//===--- RDFGraph.cpp -----------------------------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // Target-independent, SSA-based data flow graph for register data flow (RDF). // #include "RDFGraph.h" #include "llvm/ADT/SetVector.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineDominanceFrontier.h" #include "llvm/CodeGen/MachineDominators.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetRegisterInfo.h" using namespace llvm; using namespace rdf; // Printing functions. Have them here first, so that the rest of the code // can use them. namespace llvm { namespace rdf { template<> raw_ostream &operator<< (raw_ostream &OS, const Print<RegisterRef> &P) { auto &TRI = P.G.getTRI(); if (P.Obj.Reg > 0 && P.Obj.Reg < TRI.getNumRegs()) OS << TRI.getName(P.Obj.Reg); else OS << '#' << P.Obj.Reg; if (P.Obj.Sub > 0) { OS << ':'; if (P.Obj.Sub < TRI.getNumSubRegIndices()) OS << TRI.getSubRegIndexName(P.Obj.Sub); else OS << '#' << P.Obj.Sub; } return OS; } template<> raw_ostream &operator<< (raw_ostream &OS, const Print<NodeId> &P) { auto NA = P.G.addr<NodeBase*>(P.Obj); uint16_t Attrs = NA.Addr->getAttrs(); uint16_t Kind = NodeAttrs::kind(Attrs); uint16_t Flags = NodeAttrs::flags(Attrs); switch (NodeAttrs::type(Attrs)) { case NodeAttrs::Code: switch (Kind) { case NodeAttrs::Func: OS << 'f'; break; case NodeAttrs::Block: OS << 'b'; break; case NodeAttrs::Stmt: OS << 's'; break; case NodeAttrs::Phi: OS << 'p'; break; default: OS << "c?"; break; } break; case NodeAttrs::Ref: if (Flags & NodeAttrs::Preserving) OS << '+'; if (Flags & NodeAttrs::Clobbering) OS << '~'; switch (Kind) { case NodeAttrs::Use: OS << 'u'; break; case NodeAttrs::Def: OS << 'd'; break; case NodeAttrs::Block: OS << 'b'; break; default: OS << "r?"; break; } break; default: OS << '?'; break; } OS << P.Obj; if (Flags & NodeAttrs::Shadow) OS << '"'; return OS; } namespace { void printRefHeader(raw_ostream &OS, const NodeAddr<RefNode*> RA, const DataFlowGraph &G) { OS << Print<NodeId>(RA.Id, G) << '<' << Print<RegisterRef>(RA.Addr->getRegRef(), G) << '>'; if (RA.Addr->getFlags() & NodeAttrs::Fixed) OS << '!'; } } template<> raw_ostream &operator<< (raw_ostream &OS, const Print<NodeAddr<DefNode*>> &P) { printRefHeader(OS, P.Obj, P.G); OS << '('; if (NodeId N = P.Obj.Addr->getReachingDef()) OS << Print<NodeId>(N, P.G); OS << ','; if (NodeId N = P.Obj.Addr->getReachedDef()) OS << Print<NodeId>(N, P.G); OS << ','; if (NodeId N = P.Obj.Addr->getReachedUse()) OS << Print<NodeId>(N, P.G); OS << "):"; if (NodeId N = P.Obj.Addr->getSibling()) OS << Print<NodeId>(N, P.G); return OS; } template<> raw_ostream &operator<< (raw_ostream &OS, const Print<NodeAddr<UseNode*>> &P) { printRefHeader(OS, P.Obj, P.G); OS << '('; if (NodeId N = P.Obj.Addr->getReachingDef()) OS << Print<NodeId>(N, P.G); OS << "):"; if (NodeId N = P.Obj.Addr->getSibling()) OS << Print<NodeId>(N, P.G); return OS; } template<> raw_ostream &operator<< (raw_ostream &OS, const Print<NodeAddr<PhiUseNode*>> &P) { printRefHeader(OS, P.Obj, P.G); OS << '('; if (NodeId N = P.Obj.Addr->getReachingDef()) OS << Print<NodeId>(N, P.G); OS << ','; if (NodeId N = P.Obj.Addr->getPredecessor()) OS << Print<NodeId>(N, P.G); OS << "):"; if (NodeId N = P.Obj.Addr->getSibling()) OS << Print<NodeId>(N, P.G); return OS; } template<> raw_ostream &operator<< (raw_ostream &OS, const Print<NodeAddr<RefNode*>> &P) { switch (P.Obj.Addr->getKind()) { case NodeAttrs::Def: OS << PrintNode<DefNode*>(P.Obj, P.G); break; case NodeAttrs::Use: if (P.Obj.Addr->getFlags() & NodeAttrs::PhiRef) OS << PrintNode<PhiUseNode*>(P.Obj, P.G); else OS << PrintNode<UseNode*>(P.Obj, P.G); break; } return OS; } template<> raw_ostream &operator<< (raw_ostream &OS, const Print<NodeList> &P) { unsigned N = P.Obj.size(); for (auto I : P.Obj) { OS << Print<NodeId>(I.Id, P.G); if (--N) OS << ' '; } return OS; } template<> raw_ostream &operator<< (raw_ostream &OS, const Print<NodeSet> &P) { unsigned N = P.Obj.size(); for (auto I : P.Obj) { OS << Print<NodeId>(I, P.G); if (--N) OS << ' '; } return OS; } namespace { template <typename T> struct PrintListV { PrintListV(const NodeList &L, const DataFlowGraph &G) : List(L), G(G) {} typedef T Type; const NodeList &List; const DataFlowGraph &G; }; template <typename T> raw_ostream &operator<< (raw_ostream &OS, const PrintListV<T> &P) { unsigned N = P.List.size(); for (NodeAddr<T> A : P.List) { OS << PrintNode<T>(A, P.G); if (--N) OS << ", "; } return OS; } } template<> raw_ostream &operator<< (raw_ostream &OS, const Print<NodeAddr<PhiNode*>> &P) { OS << Print<NodeId>(P.Obj.Id, P.G) << ": phi [" << PrintListV<RefNode*>(P.Obj.Addr->members(P.G), P.G) << ']'; return OS; } template<> raw_ostream &operator<< (raw_ostream &OS, const Print<NodeAddr<StmtNode*>> &P) { unsigned Opc = P.Obj.Addr->getCode()->getOpcode(); OS << Print<NodeId>(P.Obj.Id, P.G) << ": " << P.G.getTII().getName(Opc) << " [" << PrintListV<RefNode*>(P.Obj.Addr->members(P.G), P.G) << ']'; return OS; } template<> raw_ostream &operator<< (raw_ostream &OS, const Print<NodeAddr<InstrNode*>> &P) { switch (P.Obj.Addr->getKind()) { case NodeAttrs::Phi: OS << PrintNode<PhiNode*>(P.Obj, P.G); break; case NodeAttrs::Stmt: OS << PrintNode<StmtNode*>(P.Obj, P.G); break; default: OS << "instr? " << Print<NodeId>(P.Obj.Id, P.G); break; } return OS; } template<> raw_ostream &operator<< (raw_ostream &OS, const Print<NodeAddr<BlockNode*>> &P) { auto *BB = P.Obj.Addr->getCode(); unsigned NP = BB->pred_size(); std::vector<int> Ns; auto PrintBBs = [&OS,&P] (std::vector<int> Ns) -> void { unsigned N = Ns.size(); for (auto I : Ns) { OS << "BB#" << I; if (--N) OS << ", "; } }; OS << Print<NodeId>(P.Obj.Id, P.G) << ": === BB#" << BB->getNumber() << " === preds(" << NP << "): "; for (auto I : BB->predecessors()) Ns.push_back(I->getNumber()); PrintBBs(Ns); unsigned