: return DAG.getNode(AMDGPUISD::TRIG_PREOP, DL, VT, Op.getOperand(1), Op.getOperand(2)); case Intrinsic::amdgcn_div_scale: { // 3rd parameter required to be a constant. const ConstantSDNode *Param = dyn_cast<ConstantSDNode>(Op.getOperand(3)); if (!Param) return DAG.getUNDEF(VT); // Translate to the operands expected by the machine instruction. The // first parameter must be the same as the first instruction. SDValue Numerator = Op.getOperand(1); SDValue Denominator = Op.getOperand(2); // Note this order is opposite of the machine instruction's operations, // which is s0.f = Quotient, s1.f = Denominator, s2.f = Numerator. The // intrinsic has the numerator as the first operand to match a normal // division operation. SDValue Src0 = Param->isAllOnesValue() ? Numerator : Denominator; return DAG.getNode(AMDGPUISD::DIV_SCALE, DL, Op->getVTList(), Src0, Denominator, Numerator); } default: return AMDGPUTargetLowering::LowerOperation(Op, DAG); } } SDValue SITargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op, SelectionDAG &DAG) const { unsigned IntrID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); switch (IntrID) { case Intrinsic::amdgcn_atomic_inc: case Intrinsic::amdgcn_atomic_dec: { MemSDNode *M = cast<MemSDNode>(Op); unsigned Opc = (IntrID == Intrinsic::amdgcn_atomic_inc) ? AMDGPUISD::ATOMIC_INC : AMDGPUISD::ATOMIC_DEC; SDValue Ops[] = { M->getOperand(0), // Chain M->getOperand(2), // Ptr M->getOperand(3) // Value }; return DAG.getMemIntrinsicNode(Opc, SDLoc(Op), M->getVTList(), Ops, M->getMemoryVT(), M->getMemOperand()); } default: return SDValue(); } } SDValue SITargetLowering::LowerINTRINSIC_VOID(SDValue Op, SelectionDAG &DAG) const { MachineFunction &MF = DAG.getMachineFunction(); SDLoc DL(Op); SDValue Chain = Op.getOperand(0); unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); switch (IntrinsicID) { case AMDGPUIntrinsic::SI_sendmsg: { Chain = copyToM0(DAG, Chain, DL, Op.getOperand(3)); SDValue Glue = Chain.getValue(1); return DAG.getNode(AMDGPUISD::SENDMSG, DL, MVT::Other, Chain, Op.getOperand(2), Glue); } case AMDGPUIntrinsic::SI_tbuffer_store: { SDValue Ops[] = { Chain, Op.getOperand(2), Op.getOperand(3), Op.getOperand(4), Op.getOperand(5), Op.getOperand(6), Op.getOperand(7), Op.getOperand(8), Op.getOperand(9), Op.getOperand(10), Op.getOperand(11), Op.getOperand(12), Op.getOperand(13), Op.getOperand(14) }; EVT VT = Op.getOperand(3).getValueType(); MachineMemOperand *MMO = MF.getMachineMemOperand( MachinePointerInfo(), MachineMemOperand::MOStore, VT.getStoreSize(), 4); return DAG.getMemIntrinsicNode(AMDGPUISD::TBUFFER_STORE_FORMAT, DL, Op->getVTList(), Ops, VT, MMO); } case AMDGPUIntrinsic::AMDGPU_kill: { if (const ConstantFPSDNode *K = dyn_cast<ConstantFPSDNode>(Op.getOperand(2))) { if (!K->isNegative()) return Chain; } return Op; } default: return SDValue(); } } SDValue SITargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const { SDLoc DL(Op); LoadSDNode *Load = cast<LoadSDNode>(Op); ISD::LoadExtType ExtType = Load->getExtensionType(); EVT MemVT = Load->getMemoryVT(); if (ExtType == ISD::NON_EXTLOAD && MemVT.getSizeInBits() < 32) { assert(MemVT == MVT::i1 && "Only i1 non-extloads expected"); // FIXME: Copied from PPC // First, load into 32 bits, then truncate to 1 bit. SDValue Chain = Load->getChain(); SDValue BasePtr = Load->getBasePtr(); MachineMemOperand *MMO = Load->getMemOperand(); SDValue NewLD = DAG.getExtLoad(ISD::EXTLOAD, DL, MVT::i32, Chain, BasePtr, MVT::i8, MMO); SDValue Ops[] = { DAG.getNode(ISD::TRUNCATE, DL, MemVT, NewLD), NewLD.getValue(1) }; return DAG.getMergeValues(Ops, DL); } if (!MemVT.isVector()) return SDValue(); assert(Op.getValueType().getVectorElementType() == MVT::i32 && "Custom lowering for non-i32 vectors hasn't been implemented."); unsigned AS = Load->getAddressSpace(); if (!allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), MemVT, AS, Load->getAlignment())) { SDValue Ops[2]; std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(Load, DAG); return DAG.getMergeValues(Ops, DL); } unsigned NumElements = MemVT.getVectorNumElements(); switch (AS) { case AMDGPUAS::CONSTANT_ADDRESS: if (isMemOpUniform(Load)) return SDValue(); // Non-uniform loads will be selected to MUBUF instructions, so they // have the same legalization requires ments as global and private // loads. // // Fall-through case AMDGPUAS::GLOBAL_ADDRESS: case AMDGPUAS::FLAT_ADDRESS: if (NumElements > 4) return SplitVectorLoad(Op, DAG); // v4 loads are supported for private and global memory. return SDValue(); case AMDGPUAS::PRIVATE_ADDRESS: { // Depending on the setting of the private_element_size field in the // resource descriptor, we can only make private accesses up to a certain // size. switch (Subtarget->getMaxPrivateElementSize()) { case 4: return scalarizeVectorLoad(Load, DAG); case 8: if (NumElements > 2) return SplitVectorLoad(Op, DAG); return SDValue(); case 16: // Same as global/flat if (NumElements > 4) return SplitVectorLoad(Op, DAG); return SDValue(); default: llvm_unreachable("unsupported private_element_size"); } } case AMDGPUAS::LOCAL_ADDRESS: { if (NumElements > 2) return SplitVectorLoad(Op, DAG); if (NumElements == 2) return SDValue(); // If properly aligned, if we split we might be able to use ds_read_b64. return SplitVectorLoad(Op, DAG); } default: return SDValue(); } } SDValue SITargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const { if (Op.getValueType() != MVT::i64) return SDValue(); SDLoc DL(Op); SDValue Cond = Op.getOperand(0); SDValue Zero = DAG.getConstant(0, DL, MVT::i32); SDValue One = DAG.getConstant(1, DL, MVT::i32); SDValue LHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(1)); SDValue RHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(2)); SDValue