NS = BB->succ_size(); OS << " succs(" << NS << "): "; Ns.clear(); for (auto I : BB->successors()) Ns.push_back(I->getNumber()); PrintBBs(Ns); OS << '\n'; for (auto I : P.Obj.Addr->members(P.G)) OS << PrintNode<InstrNode*>(I, P.G) << '\n'; return OS; } template<> raw_ostream &operator<< (raw_ostream &OS, const Print<NodeAddr<FuncNode*>> &P) { OS << "DFG dump:[\n" << Print<NodeId>(P.Obj.Id, P.G) << ": Function: " << P.Obj.Addr->getCode()->getName() << '\n'; for (auto I : P.Obj.Addr->members(P.G)) OS << PrintNode<BlockNode*>(I, P.G) << '\n'; OS << "]\n"; return OS; } template<> raw_ostream &operator<< (raw_ostream &OS, const Print<RegisterSet> &P) { OS << '{'; for (auto I : P.Obj) OS << ' ' << Print<RegisterRef>(I, P.G); OS << " }"; return OS; } template<> raw_ostream &operator<< (raw_ostream &OS, const Print<DataFlowGraph::DefStack> &P) { for (auto I = P.Obj.top(), E = P.Obj.bottom(); I != E; ) { OS << Print<NodeId>(I->Id, P.G) << '<' << Print<RegisterRef>(I->Addr->getRegRef(), P.G) << '>'; I.down(); if (I != E) OS << ' '; } return OS; } } // namespace rdf } // namespace llvm // Node allocation functions. // // Node allocator is like a slab memory allocator: it allocates blocks of // memory in sizes that are multiples of the size of a node. Each block has // the same size. Nodes are allocated from the currently active block, and // when it becomes full, a new one is created. // There is a mapping scheme between node id and its location in a block, // and within that block is described in the header file. // void NodeAllocator::startNewBlock() { void *T = MemPool.Allocate(NodesPerBlock*NodeMemSize, NodeMemSize); char *P = static_cast<char*>(T); Blocks.push_back(P); // Check if the block index is still within the allowed range, i.e. less // than 2^N, where N is the number of bits in NodeId for the block index. // BitsPerIndex is the number of bits per node index. assert((Blocks.size() < ((size_t)1 << (8*sizeof(NodeId)-BitsPerIndex))) && "Out of bits for block index"); ActiveEnd = P; } bool NodeAllocator::needNewBlock() { if (Blocks.empty()) return true; char *ActiveBegin = Blocks.back(); uint32_t Index = (ActiveEnd-ActiveBegin)/NodeMemSize; return Index >= NodesPerBlock; } NodeAddr<NodeBase*> NodeAllocator::New() { if (needNewBlock()) startNewBlock(); uint32_t ActiveB = Blocks.size()-1; uint32_t Index = (ActiveEnd - Blocks[ActiveB])/NodeMemSize; NodeAddr<NodeBase*> NA = { reinterpret_cast<NodeBase*>(ActiveEnd), makeId(ActiveB, Index) }; ActiveEnd += NodeMemSize; return NA; } NodeId NodeAllocator::id(const NodeBase *P) const { uintptr_t A = reinterpret_cast<uintptr_t>(P); for (unsigned i = 0, n = Blocks.size(); i != n; ++i) { uintptr_t B = reinterpret_cast<uintptr_t>(Blocks[i]); if (A < B || A >= B + NodesPerBlock*NodeMemSize) continue; uint32_t Idx = (A-B)/NodeMemSize; return makeId(i, Idx); } llvm_unreachable("Invalid node address"); } void NodeAllocator::clear() { MemPool.Reset(); Blocks.clear(); ActiveEnd = nullptr; } // Insert node NA after "this" in the circular chain. void NodeBase::append(NodeAddr<NodeBase*> NA) { NodeId Nx = Next; // If NA is already "next", do nothing. if (Next != NA.Id) { Next = NA.Id; NA.Addr->Next = Nx; } } // Fundamental node manipulator functions. // Obtain the register reference from a reference node. RegisterRef RefNode::getRegRef() const { assert(NodeAttrs::type(Attrs) == NodeAttrs::Ref); if (NodeAttrs::flags(Attrs) & NodeAttrs::PhiRef) return Ref.RR; assert(Ref.Op != nullptr); return { Ref.Op->getReg(), Ref.Op->getSubReg() }; } // Set the register reference in the reference node directly (for references // in phi nodes). void RefNode::setRegRef(RegisterRef RR) { assert(NodeAttrs::type(Attrs) == NodeAttrs::Ref); assert(NodeAttrs::flags(Attrs) & NodeAttrs::PhiRef); Ref.RR = RR; } // Set the register reference in the reference node based on a machine // operand (for references in statement nodes). void RefNode::setRegRef(MachineOperand *Op) { assert(NodeAttrs::type(Attrs) == NodeAttrs::Ref); assert(!(NodeAttrs::flags(Attrs) & NodeAttrs::PhiRef)); Ref.Op = Op; } // Get the owner of a given reference node. NodeAddr<NodeBase*> RefNode::getOwner(const DataFlowGraph &G) { NodeAddr<NodeBase*> NA = G.addr<NodeBase*>(getNext()); while (NA.Addr != this) { if (NA.Addr->getType() == NodeAttrs::Code) return NA; NA = G.addr<NodeBase*>(NA.Addr->getNext()); } llvm_unreachable("No owner in circular list"); } // Connect the def node to the reaching def node. void DefNode::linkToDef(NodeId Self, NodeAddr<DefNode*> DA) { Ref.RD = DA.Id; Ref.Sib = DA.Addr->getReachedDef(); DA.Addr->setReachedDef(Self); } // Connect the use node to the reaching def node. void UseNode::linkToDef(NodeId Self, NodeAddr<DefNode*> DA) { Ref.RD = DA.Id; Ref.Sib = DA.Addr->getReachedUse(); DA.Addr->setReachedUse(Self); } // Get the first member of the code node. NodeAddr<NodeBase*> CodeNode::getFirstMember(const DataFlowGraph &G) const { if (Code.FirstM == 0) return NodeAddr<NodeBase*>(); return G.addr<NodeBase*>(Code.FirstM); } // Get the last member of the code node. NodeAddr<NodeBase*> CodeNode::getLastMember(const DataFlowGraph &G) const { if (Code.LastM == 0) return NodeAddr<NodeBase*>(); return G.addr<NodeBase*>(Code.LastM); } // Add node NA at the end of the member list of the given code node. void CodeNode::addMember(NodeAddr<NodeBase*> NA, const DataFlowGraph &G) { auto ML = getLastMember(G); if (ML.Id != 0) { ML.Addr->append(NA); } else { Code.FirstM = NA.Id; NodeId Self = G.id(this); NA.Addr->setNext(Self); } Code.LastM = NA.Id; } // Add node NA after member node MA in the given code node. void CodeNode::addMemberAfter(NodeAddr<NodeBase*> MA, NodeAddr<NodeBase*> NA, const DataFlowGraph &G) { MA.Addr->append(NA); if (Code.LastM == MA.Id) Code.LastM = NA.Id; } // Remove member node NA from the given code node. void CodeNode::removeMember(NodeAddr<NodeBase*> NA, const DataFlowGraph &G) { auto MA = getFirstMember(G); assert(MA.Id != 0); // Special handling if the member to remove is the first member. if (MA.Id == NA.Id) { if (Code.LastM == MA.Id) { // If it is the only member, set both first and last to 0. Code.FirstM = Code.LastM = 0; } else { // Otherwise, advance the first member. Code.FirstM = MA.Addr->getNext(); } return; } while (MA.Addr != this) { NodeId MX = MA.Addr->getNext(); if (MX == NA.Id) { MA.Addr->setNext(NA.Addr->getNext()); // If the member to remove happens to be the last one, update the // LastM indicator. if (Code.LastM == NA.Id) Code.LastM = MA.Id; return; } MA = G.addr<NodeBase*>(MX); } llvm_unreachable("No such member"); } // Return the list of all members of the code node. NodeList CodeNode::members(const DataFlowGraph &G) const { static auto True = [] (NodeAddr<NodeBase*>) -> bool { return true; }; return members_if(True, G); } // Return the owner of the given instr node. NodeAddr<NodeBase*> InstrNode::getOwner(const DataFlowGraph &G) { NodeAddr<NodeBase*> NA = G.addr<NodeBase*>(getNext()); while (NA.Addr != this) { assert(NA.Addr->getType() == NodeAttrs::Code); if (NA.Addr->getKind() == NodeAttrs::Block) return NA; NA = G.addr<NodeBase*>(NA.Addr->getNext()); } llvm_unreachable("No owner in circular list"); } // Add the phi node PA to the given block node. void BlockNode::addPhi(NodeAddr<PhiNode*> PA, const DataFlowGraph &G) { auto M = getFirstMember(G); if (M.Id == 0) { addMember(PA, G); return; } assert(M.Addr->getType() == NodeAttrs::Code); if (M.Addr->getKind() == NodeAttrs::Stmt) { // If the first member of the block is a statement, insert the phi as // the first member. Code.FirstM = PA.Id; PA.Addr->setNext(M.Id); } else { // If the first member is a phi, find the last phi, and append PA to it. assert(M.Addr->getKind() == NodeAttrs::Phi); NodeAddr<NodeBase*> MN = M; do { M = MN; MN = G.addr<NodeBase*>(M.Addr->getNext()); assert(MN.Addr->getType() == NodeAttrs::Code); } while (MN.Addr->getKind() == NodeAttrs::Phi); // M is the last phi. addMemberAfter(M, PA, G); } } // Find the block node corresponding to the machine basic block BB in the // given func node. NodeAddr<BlockNode*> FuncNode::findBlock(const MachineBasicBlock *BB, const DataFlowGraph &G) const { auto EqBB = [BB] (NodeAddr<NodeBase*> NA) -> bool { return NodeAddr<BlockNode*>(NA).Addr->getCode() == BB; }; NodeList Ms = members_if(EqBB, G); if (!Ms.empty()) return Ms[0]; return NodeAddr<BlockNode*>(); } // Get the block node for the entry block in the given function. NodeAddr<BlockNode*> FuncNode::getEntryBlock(const DataFlowGraph &G) { MachineBasicBlock *EntryB = &getCode()->front(); return findBlock(EntryB, G); } // Register aliasing information. // // In theory, the lane information could be used to determine register // covering (and aliasing), but depending on the sub-register structure, // the lane mask information may be missing. The covering information // must be available for this framework to work, so relying solely on // the lane data is not sufficient. // Determine whether RA covers RB. bool RegisterAliasInfo::covers(RegisterRef RA, RegisterRef RB) const { if (RA == RB) return true; if (TargetRegisterInfo::isVirtualRegister(RA.Reg)) { assert(TargetRegisterInfo::isVirtualRegister(RB.Reg)); if (RA.Reg != RB.Reg) return false; if (RA.Sub == 0) return true; return TRI.composeSubRegIndices(RA.Sub, RB.Sub) == RA.Sub; } assert(TargetRegisterInfo::isPhysicalRegister(RA.Reg) && TargetRegisterInfo::isPhysicalRegister(RB.Reg)); unsigned A = RA.Sub != 0 ? TRI.getSubReg(RA.Reg, RA.Sub) : RA.Reg; unsigned B = RB.Sub != 0 ? TRI.getSubReg(RB.Reg, RB.Sub) : RB.Reg; return TRI.isSubRegister(A, B); } // Determine whether RR is covered by the set of references RRs. bool RegisterAliasInfo::covers(const RegisterSet &RRs, RegisterRef RR) const { if (RRs.count(RR)) return true; // For virtual registers, we cannot accurately determine covering based // on subregisters. If RR itself is not present in RRs, but it has a sub- // register reference, check for the super-register alone. Otherwise, // assume non-covering. if (TargetRegisterInfo::isVirtualRegister(RR.Reg)) { if (RR.Sub != 0) return RRs.count({RR.Reg, 0}); return false; } // If any super-register of RR is present, then RR is covered. unsigned Reg = RR.Sub == 0 ? RR.Reg : TRI.getSubReg(RR.Reg, RR.Sub); for (MCSuperRegIterator SR(Reg, &TRI); SR.isValid(); ++SR) if (RRs.count({*SR, 0})) return true; return false; } // Get the list of references aliased to RR. std::vector<RegisterRef> RegisterAliasInfo::getAliasSet(RegisterRef RR) const { // Do not include RR in the alias set. For virtual registers return an // empty set. std::vector<RegisterRef> AS; if (TargetRegisterInfo::isVirtualRegister(RR.Reg)) return AS; assert(TargetRegisterInfo::isPhysicalRegister(RR.Reg)); unsigned R = RR.Reg; if (RR.Sub) R = TRI.getSubReg(RR.Reg, RR.Sub); for (MCRegAliasIterator AI(R, &TRI, false); AI.isValid(); ++AI) AS.push_back(RegisterRef({*AI, 0})); return AS; } // Check whether RA and RB are aliased. bool RegisterAliasInfo::alias(RegisterRef RA, RegisterRef RB) const { bool VirtA = TargetRegisterInfo::isVirtualRegister(RA.Reg); bool VirtB = TargetRegisterInfo::isVirtualRegister(RB.Reg); bool PhysA = TargetRegisterInfo::isPhysicalRegister(RA.Reg); bool PhysB = TargetRegisterInfo::isPhysicalRegister(RB.Reg); if (VirtA != VirtB) return false; if (VirtA) { if (RA.Reg != RB.Reg) return false; // RA and RB refer to the same register. If any of them refer to the // whole register, they must be aliased. if (RA.Sub == 0 || RB.Sub == 0) return true; unsigned SA = TRI.getSubRegIdxSize(RA.Sub); unsigned OA = TRI.getSubRegIdxOffset(RA.Sub); unsigned SB = TRI.getSubRegIdxSize(RB.Sub); unsigned OB = TRI.getSubRegIdxOffset(RB.Sub); if (OA <= OB && OA+SA > OB) return true; if (OB <= OA && OB+SB > OA) return true; return false; } assert(PhysA && PhysB); (void)PhysA, (void)PhysB; unsigned A = RA.Sub ? TRI.getSubReg(RA.Reg, RA.Sub) : RA.Reg; unsigned B = RB.Sub ? TRI.getSubReg(RB.Reg, RB.Sub) : RB.Reg; for (MCRegAliasIterator I(A, &TRI, true); I.isValid(); ++I) if (B == *I) return true; return false; } // Target operand information. // // For a given instruction, check if there are any bits of RR that can remain // unchanged across this def. bool TargetOperandInfo::isPreserving(const MachineInstr &In, unsigned OpNum) const { return TII.isPredicated(In); } // Check if the definition of RR produces an unspecified value. bool TargetOperandInfo::isClobbering(const MachineInstr &In, unsigned OpNum) const { if (In.isCall()) if (In.getOperand(OpNum).isImplicit()) return true; return false; } // Check if the given instruction specifically requires bool TargetOperandInfo::isFixedReg(const MachineInstr &In, unsigned OpNum) const { if (In.isCall() || In.isReturn() || In.isInlineAsm()) return true; // Check for a tail call. if (In.isBranch()) for (auto &O : In.operands()) if (O.isGlobal() || O.isSymbol()) return true; const MCInstrDesc &D = In.getDesc(); if (!D.getImplicitDefs() && !D.getImplicitUses()) return false; const MachineOperand &Op = In.getOperand(OpNum); // If there is a sub-register, treat the operand as non-fixed. Currently, // fixed registers are those that are listed in the descriptor as implicit // uses or defs, and those lists do not allow sub-registers. if (Op.getSubReg() != 0) return false; unsigned Reg = Op.getReg(); const MCPhysReg *ImpR = Op.isDef() ? D.getImplicitDefs() : D.getImplicitUses(); if (!ImpR) return false; while (*ImpR) if (*ImpR++ == Reg) return true; return false; } // // The data flow graph construction. // DataFlowGraph::DataFlowGraph(MachineFunction &mf, const TargetInstrInfo &tii, const TargetRegisterInfo &tri, const MachineDominatorTree &mdt, const MachineDominanceFrontier &mdf, const RegisterAliasInfo &rai, const TargetOperandInfo &toi) : TimeG("rdf"), MF(mf), TII(tii), TRI(tri), MDT(mdt), MDF(mdf), RAI(rai), TOI(toi) { } // The implementation of the definition stack. // Each register reference has its own definition stack. In particular, // for a register references "Reg" and "Reg:subreg" will each have their // own definition stacks. // Construct a stack iterator. DataFlowGraph::DefStack::Iterator::Iterator(const DataFlowGraph::DefStack &S, bool Top) : DS(S) { if (!Top) { // Initialize to bottom. Pos = 0; return; } // Initialize to the top, i.e. top-most non-delimiter (or 0, if empty). Pos = DS.Stack.size(); while (Pos > 0 && DS.isDelimiter(DS.Stack[Pos-1])) Pos--; } // Return the size of the stack, including block delimiters. unsigned DataFlowGraph::DefStack::size() const { unsigned S = 0; for (auto I = top(), E = bottom(); I != E; I.down()) S++; return S; } // Remove the top entry from the stack. Remove all intervening delimiters // so that after this, the stack is either empty, or the top of the stack // is a non-delimiter. void DataFlowGraph::DefStack::pop() { assert(!empty()); unsigned P = nextDown(Stack.size()); Stack.resize(P); } // Push a delimiter for block node N on the stack. void DataFlowGraph::DefStack::start_block(NodeId N) { assert(N != 0); Stack.push_back(NodeAddr<DefNode*>(nullptr, N)); } // Remove all nodes from the top of the stack, until the delimited for // block node N is encountered. Remove the delimiter as well. In effect, // this will remove from the stack all definitions from block N. void DataFlowGraph::DefStack::clear_block(NodeId N) { assert(N != 0); unsigned P = Stack.size(); while (P > 0) { bool Found = isDelimiter(Stack[P-1], N); P--; if (Found) break; } // This will also remove the delimiter, if found. Stack.resize(P); } // Move the stack iterator up by one. unsigned DataFlowGraph::DefStack::nextUp(unsigned P) const { // Get the next valid position after P (skipping all delimiters). // The input position P does not have to point to a non-delimiter. unsigned SS = Stack.size(); bool IsDelim; assert(P < SS); do { P++; IsDelim = isDelimiter(Stack[P-1]); } while (P < SS && IsDelim); assert(!IsDelim); return P; } // Move the stack iterator down by one. unsigned DataFlowGraph::DefStack::nextDown(unsigned P) const { // Get the preceding valid position before P (skipping all delimiters). // The input position P does not have to point to a non-delimiter. assert(P > 0 && P <= Stack.size()); bool IsDelim = isDelimiter(Stack[P-1]); do { if (--P == 0) break; IsDelim = isDelimiter(Stack[P-1]); } while (P > 0 && IsDelim); assert(!IsDelim); return P; } // Node management functions. // Get the pointer to the node with the id N. NodeBase *DataFlowGraph::ptr(NodeId N) const { if (N == 0) return nullptr; return Memory.ptr(N); } // Get the id of the node at the address P. NodeId DataFlowGraph::id(const NodeBase *P) const { if (P == nullptr) return 0; return Memory.id(P); } // Allocate a new node and set the attributes to Attrs. NodeAddr<NodeBase*> DataFlowGraph::newNode(uint16_t Attrs) { NodeAddr<NodeBase*> P = Memory.New(); P.Addr->init(); P.Addr->setAttrs(Attrs); return P; } // Make a copy of the given node B, except for the data-flow links, which // are set to 0. NodeAddr<NodeBase*> DataFlowGraph::cloneNode(const NodeAddr<NodeBase*> B) { NodeAddr<NodeBase*> NA = newNode(0); memcpy(NA.Addr, B.Addr, sizeof(NodeBase)); // Ref nodes need to have the data-flow links reset. if (NA.Addr->getType() == NodeAttrs::Ref) { NodeAddr<RefNode*> RA = NA; RA.Addr->setReachingDef(0); RA.Addr->setSibling(0); if (NA.Addr->getKind() == NodeAttrs::Def) { NodeAddr<DefNode*> DA = NA; DA.Addr->setReachedDef(0); DA.Addr->setReachedUse(0); } } return NA; } // Allocation routines for specific node