Lo0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, Zero); SDValue Lo1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, Zero); SDValue Lo = DAG.getSelect(DL, MVT::i32, Cond, Lo0, Lo1); SDValue Hi0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, One); SDValue Hi1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, One); SDValue Hi = DAG.getSelect(DL, MVT::i32, Cond, Hi0, Hi1); SDValue Res = DAG.getBuildVector(MVT::v2i32, DL, {Lo, Hi}); return DAG.getNode(ISD::BITCAST, DL, MVT::i64, Res); } // Catch division cases where we can use shortcuts with rcp and rsq // instructions. SDValue SITargetLowering::LowerFastFDIV(SDValue Op, SelectionDAG &DAG) const { SDLoc SL(Op); SDValue LHS = Op.getOperand(0); SDValue RHS = Op.getOperand(1); EVT VT = Op.getValueType(); bool Unsafe = DAG.getTarget().Options.UnsafeFPMath; if (const ConstantFPSDNode *CLHS = dyn_cast<ConstantFPSDNode>(LHS)) { if ((Unsafe || (VT == MVT::f32 && !Subtarget->hasFP32Denormals())) && CLHS->isExactlyValue(1.0)) { // v_rcp_f32 and v_rsq_f32 do not support denormals, and according to // the CI documentation has a worst case error of 1 ulp. // OpenCL requires <= 2.5 ulp for 1.0 / x, so it should always be OK to // use it as long as we aren't trying to use denormals. // 1.0 / sqrt(x) -> rsq(x) // // XXX - Is UnsafeFPMath sufficient to do this for f64? The maximum ULP // error seems really high at 2^29 ULP. if (RHS.getOpcode() == ISD::FSQRT) return DAG.getNode(AMDGPUISD::RSQ, SL, VT, RHS.getOperand(0)); // 1.0 / x -> rcp(x) return DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS); } } const SDNodeFlags *Flags = Op->getFlags(); if (Unsafe || Flags->hasAllowReciprocal()) { // Turn into multiply by the reciprocal. // x / y -> x * (1.0 / y) SDNodeFlags Flags; Flags.setUnsafeAlgebra(true); SDValue Recip = DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS); return DAG.getNode(ISD::FMUL, SL, VT, LHS, Recip, &Flags); } return SDValue(); } SDValue SITargetLowering::LowerFDIV32(SDValue Op, SelectionDAG &DAG) const { if (SDValue FastLowered = LowerFastFDIV(Op, DAG)) return FastLowered; SDLoc SL(Op); SDValue LHS = Op.getOperand(0); SDValue RHS = Op.getOperand(1); // faster 2.5 ulp fdiv when using -amdgpu-fast-fdiv flag if (EnableAMDGPUFastFDIV) { // This does not support denormals. SDValue r1 = DAG.getNode(ISD::FABS, SL, MVT::f32, RHS); const APFloat K0Val(BitsToFloat(0x6f800000)); const SDValue K0 = DAG.getConstantFP(K0Val, SL, MVT::f32); const APFloat K1Val(BitsToFloat(0x2f800000)); const SDValue K1 = DAG.getConstantFP(K1Val, SL, MVT::f32); const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32); EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f32); SDValue r2 = DAG.getSetCC(SL, SetCCVT, r1, K0, ISD::SETOGT); SDValue r3 = DAG.getNode(ISD::SELECT, SL, MVT::f32, r2, K1, One); // TODO: Should this propagate fast-math-flags? r1 = DAG.getNode(ISD::FMUL, SL, MVT::f32, RHS, r3); // rcp does not support denormals. SDValue r0 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, r1); SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f32, LHS, r0); return DAG.getNode(ISD::FMUL, SL, MVT::f32, r3, Mul); } // Generates more precise fpdiv32. const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32); SDVTList ScaleVT = DAG.getVTList(MVT::f32, MVT::i1); SDValue DenominatorScaled = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, RHS, RHS, LHS); SDValue NumeratorScaled = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, LHS, RHS, LHS); // Denominator is scaled to not be denormal, so using rcp is ok. SDValue ApproxRcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, DenominatorScaled); SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f32, DenominatorScaled); SDValue Fma0 = DAG.getNode(ISD::FMA, SL, MVT::f32, NegDivScale0, ApproxRcp, One); SDValue Fma1 = DAG.getNode(ISD::FMA, SL, MVT::f32, Fma0, ApproxRcp, ApproxRcp); SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f32, NumeratorScaled, Fma1); SDValue Fma2 = DAG.getNode(ISD::FMA, SL, MVT::f32, NegDivScale0, Mul, NumeratorScaled); SDValue Fma3 = DAG.getNode(ISD::FMA, SL, MVT::f32, Fma2, Fma1, Mul); SDValue Fma4 = DAG.getNode(ISD::FMA, SL, MVT::f32, NegDivScale0, Fma3, NumeratorScaled); SDValue Scale = NumeratorScaled.getValue(1); SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f32, Fma4, Fma1, Fma3, Scale); return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f32, Fmas, RHS, LHS); } SDValue SITargetLowering::LowerFDIV64(SDValue Op, SelectionDAG &DAG) const { if (DAG.getTarget().Options.UnsafeFPMath) return LowerFastFDIV(Op, DAG); SDLoc SL(Op); SDValue X = Op.getOperand(0); SDValue Y = Op.getOperand(1); const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64); SDVTList ScaleVT = DAG.getVTList(MVT::f64, MVT::i1); SDValue DivScale0 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, Y, Y, X); SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f64, DivScale0); SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f64, DivScale0); SDValue Fma0 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Rcp, One); SDValue Fma1 = DAG.getNode(ISD::FMA, SL, MVT::f64, Rcp, Fma0, Rcp); SDValue Fma2 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Fma1, One); SDValue DivScale1 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, X, Y, X); SDValue Fma3 = DAG.getNode(ISD::FMA, SL, MVT::f64, Fma1, Fma2, Fma1); SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, DivScale1, Fma3); SDValue Fma4 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Mul, DivScale1); SDValue Scale; if (Subtarget->getGeneration() == SISubtarget::SOUTHERN_ISLANDS) { // Workaround a hardware bug on SI where the condition output from div_scale // is not usable. const SDValue Hi = DAG.getConstant(1, SL, MVT::i32); // Figure out if the scale to use for div_fmas. SDValue NumBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X); SDValue DenBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Y); SDValue Scale0BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale0); SDValue Scale1BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale1); SDValue NumHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, NumBC, Hi); SDValue DenHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, DenBC, Hi); SDValue Scale0Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale0BC, Hi); SDValue Scale1Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale1BC, Hi); SDValue CmpDen = DAG.getSetCC(SL, MVT::i1, DenHi, Scale0Hi, ISD::SETEQ); SDValue CmpNum = DAG.getSetCC(SL, MVT::i1, NumHi, Scale1Hi, ISD::SETEQ); Scale = DAG.getNode(ISD::XOR, SL, MVT::i1, CmpNum, CmpDen); } else { Scale = DivScale1.getValue(1); } SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f64, Fma4, Fma3, Mul, Scale); return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f64, Fmas, Y, X); } SDValue SITargetLowering::LowerFDIV(SDValue Op, SelectionDAG &DAG) const { EVT VT = Op.getValueType(); if (VT == MVT::f32) return LowerFDIV32(Op, DAG); if (VT == MVT::f64) return LowerFDIV64(Op, DAG); llvm_unreachable("Unexpected type for fdiv"); } SDValue SITargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const { SDLoc DL(Op); StoreSDNode *Store = cast<StoreSDNode>(Op); EVT VT = Store->getMemoryVT(); if (VT == MVT::i1) { return DAG.getTruncStore(Store->getChain(), DL, DAG.getSExtOrTrunc(Store->getValue(), DL, MVT::i32), Store->getBasePtr(), MVT::i1, Store->getMemOperand()); } assert(VT.isVector() && Store->getValue().getValueType().getScalarType() == MVT::i32); unsigned AS = Store->getAddressSpace(); if (!allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), VT, AS, Store->getAlignment())) { return expandUnalignedStore(Store, DAG); } unsigned NumElements = VT.getVectorNumElements(); switch (AS) { case AMDGPUAS::GLOBAL_ADDRESS: case AMDGPUAS::FLAT_ADDRESS: if (NumElements > 4) return SplitVectorStore(Op, DAG); return SDValue(); case AMDGPUAS::PRIVATE_ADDRESS: { switch (Subtarget->getMaxPrivateElementSize()) { case 4: return scalarizeVectorStore(Store, DAG); case 8: if (NumElements > 2) return SplitVectorStore(Op, DAG); return SDValue(); case 16: if (NumElements > 4) return SplitVectorStore(Op, DAG); return SDValue(); default: llvm_unreachable("unsupported private_element_size"); } } case AMDGPUAS::LOCAL_ADDRESS: { if (NumElements > 2) return SplitVectorStore(Op, DAG); if (NumElements == 2) return Op; // If properly aligned, if we split we might be able to use ds_write_b64. return SplitVectorStore(Op, DAG); } default: llvm_unreachable("unhandled address space"); } } SDValue SITargetLowering::LowerTrig(SDValue Op, SelectionDAG &DAG) const { SDLoc DL(Op); EVT VT = Op.getValueType(); SDValue Arg = Op.getOperand(0); // TODO: Should this propagate fast-math-flags? SDValue FractPart = DAG.getNode(AMDGPUISD::FRACT, DL, VT, DAG.getNode(ISD::FMUL, DL, VT, Arg, DAG.getConstantFP(0.5/M_PI, DL, VT))); switch (Op.getOpcode()) { case ISD::FCOS: return DAG.getNode(AMDGPUISD::COS_HW, SDLoc(Op), VT, FractPart); case ISD::FSIN: return DAG.getNode(AMDGPUISD::SIN_HW, SDLoc(Op), VT, FractPart); default: llvm_unreachable("Wrong trig opcode"); } } SDValue SITargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op, SelectionDAG &DAG) const { AtomicSDNode *AtomicNode = cast<AtomicSDNode>(Op); assert(AtomicNode->isCompareAndSwap()); unsigned AS = AtomicNode->getAddressSpace(); // No custom lowering required for local address space if (!isFlatGlobalAddrSpace(AS)) return Op; // Non-local address space requires custom lowering for atomic compare // and swap; cmp and swap should be in a v2i32 or v2i64 in case of _X2 SDLoc DL(Op); SDValue ChainIn = Op.getOperand(0); SDValue Addr = Op.getOperand(1); SDValue Old = Op.getOperand(2); SDValue New = Op.getOperand(3); EVT VT = Op.getValueType(); MVT SimpleVT = VT.getSimpleVT(); MVT VecType = MVT::getVectorVT(SimpleVT, 2); SDValue NewOld = DAG.getBuildVector(VecType, DL, {New, Old}); SDValue Ops[] = { ChainIn, Addr, NewOld }; return DAG.getMemIntrinsicNode(AMDGPUISD::ATOMIC_CMP_SWAP, DL, Op->getVTList(), Ops, VT, AtomicNode->getMemOperand()); } //===----------------------------------------------------------------------===// // Custom DAG optimizations //===----------------------------------------------------------------------===// SDValue SITargetLowering::performUCharToFloatCombine(SDNode *N, DAGCombinerInfo &DCI) const { EVT VT = N->getValueType(0); EVT ScalarVT = VT.getScalarType(); if (ScalarVT != MVT::f32) return SDValue(); SelectionDAG &DAG = DCI.DAG; SDLoc DL(N); SDValue Src = N->getOperand(0); EVT SrcVT = Src.getValueType(); // TODO: We could try to match extracting the higher bytes, which would be // easier if i8 vectors weren't promoted to i32 vectors, particularly after // types are legalized. v4i8 -> v4f32 is probably the only case to worry // about in practice. if (DCI.isAfterLegalizeVectorOps() && SrcVT == MVT::i32) { if (DAG.MaskedValueIsZero(Src, APInt::getHighBitsSet(32, 24))) { SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0, DL, VT, Src); DCI.AddToWorklist(Cvt.getNode()); return Cvt; } } return SDValue(); } /// \brief Return true if the given offset Size in bytes can be folded into /// the immediate offsets of a memory instruction for the given address space. static bool canFoldOffset(unsigned OffsetSize, unsigned AS, const SISubtarget &STI) { switch (AS) { case AMDGPUAS::GLOBAL_ADDRESS: { // MUBUF instructions a 12-bit offset in bytes. return isUInt<12>(OffsetSize); } case AMDGPUAS::CONSTANT_ADDRESS: { // SMRD instructions