types/kinds. NodeAddr<UseNode*> DataFlowGraph::newUse(NodeAddr<InstrNode*> Owner, MachineOperand &Op, uint16_t Flags) { NodeAddr<UseNode*> UA = newNode(NodeAttrs::Ref | NodeAttrs::Use | Flags); UA.Addr->setRegRef(&Op); return UA; } NodeAddr<PhiUseNode*> DataFlowGraph::newPhiUse(NodeAddr<PhiNode*> Owner, RegisterRef RR, NodeAddr<BlockNode*> PredB, uint16_t Flags) { NodeAddr<PhiUseNode*> PUA = newNode(NodeAttrs::Ref | NodeAttrs::Use | Flags); assert(Flags & NodeAttrs::PhiRef); PUA.Addr->setRegRef(RR); PUA.Addr->setPredecessor(PredB.Id); return PUA; } NodeAddr<DefNode*> DataFlowGraph::newDef(NodeAddr<InstrNode*> Owner, MachineOperand &Op, uint16_t Flags) { NodeAddr<DefNode*> DA = newNode(NodeAttrs::Ref | NodeAttrs::Def | Flags); DA.Addr->setRegRef(&Op); return DA; } NodeAddr<DefNode*> DataFlowGraph::newDef(NodeAddr<InstrNode*> Owner, RegisterRef RR, uint16_t Flags) { NodeAddr<DefNode*> DA = newNode(NodeAttrs::Ref | NodeAttrs::Def | Flags); assert(Flags & NodeAttrs::PhiRef); DA.Addr->setRegRef(RR); return DA; } NodeAddr<PhiNode*> DataFlowGraph::newPhi(NodeAddr<BlockNode*> Owner) { NodeAddr<PhiNode*> PA = newNode(NodeAttrs::Code | NodeAttrs::Phi); Owner.Addr->addPhi(PA, *this); return PA; } NodeAddr<StmtNode*> DataFlowGraph::newStmt(NodeAddr<BlockNode*> Owner, MachineInstr *MI) { NodeAddr<StmtNode*> SA = newNode(NodeAttrs::Code | NodeAttrs::Stmt); SA.Addr->setCode(MI); Owner.Addr->addMember(SA, *this); return SA; } NodeAddr<BlockNode*> DataFlowGraph::newBlock(NodeAddr<FuncNode*> Owner, MachineBasicBlock *BB) { NodeAddr<BlockNode*> BA = newNode(NodeAttrs::Code | NodeAttrs::Block); BA.Addr->setCode(BB); Owner.Addr->addMember(BA, *this); return BA; } NodeAddr<FuncNode*> DataFlowGraph::newFunc(MachineFunction *MF) { NodeAddr<FuncNode*> FA = newNode(NodeAttrs::Code | NodeAttrs::Func); FA.Addr->setCode(MF); return FA; } // Build the data flow graph. void DataFlowGraph::build(unsigned Options) { reset(); Func = newFunc(&MF); if (MF.empty()) return; for (auto &B : MF) { auto BA = newBlock(Func, &B); for (auto &I : B) { if (I.isDebugValue()) continue; buildStmt(BA, I); } } // Collect information about block references. NodeAddr<BlockNode*> EA = Func.Addr->getEntryBlock(*this); BlockRefsMap RefM; buildBlockRefs(EA, RefM); // Add function-entry phi nodes. MachineRegisterInfo &MRI = MF.getRegInfo(); for (auto I = MRI.livein_begin(), E = MRI.livein_end(); I != E; ++I) { NodeAddr<PhiNode*> PA = newPhi(EA); RegisterRef RR = { I->first, 0 }; uint16_t PhiFlags = NodeAttrs::PhiRef | NodeAttrs::Preserving; NodeAddr<DefNode*> DA = newDef(PA, RR, PhiFlags); PA.Addr->addMember(DA, *this); } // Build a map "PhiM" which will contain, for each block, the set // of references that will require phi definitions in that block. BlockRefsMap PhiM; auto Blocks = Func.Addr->members(*this); for (NodeAddr<BlockNode*> BA : Blocks) recordDefsForDF(PhiM, RefM, BA); for (NodeAddr<BlockNode*> BA : Blocks) buildPhis(PhiM, RefM, BA); // Link all the refs. This will recursively traverse the dominator tree. DefStackMap DM; linkBlockRefs(DM, EA); // Finally, remove all unused phi nodes. if (!(Options & BuildOptions::KeepDeadPhis)) removeUnusedPhis(); } // For each stack in the map DefM, push the delimiter for block B on it. void DataFlowGraph::markBlock(NodeId B, DefStackMap &DefM) { // Push block delimiters. for (auto I = DefM.begin(), E = DefM.end(); I != E; ++I) I->second.start_block(B); } // Remove all definitions coming from block B from each stack in DefM. void DataFlowGraph::releaseBlock(NodeId B, DefStackMap &DefM) { // Pop all defs from this block from the definition stack. Defs that were // added to the map during the traversal of instructions will not have a // delimiter, but for those, the whole stack will be emptied. for (auto I = DefM.begin(), E = DefM.end(); I != E; ++I) I->second.clear_block(B); // Finally, remove empty stacks from the map. for (auto I = DefM.begin(), E = DefM.end(), NextI = I; I != E; I = NextI) { NextI = std::next(I); // This preserves the validity of iterators other than I. if (I->second.empty()) DefM.erase(I); } } // Push all definitions from the instruction node IA to an appropriate // stack in DefM. void DataFlowGraph::pushDefs(NodeAddr<InstrNode*> IA, DefStackMap &DefM) { NodeList Defs = IA.Addr->members_if(IsDef, *this); NodeSet Visited; #ifndef NDEBUG RegisterSet Defined; #endif // The important objectives of this function are: // - to be able to handle instructions both while the graph is being // constructed, and after the graph has been constructed, and // - maintain proper ordering of definitions on the stack for each // register reference: // - if there are two or more related defs in IA (i.e. coming from // the same machine operand), then only push one def on the stack, // - if there are multiple unrelated defs of non-overlapping // subregisters of S, then the stack for S will have both (in an // unspecified order), but the order does not matter from the data- // -flow perspective. for (NodeAddr<DefNode*> DA : Defs) { if (Visited.count(DA.Id)) continue; NodeList Rel = getRelatedRefs(IA, DA); NodeAddr<DefNode*> PDA = Rel.front(); // Push the definition on the stack for the register and all aliases. RegisterRef RR = PDA.Addr->getRegRef(); #ifndef NDEBUG // Assert if the register is defined in two or more unrelated defs. // This could happen if there are two or more def operands defining it. if (!Defined.insert(RR).second) { auto *MI = NodeAddr<StmtNode*>(IA).Addr->getCode(); dbgs() << "Multiple definitions of register: " << Print<RegisterRef>(RR, *this) << " in\n " << *MI << "in BB#" << MI->getParent()->getNumber() << '\n'; llvm_unreachable(nullptr); } #endif DefM[RR].push(DA); for (auto A : RAI.getAliasSet(RR)) { assert(A != RR); DefM[A].push(DA); } // Mark all the related defs as visited. for (auto T : Rel) Visited.insert(T.Id); } } // Return the list of all reference nodes related to RA, including RA itself. // See "getNextRelated" for the meaning of a "related reference". NodeList DataFlowGraph::getRelatedRefs(NodeAddr<InstrNode*> IA, NodeAddr<RefNode*> RA) const { assert(IA.Id != 0 && RA.Id != 0); NodeList Refs; NodeId Start = RA.Id; do { Refs.push_back(RA); RA = getNextRelated(IA, RA); } while (RA.Id != 0 && RA.Id != Start); return Refs; } // Clear all information in the graph. void DataFlowGraph::reset() { Memory.clear(); Func = NodeAddr<FuncNode*>(); } // Return the next reference node in the instruction node IA that is related // to RA. Conceptually, two reference nodes are related if they refer to the // same instance of a register access, but differ in flags or other minor // characteristics. Specific examples of related nodes are shadow reference // nodes. // Return the equivalent of nullptr if there are no more related references. NodeAddr<RefNode*> DataFlowGraph::getNextRelated(NodeAddr<InstrNode*> IA, NodeAddr<RefNode*> RA) const { assert(IA.Id != 0 && RA.Id != 0); auto Related = [RA](NodeAddr<RefNode*> TA) -> bool { if (TA.Addr->getKind() != RA.Addr->getKind()) return false; if (TA.Addr->getRegRef() != RA.Addr->getRegRef()) return false; return true; }; auto RelatedStmt = [&Related,RA](NodeAddr<RefNode*> TA) -> bool { return Related(TA) && &RA.Addr->getOp() == &TA.Addr->getOp(); }; auto RelatedPhi = [&Related,RA](NodeAddr<RefNode*> TA) -> bool { if (!Related(TA)) return false; if (TA.Addr->getKind() != NodeAttrs::Use) return true; // For phi uses, compare predecessor blocks. const NodeAddr<const PhiUseNode*> TUA = TA; const NodeAddr<const PhiUseNode*> RUA = RA; return TUA.Addr->getPredecessor() == RUA.Addr->getPredecessor(); }; RegisterRef RR = RA.Addr->getRegRef(); if (IA.Addr->getKind() == NodeAttrs::Stmt) return RA.Addr->getNextRef(RR, RelatedStmt, true, *this); return RA.Addr->getNextRef(RR, RelatedPhi, true, *this); } // Find the next node related to RA in IA that satisfies condition P. // If such a node was found, return a pair where the second element is the // located node. If such a node does not exist, return a pair where the // first element is the element after which such a node should be inserted, // and the second element is a null-address. template <typename Predicate> std::pair<NodeAddr<RefNode*>,NodeAddr<RefNode*>> DataFlowGraph::locateNextRef(NodeAddr<InstrNode*> IA, NodeAddr<RefNode*> RA, Predicate P) const { assert(IA.Id != 0 && RA.Id != 0); NodeAddr<RefNode*> NA; NodeId Start = RA.Id; while (true) { NA = getNextRelated(IA, RA); if (NA.Id == 0 || NA.Id == Start) break; if (P(NA)) break; RA = NA; } if (NA.Id != 0 && NA.Id != Start) return std::make_pair(RA, NA); return std::make_pair(RA, NodeAddr<RefNode*>()); } // Get the next shadow node in IA corresponding to RA, and optionally create // such a node if it does not exist. NodeAddr<RefNode*> DataFlowGraph::getNextShadow(NodeAddr<InstrNode*> IA, NodeAddr<RefNode*> RA, bool Create) { assert(IA.Id != 0 && RA.Id != 0); uint16_t Flags = RA.Addr->getFlags() | NodeAttrs::Shadow; auto IsShadow = [Flags] (NodeAddr<RefNode*> TA) -> bool { return TA.Addr->getFlags() == Flags; }; auto Loc = locateNextRef(IA, RA, IsShadow); if (Loc.second.Id != 0 || !Create) return Loc.second; // Create a copy of RA and mark is as shadow. NodeAddr<RefNode*> NA = cloneNode(RA); NA.Addr->setFlags(Flags | NodeAttrs::Shadow); IA.Addr->addMemberAfter(Loc.first, NA, *this); return NA; } // Get the next shadow node in IA corresponding to RA. Return null-address // if such a node does not exist. NodeAddr<RefNode*> DataFlowGraph::getNextShadow(NodeAddr<InstrNode*> IA, NodeAddr<RefNode*> RA) const { assert(IA.Id != 0 && RA.Id != 0); uint16_t Flags = RA.Addr->getFlags() | NodeAttrs::Shadow; auto IsShadow = [Flags] (NodeAddr<RefNode*> TA) -> bool { return TA.Addr->getFlags() == Flags; }; return locateNextRef(IA, RA, IsShadow).second; } // Create a new statement node in the block node BA that corresponds to // the machine instruction MI. void DataFlowGraph::buildStmt(NodeAddr<BlockNode*> BA, MachineInstr &In) { auto SA = newStmt(BA, &In); auto isCall = [] (const MachineInstr &In) -> bool { if (In.isCall()) return true; // Is tail call? if (In.isBranch()) for (auto &Op : In.operands()) if (Op.isGlobal() || Op.isSymbol()) return true; return false; }; // Collect a set of registers that this instruction implicitly uses // or defines. Implicit operands from an instruction will be ignored // unless they are listed here. RegisterSet ImpUses, ImpDefs; if (const uint16_t *ImpD = In.getDesc().getImplicitDefs()) while (uint16_t R = *ImpD++) ImpDefs.insert({R, 0}); if (const uint16_t *ImpU = In.getDesc().getImplicitUses()) while (uint16_t R = *ImpU++) ImpUses.insert({R, 0}); bool NeedsImplicit = isCall(In) || In.isInlineAsm() || In.isReturn(); bool IsPredicated = TII.isPredicated(In); unsigned NumOps = In.getNumOperands(); // Avoid duplicate implicit defs. This will not detect cases of implicit // defs that define registers that overlap, but it is not clear how to // interpret that in the absence of explicit defs. Overlapping explicit // defs are likely illegal already. RegisterSet DoneDefs; // Process explicit defs first. for (unsigned OpN = 0; OpN < NumOps; ++OpN) { MachineOperand &Op = In.getOperand(OpN); if (!Op.isReg() || !Op.isDef() || Op.isImplicit()) continue; RegisterRef RR = { Op.getReg(), Op.getSubReg() }; uint16_t Flags = NodeAttrs::None; if (TOI.isPreserving(In, OpN)) Flags |= NodeAttrs::Preserving; if (TOI.isClobbering(In, OpN)) Flags |= NodeAttrs::Clobbering; if (TOI.isFixedReg(In, OpN)) Flags |= NodeAttrs::Fixed; NodeAddr<DefNode*> DA = newDef(SA, Op, Flags); SA.Addr->addMember(DA, *this); DoneDefs.insert(RR); } // Process implicit defs, skipping those that have already