have an 8-bit offset in dwords on SI and // a 20-bit offset in bytes on VI. if (STI.getGeneration() >= SISubtarget::VOLCANIC_ISLANDS) return isUInt<20>(OffsetSize); else return (OffsetSize % 4 == 0) && isUInt<8>(OffsetSize / 4); } case AMDGPUAS::LOCAL_ADDRESS: case AMDGPUAS::REGION_ADDRESS: { // The single offset versions have a 16-bit offset in bytes. return isUInt<16>(OffsetSize); } case AMDGPUAS::PRIVATE_ADDRESS: // Indirect register addressing does not use any offsets. default: return 0; } } // (shl (add x, c1), c2) -> add (shl x, c2), (shl c1, c2) // This is a variant of // (mul (add x, c1), c2) -> add (mul x, c2), (mul c1, c2), // // The normal DAG combiner will do this, but only if the add has one use since // that would increase the number of instructions. // // This prevents us from seeing a constant offset that can be folded into a // memory instruction's addressing mode. If we know the resulting add offset of // a pointer can be folded into an addressing offset, we can replace the pointer // operand with the add of new constant offset. This eliminates one of the uses, // and may allow the remaining use to also be simplified. // SDValue SITargetLowering::performSHLPtrCombine(SDNode *N, unsigned AddrSpace, DAGCombinerInfo &DCI) const { SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); if (N0.getOpcode() != ISD::ADD) return SDValue(); const ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N1); if (!CN1) return SDValue(); const ConstantSDNode *CAdd = dyn_cast<ConstantSDNode>(N0.getOperand(1)); if (!CAdd) return SDValue(); // If the resulting offset is too large, we can't fold it into the addressing // mode offset. APInt Offset = CAdd->getAPIntValue() << CN1->getAPIntValue(); if (!canFoldOffset(Offset.getZExtValue(), AddrSpace, *getSubtarget())) return SDValue(); SelectionDAG &DAG = DCI.DAG; SDLoc SL(N); EVT VT = N->getValueType(0); SDValue ShlX = DAG.getNode(ISD::SHL, SL, VT, N0.getOperand(0), N1); SDValue COffset = DAG.getConstant(Offset, SL, MVT::i32); return DAG.getNode(ISD::ADD, SL, VT, ShlX, COffset); } SDValue SITargetLowering::performAndCombine(SDNode *N, DAGCombinerInfo &DCI) const { if (DCI.isBeforeLegalize()) return SDValue(); if (SDValue Base = AMDGPUTargetLowering::performAndCombine(N, DCI)) return Base; SelectionDAG &DAG = DCI.DAG; // (and (fcmp ord x, x), (fcmp une (fabs x), inf)) -> // fp_class x, ~(s_nan | q_nan | n_infinity | p_infinity) SDValue LHS = N->getOperand(0); SDValue RHS = N->getOperand(1); if (LHS.getOpcode() == ISD::SETCC && RHS.getOpcode() == ISD::SETCC) { ISD::CondCode LCC = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); ISD::CondCode RCC = cast<CondCodeSDNode>(RHS.getOperand(2))->get(); SDValue X = LHS.getOperand(0); SDValue Y = RHS.getOperand(0); if (Y.getOpcode() != ISD::FABS || Y.getOperand(0) != X) return SDValue(); if (LCC == ISD::SETO) { if (X != LHS.getOperand(1)) return SDValue(); if (RCC == ISD::SETUNE) { const ConstantFPSDNode *C1 = dyn_cast<ConstantFPSDNode>(RHS.getOperand(1)); if (!C1 || !C1->isInfinity() || C1->isNegative()) return SDValue(); const uint32_t Mask = SIInstrFlags::N_NORMAL | SIInstrFlags::N_SUBNORMAL | SIInstrFlags::N_ZERO | SIInstrFlags::P_ZERO | SIInstrFlags::P_SUBNORMAL | SIInstrFlags::P_NORMAL; static_assert(((~(SIInstrFlags::S_NAN | SIInstrFlags::Q_NAN | SIInstrFlags::N_INFINITY | SIInstrFlags::P_INFINITY)) & 0x3ff) == Mask, "mask not equal"); SDLoc DL(N); return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1, X, DAG.getConstant(Mask, DL, MVT::i32)); } } } return SDValue(); } SDValue SITargetLowering::performOrCombine(SDNode *N, DAGCombinerInfo &DCI) const { SelectionDAG &DAG = DCI.DAG; SDValue LHS = N->getOperand(0); SDValue RHS = N->getOperand(1); EVT VT = N->getValueType(0); if (VT == MVT::i64) { // TODO: This could be a generic combine with a predicate for extracting the // high half of an integer being free. // (or i64:x, (zero_extend i32:y)) -> // i64 (bitcast (v2i32 build_vector (or i32:y, lo_32(x)), hi_32(x))) if (LHS.getOpcode() == ISD::ZERO_EXTEND && RHS.getOpcode() != ISD::ZERO_EXTEND) std::swap(LHS, RHS); if (RHS.getOpcode() == ISD::ZERO_EXTEND) { SDValue ExtSrc = RHS.getOperand(0); EVT SrcVT = ExtSrc.getValueType(); if (SrcVT == MVT::i32) { SDLoc SL(N); SDValue LowLHS, HiBits; std::tie(LowLHS, HiBits) = split64BitValue(LHS, DAG); SDValue LowOr = DAG.getNode(ISD::OR, SL, MVT::i32, LowLHS, ExtSrc); DCI.AddToWorklist(LowOr.getNode()); DCI.AddToWorklist(HiBits.getNode()); SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, LowOr, HiBits); return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); } } } // or (fp_class x, c1), (fp_class x, c2) -> fp_class x, (c1 | c2) if (LHS.getOpcode() == AMDGPUISD::FP_CLASS && RHS.getOpcode() == AMDGPUISD::FP_CLASS) { SDValue Src = LHS.getOperand(0); if (Src != RHS.getOperand(0)) return SDValue(); const ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(LHS.getOperand(1)); const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS.getOperand(1)); if (!CLHS || !CRHS) return SDValue(); // Only 10 bits are used. static const uint32_t MaxMask = 0x3ff; uint32_t NewMask = (CLHS->getZExtValue() | CRHS->getZExtValue()) & MaxMask; SDLoc DL(N); return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1, Src, DAG.getConstant(NewMask, DL, MVT::i32)); } return SDValue(); } SDValue SITargetLowering::performClassCombine(SDNode *N, DAGCombinerInfo &DCI) const { SelectionDAG &DAG = DCI.DAG; SDValue Mask = N->getOperand(1); // fp_class x, 0 -> false if (const ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(Mask)) { if (CMask->isNullValue()) return DAG.getConstant(0, SDLoc(N), MVT::i1); } if (N->getOperand(0).isUndef()) return DAG.getUNDEF(MVT::i1); return SDValue(); } // Constant fold canonicalize. SDValue SITargetLowering::performFCanonicalizeCombine( SDNode *N, DAGCombinerInfo &DCI) const { ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0)); if (!CFP) return SDValue(); SelectionDAG &DAG = DCI.DAG; const APFloat &C = CFP->getValueAPF(); // Flush denormals to 0 if not enabled. if (C.isDenormal()) { EVT VT = N->getValueType(0); if (VT == MVT::f32 && !Subtarget->hasFP32Denormals()) return DAG.getConstantFP(0.0, SDLoc(N), VT); if (VT == MVT::f64 && !Subtarget->hasFP64Denormals()) return DAG.getConstantFP(0.0, SDLoc(N), VT); } if (C.isNaN()) { EVT VT = N->getValueType(0); APFloat CanonicalQNaN = APFloat::getQNaN(C.getSemantics()); if (C.isSignaling()) { // Quiet a signaling NaN. return DAG.getConstantFP(CanonicalQNaN, SDLoc(N), VT); } // Make sure it is the canonical NaN bitpattern. // // TODO: Can we use -1 as the canonical NaN value since it's an inline // immediate? if (C.bitcastToAPInt() != CanonicalQNaN.bitcastToAPInt()) return DAG.getConstantFP(CanonicalQNaN, SDLoc(N), VT); } return SDValue(CFP, 0); } static unsigned minMaxOpcToMin3Max3Opc(unsigned Opc) { switch (Opc) { case ISD::FMAXNUM: return AMDGPUISD::FMAX3; case ISD::SMAX: return AMDGPUISD::SMAX3; case ISD::UMAX: return AMDGPUISD::UMAX3; case ISD::FMINNUM: return AMDGPUISD::FMIN3; case ISD::SMIN: return AMDGPUISD::SMIN3; case ISD::UMIN: return AMDGPUISD::UMIN3; default: llvm_unreachable("Not a min/max opcode"); } } static SDValue performIntMed3ImmCombine(SelectionDAG &DAG, const SDLoc &SL, SDValue Op0, SDValue Op1, bool Signed) { ConstantSDNode *K1 = dyn_cast<ConstantSDNode>(Op1); if (!K1) return SDValue(); ConstantSDNode *K0 = dyn_cast<ConstantSDNode>(Op0.getOperand(1)); if (!K0) return SDValue(); if (Signed) { if (K0->getAPIntValue().sge(K1->getAPIntValue())) return SDValue(); } else { if (K0->getAPIntValue().uge(K1->getAPIntValue())) return SDValue(); } EVT VT = K0->getValueType(0); return DAG.getNode(Signed ? AMDGPUISD::SMED3 : AMDGPUISD::UMED3, SL, VT, Op0.getOperand(0), SDValue(K0, 0), SDValue(K1, 0)); } static bool isKnownNeverSNan(SelectionDAG &DAG, SDValue Op) { if (!DAG.getTargetLoweringInfo().hasFloatingPointExceptions()) return true; return DAG.isKnownNeverNaN(Op); } static SDValue performFPMed3ImmCombine(SelectionDAG &DAG, const SDLoc &SL, SDValue Op0, SDValue Op1) { ConstantFPSDNode *K1 = dyn_cast<ConstantFPSDNode>(Op1); if (!K1) return SDValue(); ConstantFPSDNode *K0 = dyn_cast<ConstantFPSDNode>(Op0.getOperand(1)); if (!K0) return SDValue(); // Ordered >= (although NaN inputs should have folded away by now). APFloat::cmpResult Cmp = K0->getValueAPF().compare(K1->getValueAPF()); if (Cmp == APFloat::cmpGreaterThan) return SDValue(); // This isn't safe with signaling NaNs because in IEEE mode, min/max on a // signaling NaN gives a quiet NaN. The quiet NaN input to the min would then // give the other result, which is different from med3 with a NaN input. SDValue Var = Op0.getOperand(0); if (!isKnownNeverSNan(DAG, Var)) return SDValue(); return DAG.getNode(AMDGPUISD::FMED3, SL, K0->getValueType(0), Var, SDValue(K0, 0), SDValue(K1, 0)); } SDValue SITargetLowering::performMinMaxCombine(SDNode *N, DAGCombinerInfo &DCI) const { SelectionDAG &DAG = DCI.DAG; unsigned Opc = N->getOpcode(); SDValue Op0 = N->getOperand(0); SDValue Op1 = N->getOperand(1); // Only do this if the inner op has one use since this will just increases // register pressure for no benefit. if (Opc != AMDGPUISD::FMIN_LEGACY && Opc != AMDGPUISD::FMAX_LEGACY) { // max(max(a, b), c) -> max3(a, b, c) // min(min(a, b), c) -> min3(a, b, c) if (Op0.getOpcode() == Opc && Op0.hasOneUse()) { SDLoc DL(N); return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc), DL, N->getValueType(0), Op0.getOperand(0), Op0.getOperand(1), Op1); } // Try commuted. // max(a, max(b, c)) -> max3(a, b, c) // min(a, min(b, c)) -> min3(a, b, c) if (Op1.getOpcode() == Opc && Op1.hasOneUse()) { SDLoc DL(N); return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc), DL, N->getValueType(0), Op0, Op1.getOperand(0), Op1.getOperand(1)); } } // min(max(x, K0), K1), K0 < K1 -> med3(x, K0, K1) if (Opc == ISD::SMIN && Op0.getOpcode() == ISD::SMAX && Op0.hasOneUse()) { if (SDValue Med3 = performIntMed3ImmCombine(DAG, SDLoc(N), Op0, Op1, true)) return Med3; } if (Opc == ISD::UMIN && Op0.getOpcode() == ISD::UMAX && Op0.hasOneUse()) { if (SDValue Med3 = performIntMed3ImmCombine(DAG, SDLoc(N), Op0, Op1, false)) return Med3; } // fminnum(fmaxnum(x, K0), K1), K0 < K1 && !is_snan(x) -> fmed3(x, K0, K1) if (((Opc == ISD::FMINNUM && Op0.getOpcode() == ISD::FMAXNUM) || (Opc == AMDGPUISD::FMIN_LEGACY && Op0.getOpcode() == AMDGPUISD::FMAX_LEGACY)) && N->getValueType(0) == MVT::f32 && Op0.hasOneUse()) { if (SDValue Res = performFPMed3ImmCombine(DAG, SDLoc(N), Op0, Op1)) return Res; } return SDValue(); } SDValue SITargetLowering::performSetCCCombine(SDNode *N, DAGCombinerInfo &DCI) const { SelectionDAG &DAG = DCI.DAG; SDLoc SL(N); SDValue LHS = N->getOperand(0); SDValue RHS = N->getOperand(1); EVT VT = LHS.getValueType(); if (VT != MVT::f32 && VT != MVT::f64) return SDValue(); // Match isinf pattern // (fcmp oeq (fabs x), inf) -> (fp_class x, (p_infinity | n_infinity)) ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); if (CC == ISD::SETOEQ && LHS.getOpcode() == ISD::FABS) { const ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS); if (!CRHS) return SDValue(); const APFloat &APF = CRHS->getValueAPF(); if (APF.isInfinity() && !APF.isNegative()) { unsigned Mask = SIInstrFlags::P_INFINITY | SIInstrFlags::N_INFINITY; return DAG.getNode(AMDGPUISD::FP_CLASS, SL, MVT::i1, LHS.getOperand(0), DAG.getConstant(Mask, SL, MVT::i32)); } } return SDValue(); } SDValue SITargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const { SelectionDAG &DAG = DCI.DAG; SDLoc DL(N); switch (N->getOpcode()) { default: return AMDGPUTargetLowering::PerformDAGCombine(N, DCI); case ISD::SETCC: return performSetCCCombine(N, DCI); case ISD::FMAXNUM: case ISD::FMINNUM: case ISD::SMAX: case ISD::SMIN: case ISD::UMAX: case ISD::UMIN: case AMDGPUISD::FMIN_LEGACY: case AMDGPUISD::FMAX_LEGACY: { if (DCI.getDAGCombineLevel() >= AfterLegalizeDAG && N->getValueType(0) != MVT::f64 && getTargetMachine().getOptLevel() > CodeGenOpt::None) return performMinMaxCombine(N, DCI); break; } case AMDGPUISD::CVT_F32_UBYTE0: case AMDGPUISD::CVT_F32_UBYTE1: case AMDGPUISD::CVT_F32_UBYTE2: case AMDGPUISD::CVT_F32_UBYTE3: { unsigned Offset = N->getOpcode() - AMDGPUISD::CVT_F32_UBYTE0; SDValue Src = N->getOperand(0); // TODO: Handle (or x, (srl y, 8)) pattern when known bits are zero. if (Src.getOpcode() == ISD::SRL) { // cvt_f32_ubyte0 (srl x, 16) -> cvt_f32_ubyte2 x // cvt_f32_ubyte1 (srl x, 16) -> cvt_f32_ubyte3 x // cvt_f32_ubyte0 (srl x, 8) -> cvt_f32_ubyte1 x if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Src.getOperand(1))) { unsigned SrcOffset = C->getZExtValue() + 8 * Offset; if (SrcOffset < 32 && SrcOffset % 8 == 0) { return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0 + SrcOffset / 8, DL, MVT::f32, Src.getOperand(0)); } } } APInt Demanded = APInt::getBitsSet(32, 8 * Offset, 8 * Offset + 8); APInt KnownZero, KnownOne; TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), !DCI.isBeforeLegalizeOps()); const TargetLowering &TLI = DAG.getTargetLoweringInfo(); if (TLO.ShrinkDemandedConstant(Src, Demanded) || TLI.SimplifyDemandedBits(Src, Demanded, KnownZero, KnownOne, TLO)) { DCI.CommitTargetLoweringOpt(TLO); } break; } case ISD::UINT_TO_FP: { return performUCharToFloatCombine(N, DCI); } case ISD::FADD: { if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) break; EVT VT = N->getValueType(0); if (VT != MVT::f32) break; // Only do this if we are not trying to support denormals. v_mad_f32 does // not support denormals ever. if (Subtarget->hasFP32Denormals()) break; SDValue LHS = N->getOperand(0); SDValue RHS = N->getOperand(1); // These should really be instruction patterns, but writing patterns with // source modiifiers is a pain. // fadd (fadd (a, a), b) -> mad 2.0, a, b if (LHS.getOpcode() == ISD::FADD) { SDValue A = LHS.getOperand(0); if (A == LHS.getOperand(1)) { const SDValue Two = DAG.getConstantFP(2.0, DL, MVT::f32); return DAG.getNode(ISD::FMAD, DL, VT, Two, A, RHS); } } // fadd (b, fadd (a, a)) -> mad 2.0, a, b if (RHS.getOpcode() == ISD::FADD) { SDValue A = RHS.getOperand(0); if (A == RHS.getOperand(1)) { const SDValue Two = DAG.getConstantFP(2.0, DL, MVT::f32); return DAG.getNode(ISD::FMAD, DL, VT, Two, A, LHS); } } return SDValue(); } case ISD::FSUB: { if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) break; EVT VT = N->getValueType(0); // Try to get the fneg to fold into the source modifier. This undoes generic // DAG combines and folds them into the mad. // // Only do this if we are not trying to support denormals. v_mad_f32 does // not support denormals ever. if (VT == MVT::f32 && !Subtarget->hasFP32Denormals()) { SDValue LHS = N->getOperand(0); SDValue RHS = N->getOperand(1); if (LHS.getOpcode() == ISD::FADD) { // (fsub (fadd a, a), c) -> mad 2.0, a, (fneg c) SDValue A = LHS.getOperand(0); if (A == LHS.getOperand(1)) { const SDValue Two = DAG.getConstantFP(2.0, DL, MVT::f32); SDValue NegRHS = DAG.getNode(ISD::FNEG, DL, VT, RHS); return DAG.getNode(ISD::FMAD, DL, VT, Two, A, NegRHS); } } if (RHS.getOpcode() == ISD::FADD) { // (fsub c, (fadd a, a)) -> mad -2.0, a, c SDValue A = RHS.getOperand(0); if (A == RHS.getOperand(1)) { const SDValue NegTwo = DAG.getConstantFP(-2.0, DL, MVT::f32); return DAG.getNode(ISD::FMAD, DL, VT, NegTwo, A, LHS); } } return SDValue(); } break; } case ISD::LOAD: case ISD::STORE: case ISD::ATOMIC_LOAD: case ISD::ATOMIC_STORE: case ISD::ATOMIC_CMP_SWAP: case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: case ISD::ATOMIC_SWAP: case ISD::ATOMIC_LOAD_ADD: case ISD::ATOMIC_LOAD_SUB: case ISD::ATOMIC_LOAD_AND: case ISD::ATOMIC_LOAD_OR: case ISD::ATOMIC_LOAD_XOR: case ISD::ATOMIC_LOAD_NAND: case ISD::ATOMIC_LOAD_MIN: case ISD::ATOMIC_LOAD_MAX: case ISD::ATOMIC_LOAD_UMIN: case ISD::ATOMIC_LOAD_UMAX: case AMDGPUISD::ATOMIC_INC: case AMDGPUISD::ATOMIC_DEC: { // TODO: Target mem intrinsics. if (DCI.isBeforeLegalize()) break; MemSDNode *MemNode = cast<MemSDNode>(N); SDValue Ptr = MemNode->getBasePtr(); // TODO: We could also do this for multiplies. unsigned AS = MemNode->getAddressSpace(); if (Ptr.getOpcode() == ISD::SHL && AS != AMDGPUAS::PRIVATE_ADDRESS) { SDValue NewPtr = performSHLPtrCombine(Ptr.getNode(), AS, DCI); if (NewPtr) { SmallVector<SDValue, 8> NewOps(MemNode->op_begin(), MemNode->op_end()); NewOps[N->getOpcode() == ISD::STORE ? 2 : 1] = NewPtr; return SDValue(DAG.UpdateNodeOperands(MemNode, NewOps), 0); } } break; } case ISD::AND: return performAndCombine(N, DCI); case ISD::OR: return performOrCombine(N, DCI); case AMDGPUISD::FP_CLASS: return performClassCombine(N, DCI); case ISD::FCANONICALIZE: return performFCanonicalizeCombine(N, DCI); case AMDGPUISD::FRACT: case AMDGPUISD::RCP: case AMDGPUISD::RSQ: case AMDGPUISD::RSQ_LEGACY: case AMDGPUISD::RSQ_CLAMP: case AMDGPUISD::LDEXP: { SDValue Src = N->getOperand(0); if (Src.isUndef()) return Src; break; } } return AMDGPUTargetLowering::PerformDAGCombine(N, DCI); } /// \brief Analyze the possible immediate value Op /// /// Returns -1 if it isn't an immediate, 0 if it's and inline immediate /// and the immediate value if it's a literal immediate int32_t SITargetLowering::analyzeImmediate(const SDNode *N) const { const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); if (const ConstantSDNode *Node = dyn_cast<ConstantSDNode>(N)) { if (TII->isInlineConstant(Node->getAPIntValue())) return 0; uint64_t Val = Node->getZExtValue(); return isUInt<32>(Val) ? Val : -1; } if (const ConstantFPSDNode *Node = dyn_cast<ConstantFPSDNode>(N)) { if (TII->isInlineConstant(Node->getValueAPF().bitcastToAPInt())) return 0; if (Node->getValueType(0) == MVT::f32) return FloatToBits(Node->getValueAPF().convertToFloat()); return -1; } return -1; } /// \brief Helper function for adjustWritemask static unsigned SubIdx2Lane(unsigned Idx) { switch (Idx) { default: return 0; case AMDGPU::sub0: return 0; case AMDGPU::sub1: return 1; case AMDGPU::sub2: return 2; case AMDGPU::sub3: return 3; } } /// \brief Adjust the writemask of MIMG instructions void SITargetLowering::adjustWritemask(MachineSDNode *&Node, SelectionDAG &DAG) const { SDNode *Users[4] = { }; unsigned Lane = 0; unsigned DmaskIdx = (Node->getNumOperands() - Node->getNumValues() == 9) ? 2 : 3; unsigned OldDmask = Node->getConstantOperandVal(DmaskIdx); unsigned NewDmask = 0; // Try to figure out the used register components for (SDNode::use_iterator I = Node->use_begin(), E = Node->use_end(); I != E; ++I) { // Abort if we can't understand the usage if (!I->isMachineOpcode() || I->getMachineOpcode() != TargetOpcode::EXTRACT_SUBREG) return; // Lane means which subreg of %VGPRa_VGPRb_VGPRc_VGPRd is used. // Note that subregs are packed, i.e. Lane==0 is the first bit set // in OldDmask, so it can be any of X,Y,Z,W; Lane==1 is the second bit // set, etc. Lane = SubIdx2Lane(I->getConstantOperandVal(1)); // Set which texture component corresponds to the lane. unsigned Comp; for (unsigned i = 0, Dmask = OldDmask; i <= Lane; i++) { assert(Dmask); Comp = countTrailingZeros(Dmask); Dmask &= ~(1 << Comp); } // Abort if we have more than one user per component if (Users[Lane]) return; Users[Lane] = *I; NewDmask |= 1 << Comp; } // Abort if there's no change if (NewDmask == OldDmask) return; // Adjust the writemask in the node std::vector<SDValue> Ops; Ops.insert(Ops.end(), Node->op_begin(), Node->op_begin() + DmaskIdx); Ops.push_back(DAG.getTargetConstant(NewDmask, SDLoc(Node), MVT::i32)); Ops.insert(Ops.end(), Node->op_begin() + DmaskIdx + 1, Node->op_end()); Node = (MachineSDNode*)DAG.UpdateNodeOperands(Node, Ops); // If we only got one lane, replace it with a copy // (if NewDmask has only one bit set...) if (NewDmask && (NewDmask & (NewDmask-1)) == 0) { SDValue RC = DAG.getTargetConstant(AMDGPU::VGPR_32RegClassID, SDLoc(), MVT::i32); SDNode *Copy = DAG.getMachineNode(TargetOpcode::COPY_TO_REGCLASS, SDLoc(), Users[Lane]->getValueType(0), SDValue(Node, 0), RC); DAG.ReplaceAllUsesWith(Users[Lane], Copy); return; } // Update the users of the node with the new indices for (unsigned i = 0, Idx = AMDGPU::sub0; i < 4; ++i) { SDNode *User = Users[i]; if (!User) continue; SDValue Op = DAG.getTargetConstant(Idx, SDLoc(User), MVT::i32); DAG.UpdateNodeOperands(User, User->getOperand(0), Op); switch (Idx) { default: break; case AMDGPU::sub0: Idx = AMDGPU::sub1; break; case AMDGPU::sub1: Idx = AMDGPU::sub2; break; case AMDGPU::sub2: Idx = AMDGPU::sub3; break; } } } static bool isFrameIndexOp(SDValue Op) { if (Op.getOpcode() == ISD::AssertZext) Op = Op.getOperand(0); return isa<FrameIndexSDNode>(Op); } /// \brief Legalize target independent instructions (e.g. INSERT_SUBREG) /// with frame index operands. /// LLVM assumes that inputs are to these instructions are registers. void SITargetLowering::legalizeTargetIndependentNode(SDNode *Node, SelectionDAG &DAG) const { SmallVector<SDValue, 8> Ops; for (unsigned i = 0; i < Node->getNumOperands(); ++i) { if (!isFrameIndexOp(Node->getOperand(i))) { Ops.push_back(Node->getOperand(i)); continue; } SDLoc DL(Node); Ops.push_back(SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, Node->getOperand(i).getValueType(), Node->getOperand(i)), 0)); } DAG.UpdateNodeOperands(Node, Ops); } /// \brief Fold the instructions after selecting them. SDNode *SITargetLowering::PostISelFolding(MachineSDNode *Node, SelectionDAG &DAG) const { const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); unsigned Opcode = Node->getMachineOpcode(); if (TII->isMIMG(Opcode) && !TII->get(Opcode).mayStore() && !TII->isGather4(Opcode)) adjustWritemask(Node, DAG); if (Opcode == AMDGPU::INSERT_SUBREG || Opcode == AMDGPU::REG_SEQUENCE) { legalizeTargetIndependentNode(Node, DAG); return Node; } return Node; } /// \brief Assign the register class depending on the number of /// bits set in the writemask void SITargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI, SDNode *Node) const { const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); if (TII->isVOP3(MI.getOpcode())) { // Make sure constant bus requirements are respected. TII->legalizeOperandsVOP3(MRI, MI); return; } if (TII->isMIMG(MI)) { unsigned VReg = MI.getOperand(0).getReg(); unsigned DmaskIdx = MI.getNumOperands() == 12 ? 3 : 4; unsigned Writemask = MI.getOperand(DmaskIdx).getImm(); unsigned BitsSet = 0; for (unsigned i = 0; i < 4; ++i) BitsSet += Writemask & (1 << i) ? 1 : 0; const TargetRegisterClass *RC; switch (BitsSet) { default: return; case 1: RC = &AMDGPU::VGPR_32RegClass; break; case 2: RC = &AMDGPU::VReg_64RegClass; break; case 3: RC = &AMDGPU::VReg_96RegClass; break; } unsigned NewOpcode = TII->getMaskedMIMGOp(MI.getOpcode(), BitsSet); MI.setDesc(TII->get(NewOpcode)); MRI.setRegClass(VReg, RC); return; } // Replace unused atomics with the no return version. int NoRetAtomicOp = AMDGPU::getAtomicNoRetOp(MI.getOpcode()); if (NoRetAtomicOp != -1) { if (!Node->hasAnyUseOfValue(0)) { MI.setDesc(TII->get(NoRetAtomicOp)); MI.RemoveOperand(0); return; } // For mubuf_atomic_cmpswap, we need to have tablegen use an extract_subreg // instruction, because the return type of these instructions is a vec2 of // the memory type, so it can be tied to the input operand. // This means these instructions always have a use, so we need to add a // special case to check if the atomic has only one extract_subreg use, // which itself has no uses. if ((Node->hasNUsesOfValue(1, 0) && Node->use_begin()->isMachineOpcode() && Node->use_begin()->getMachineOpcode() == AMDGPU::EXTRACT_SUBREG && !Node->use_begin()->hasAnyUseOfValue(0))) { unsigned Def = MI.getOperand(0).getReg(); // Change this into a noret atomic. MI.setDesc(TII->get(NoRetAtomicOp)); MI.RemoveOperand(0); // If we only remove the def operand from the atomic instruction, the // extract_subreg will be left with a use of a vreg without a def. // So we need to insert an implicit_def to avoid machine verifier // errors. BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), TII->get(AMDGPU::IMPLICIT_DEF), Def); } return; } } static SDValue buildSMovImm32(SelectionDAG &DAG, const SDLoc &DL, uint64_t Val) { SDValue K = DAG.getTargetConstant(Val, DL, MVT::i32); return SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, K), 0); } MachineSDNode *SITargetLowering::wrapAddr64Rsrc(SelectionDAG &DAG, const SDLoc &DL, SDValue Ptr) const { const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); // Build the half of the subregister with the constants before building the // full 128-bit register. If we are building multiple resource descriptors, // this will allow CSEing of the 2-component register. const SDValue Ops0[] = { DAG.getTargetConstant(AMDGPU::SGPR_64RegClassID, DL, MVT::i32), buildSMovImm32(DAG, DL, 0), DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32), buildSMovImm32(DAG, DL, TII->getDefaultRsrcDataFormat() >> 32), DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32) }; SDValue SubRegHi = SDValue(DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v2i32, Ops0), 0); // Combine the constants and the pointer. const SDValue Ops1[] = { DAG.getTargetConstant(AMDGPU::SReg_128RegClassID, DL, MVT::i32), Ptr, DAG.getTargetConstant(AMDGPU::sub0_sub1, DL, MVT::i32), SubRegHi, DAG.getTargetConstant(AMDGPU::sub2_sub3, DL, MVT::i32) }; return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops1); } /// \brief Return a resource descriptor with the 'Add TID' bit enabled /// The TID (Thread ID) is multiplied by the stride value (bits [61:48] /// of the resource descriptor) to create an offset, which is added to /// the resource pointer. MachineSDNode *SITargetLowering::buildRSRC(SelectionDAG &DAG, const SDLoc &DL, SDValue Ptr, uint32_t RsrcDword1, uint64_t RsrcDword2And3) const { SDValue PtrLo = DAG.getTargetExtractSubreg(AMDGPU::sub0, DL, MVT::i32, Ptr); SDValue PtrHi = DAG.getTargetExtractSubreg(AMDGPU::sub1, DL, MVT::i32, Ptr); if (RsrcDword1) { PtrHi = SDValue(DAG.getMachineNode(AMDGPU::S_OR_B32, DL, MVT::i32, PtrHi, DAG.getConstant(RsrcDword1, DL, MVT::i32)), 0); } SDValue DataLo = buildSMovImm32(DAG, DL, RsrcDword2And3 & UINT64_C(0xFFFFFFFF)); SDValue DataHi = buildSMovImm32(DAG, DL, RsrcDword2And3 >> 32); const SDValue Ops[] = { DAG.getTargetConstant(AMDGPU::SReg_128RegClassID, DL, MVT::i32), PtrLo, DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32), PtrHi, DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32), DataLo, DAG.getTargetConstant(AMDGPU::sub2, DL, MVT::i32), DataHi, DAG.getTargetConstant(AMDGPU::sub3, DL, MVT::i32) }; return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops); } SDValue SITargetLowering::CreateLiveInRegister(SelectionDAG &DAG, const TargetRegisterClass *RC, unsigned Reg, EVT VT) const { SDValue VReg = AMDGPUTargetLowering::CreateLiveInRegister(DAG, RC, Reg, VT); return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(DAG.getEntryNode()), cast<RegisterSDNode>(VReg)->getReg(), VT); } //===----------------------------------------------------------------------===// // SI Inline Assembly Support //===----------------------------------------------------------------------===// std::pair<unsigned, const TargetRegisterClass *> SITargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { if (Constraint.size() == 1) { switch (Constraint[0]) { case 's': case 'r': switch (VT.getSizeInBits()) { default: return std::make_pair(0U, nullptr); case 32: return std::make_pair(0U, &AMDGPU::SGPR_32RegClass); case 64: return std::make_pair(0U, &AMDGPU::SGPR_64RegClass); case 128: return std::make_pair(0U, &AMDGPU::SReg_128RegClass); case 256: return std::make_pair(0U, &AMDGPU::SReg_256RegClass); } case 'v': switch (VT.getSizeInBits()) { default: return std::make_pair(0U, nullptr); case 32: return std::make_pair(0U, &AMDGPU::VGPR_32RegClass); case 64: return std::make_pair(0U, &AMDGPU::VReg_64RegClass); case 96: return std::make_pair(0U, &AMDGPU::VReg_96RegClass); case 128: return std::make_pair(0U, &AMDGPU::VReg_128RegClass); case 256: return std::make_pair(0U, &AMDGPU::VReg_256RegClass); case 512: return std::make_pair(0U, &AMDGPU::VReg_512RegClass); } } } if (Constraint.size() > 1) { const TargetRegisterClass *RC = nullptr; if (Constraint[1] == 'v') { RC = &AMDGPU::VGPR_32RegClass; } else if (Constraint[1] == 's') { RC = &AMDGPU::SGPR_32RegClass; } if (RC) { uint32_t Idx; bool Failed = Constraint.substr(2).getAsInteger(10, Idx); if (!Failed && Idx < RC->getNumRegs()) return std::make_pair(RC->getRegister(Idx), RC); } } return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); } SITargetLowering::ConstraintType SITargetLowering::getConstraintType(StringRef Constraint) const { if (Constraint.size() == 1) { switch (Constraint[0]) { default: break; case 's': case 'v': return C_RegisterClass; } } return TargetLowering::getConstraintType(Constraint); }