been added // as explicit. for (unsigned OpN = 0; OpN < NumOps; ++OpN) { MachineOperand &Op = In.getOperand(OpN); if (!Op.isReg() || !Op.isDef() || !Op.isImplicit()) continue; RegisterRef RR = { Op.getReg(), Op.getSubReg() }; if (!NeedsImplicit && !ImpDefs.count(RR)) continue; if (DoneDefs.count(RR)) continue; uint16_t Flags = NodeAttrs::None; if (TOI.isPreserving(In, OpN)) Flags |= NodeAttrs::Preserving; if (TOI.isClobbering(In, OpN)) Flags |= NodeAttrs::Clobbering; if (TOI.isFixedReg(In, OpN)) Flags |= NodeAttrs::Fixed; NodeAddr<DefNode*> DA = newDef(SA, Op, Flags); SA.Addr->addMember(DA, *this); DoneDefs.insert(RR); } for (unsigned OpN = 0; OpN < NumOps; ++OpN) { MachineOperand &Op = In.getOperand(OpN); if (!Op.isReg() || !Op.isUse()) continue; RegisterRef RR = { Op.getReg(), Op.getSubReg() }; // Add implicit uses on return and call instructions, and on predicated // instructions regardless of whether or not they appear in the instruction // descriptor's list. bool Implicit = Op.isImplicit(); bool TakeImplicit = NeedsImplicit || IsPredicated; if (Implicit && !TakeImplicit && !ImpUses.count(RR)) continue; uint16_t Flags = NodeAttrs::None; if (TOI.isFixedReg(In, OpN)) Flags |= NodeAttrs::Fixed; NodeAddr<UseNode*> UA = newUse(SA, Op, Flags); SA.Addr->addMember(UA, *this); } } // Build a map that for each block will have the set of all references from // that block, and from all blocks dominated by it. void DataFlowGraph::buildBlockRefs(NodeAddr<BlockNode*> BA, BlockRefsMap &RefM) { auto &Refs = RefM[BA.Id]; MachineDomTreeNode *N = MDT.getNode(BA.Addr->getCode()); assert(N); for (auto I : *N) { MachineBasicBlock *SB = I->getBlock(); auto SBA = Func.Addr->findBlock(SB, *this); buildBlockRefs(SBA, RefM); const auto &SRs = RefM[SBA.Id]; Refs.insert(SRs.begin(), SRs.end()); } for (NodeAddr<InstrNode*> IA : BA.Addr->members(*this)) for (NodeAddr<RefNode*> RA : IA.Addr->members(*this)) Refs.insert(RA.Addr->getRegRef()); } // Scan all defs in the block node BA and record in PhiM the locations of // phi nodes corresponding to these defs. void DataFlowGraph::recordDefsForDF(BlockRefsMap &PhiM, BlockRefsMap &RefM, NodeAddr<BlockNode*> BA) { // Check all defs from block BA and record them in each block in BA's // iterated dominance frontier. This information will later be used to // create phi nodes. MachineBasicBlock *BB = BA.Addr->getCode(); assert(BB); auto DFLoc = MDF.find(BB); if (DFLoc == MDF.end() || DFLoc->second.empty()) return; // Traverse all instructions in the block and collect the set of all // defined references. For each reference there will be a phi created // in the block's iterated dominance frontier. // This is done to make sure that each defined reference gets only one // phi node, even if it is defined multiple times. RegisterSet Defs; for (auto I : BA.Addr->members(*this)) { assert(I.Addr->getType() == NodeAttrs::Code); assert(I.Addr->getKind() == NodeAttrs::Phi || I.Addr->getKind() == NodeAttrs::Stmt); NodeAddr<InstrNode*> IA = I; for (NodeAddr<RefNode*> RA : IA.Addr->members_if(IsDef, *this)) Defs.insert(RA.Addr->getRegRef()); } // Finally, add the set of defs to each block in the iterated dominance // frontier. const MachineDominanceFrontier::DomSetType &DF = DFLoc->second; SetVector<MachineBasicBlock*> IDF(DF.begin(), DF.end()); for (unsigned i = 0; i < IDF.size(); ++i) { auto F = MDF.find(IDF[i]); if (F != MDF.end()) IDF.insert(F->second.begin(), F->second.end()); } // Get the register references that are reachable from this block. RegisterSet &Refs = RefM[BA.Id]; for (auto DB : IDF) { auto DBA = Func.Addr->findBlock(DB, *this); const auto &Rs = RefM[DBA.Id]; Refs.insert(Rs.begin(), Rs.end()); } for (auto DB : IDF) { auto DBA = Func.Addr->findBlock(DB, *this); PhiM[DBA.Id].insert(Defs.begin(), Defs.end()); } } // Given the locations of phi nodes in the map PhiM, create the phi nodes // that are located in the block node BA. void DataFlowGraph::buildPhis(BlockRefsMap &PhiM, BlockRefsMap &RefM, NodeAddr<BlockNode*> BA) { // Check if this blocks has any DF defs, i.e. if there are any defs // that this block is in the iterated dominance frontier of. auto HasDF = PhiM.find(BA.Id); if (HasDF == PhiM.end() || HasDF->second.empty()) return; // First, remove all R in Refs in such that there exists T in Refs // such that T covers R. In other words, only leave those refs that // are not covered by another ref (i.e. maximal with respect to covering). auto MaxCoverIn = [this] (RegisterRef RR, RegisterSet &RRs) -> RegisterRef { for (auto I : RRs) if (I != RR && RAI.covers(I, RR)) RR = I; return RR; }; RegisterSet MaxDF; for (auto I : HasDF->second) MaxDF.insert(MaxCoverIn(I, HasDF->second)); std::vector<RegisterRef> MaxRefs; auto &RefB = RefM[BA.Id]; for (auto I : MaxDF) MaxRefs.push_back(MaxCoverIn(I, RefB)); // Now, for each R in MaxRefs, get the alias closure of R. If the closure // only has R in it, create a phi a def for R. Otherwise, create a phi, // and add a def for each S in the closure. // Sort the refs so that the phis will be created in a deterministic order. std::sort(MaxRefs.begin(), MaxRefs.end()); // Remove duplicates. auto NewEnd = std::unique(MaxRefs.begin(), MaxRefs.end()); MaxRefs.erase(NewEnd, MaxRefs.end()); auto Aliased = [this,&MaxRefs](RegisterRef RR, std::vector<unsigned> &Closure) -> bool { for (auto I : Closure) if (RAI.alias(RR, MaxRefs[I])) return true; return false; }; // Prepare a list of NodeIds of the block's predecessors. std::vector<NodeId> PredList; const MachineBasicBlock *MBB = BA.Addr->getCode(); for (auto PB : MBB->predecessors()) { auto B = Func.Addr->findBlock(PB, *this); PredList.push_back(B.Id); } while (!MaxRefs.empty()) { // Put the first element in the closure, and then add all subsequent // elements from MaxRefs to it, if they alias at least one element // already in the closure. // ClosureIdx: vector of indices in MaxRefs of members of the closure. std::vector<unsigned> ClosureIdx = { 0 }; for (unsigned i = 1; i != MaxRefs.size(); ++i) if (Aliased(MaxRefs[i], ClosureIdx)) ClosureIdx.push_back(i); // Build a phi for the closure. unsigned CS = ClosureIdx.size(); NodeAddr<PhiNode*> PA = newPhi(BA); // Add defs. for (unsigned X = 0; X != CS; ++X) { RegisterRef RR = MaxRefs[ClosureIdx[X]]; uint16_t PhiFlags = NodeAttrs::PhiRef | NodeAttrs::Preserving; NodeAddr<DefNode*> DA = newDef(PA, RR, PhiFlags); PA.Addr->addMember(DA, *this); } // Add phi uses. for (auto P : PredList) { auto PBA = addr<BlockNode*>(P); for (unsigned X = 0; X != CS; ++X) { RegisterRef RR = MaxRefs[ClosureIdx[X]]; NodeAddr<PhiUseNode*> PUA = newPhiUse(PA, RR, PBA); PA.Addr->addMember(PUA, *this); } } // Erase from MaxRefs all elements in the closure. auto Begin = MaxRefs.begin(); for (unsigned i = ClosureIdx.size(); i != 0; --i) MaxRefs.erase(Begin + ClosureIdx[i-1]); } } // Remove any unneeded phi nodes that were created during the build process. void DataFlowGraph::removeUnusedPhis() { // This will remove unused phis, i.e. phis where each def does not reach // any uses or other defs. This will not detect or remove circular phi // chains that are otherwise dead. Unused/dead phis are created during // the build process and this function is intended to remove these cases // that are easily determinable to be unnecessary. SetVector<NodeId> PhiQ; for (NodeAddr<BlockNode*> BA : Func.Addr->members(*this)) { for (auto P : BA.Addr->members_if(IsPhi, *this)) PhiQ.insert(P.Id); } static auto HasUsedDef = [](NodeList &Ms) -> bool { for (auto M : Ms) { if (M.Addr->getKind() != NodeAttrs::Def) continue; NodeAddr<DefNode*> DA = M; if (DA.Addr->getReachedDef() != 0 || DA.Addr->getReachedUse() != 0) return true; } return false; }; // Any phi, if it is removed, may affect other phis (make them dead). // For each removed phi, collect the potentially affected phis and add // them back to the queue. while (!PhiQ.empty()) { auto PA = addr<PhiNode*>(PhiQ[0]); PhiQ.remove(PA.Id); NodeList Refs = PA.Addr->members(*this); if (HasUsedDef(Refs)) continue; for (NodeAddr<RefNode*> RA : Refs) { if (NodeId RD = RA.Addr->getReachingDef()) { auto RDA = addr<DefNode*>(RD); NodeAddr<InstrNode*> OA = RDA.Addr->getOwner(*this); if (IsPhi(OA)) PhiQ.insert(OA.Id); } if (RA.Addr->isDef()) unlinkDef(RA, true); else unlinkUse(RA, true); } NodeAddr<BlockNode*> BA = PA.Addr->getOwner(*this); BA.Addr->removeMember(PA, *this); } } // For a given reference node TA in an instruction node IA, connect the // reaching def of TA to the appropriate def node. Create any shadow nodes // as appropriate. template <typename T> void DataFlowGraph::linkRefUp(NodeAddr<InstrNode*> IA, NodeAddr<T> TA, DefStack &DS) { if (DS.empty()) return; RegisterRef RR = TA.Addr->getRegRef(); NodeAddr<T> TAP; // References from the def stack that have been examined so far. RegisterSet Defs; for (auto I = DS.top(), E = DS.bottom(); I != E; I.down()) { RegisterRef QR = I->Addr->getRegRef(); auto AliasQR = [QR,this] (RegisterRef RR) -> bool { return RAI.alias(QR, RR); }; bool PrecUp = RAI.covers(QR, RR); // Skip all defs that are aliased to any of the defs that we have already // seen. If we encounter a covering def, stop the stack traversal early. if (std::any_of(Defs.begin(), Defs.end(), AliasQR)) { if (PrecUp) break; continue; } // The reaching def. NodeAddr<DefNode*> RDA = *I; // Pick the reached node. if (TAP.Id == 0) { TAP = TA; } else { // Mark the existing ref as "shadow" and create a new shadow. TAP.Addr->setFlags(TAP.Addr->getFlags() | NodeAttrs::Shadow); TAP = getNextShadow(IA, TAP, true); } // Create the link. TAP.Addr->linkToDef(TAP.Id, RDA); if (PrecUp) break; Defs.insert(QR); } } // Create data-flow links for all reference nodes in the statement node SA. void DataFlowGraph::linkStmtRefs(DefStackMap &DefM, NodeAddr<StmtNode*> SA) { RegisterSet Defs; // Link all nodes (upwards in the data-flow) with their reaching defs. for (NodeAddr<RefNode*> RA : SA.Addr->members(*this)) { uint16_t Kind = RA.Addr->getKind(); assert(Kind == NodeAttrs::Def || Kind == NodeAttrs::Use); RegisterRef RR = RA.Addr->getRegRef(); // Do not process multiple defs of the same reference. if (Kind == NodeAttrs::Def && Defs.count(RR)) continue; Defs.insert(RR); auto F = DefM.find(RR); if (F == DefM.end()) continue; DefStack &DS = F->second; if (Kind == NodeAttrs::Use) linkRefUp<UseNode*>(SA, RA, DS); else if (Kind == NodeAttrs::Def) linkRefUp<DefNode*>(SA, RA, DS); else llvm_unreachable("Unexpected node in instruction"); } } // Create data-flow links for all instructions in the block node BA. This // will include updating any phi nodes in BA. void DataFlowGraph::linkBlockRefs(DefStackMap &DefM, NodeAddr<BlockNode*> BA) { // Push block delimiters. markBlock(BA.Id, DefM); assert(BA.Addr && "block node address is needed to create a data-flow link"); // For each non-phi instruction in the block, link all the defs and uses // to their reaching defs. For any member of the block (including phis), // push the defs on the corresponding stacks. for (NodeAddr<InstrNode*> IA : BA.Addr->members(*this)) { // Ignore phi nodes here. They will be linked part by part from the // predecessors. if (IA.Addr->getKind() == NodeAttrs::Stmt) linkStmtRefs(DefM, IA); // Push the definitions on the stack. pushDefs(IA, DefM); } // Recursively process all children in the dominator tree. MachineDomTreeNode *N = MDT.getNode(BA.Addr->getCode()); for (auto I : *N) { MachineBasicBlock *SB = I->getBlock(); auto SBA = Func.Addr->findBlock(SB, *this); linkBlockRefs(DefM, SBA); } // Link the phi uses from the successor blocks. auto IsUseForBA = [BA](NodeAddr<NodeBase*> NA) -> bool { if (NA.Addr->getKind() != NodeAttrs::Use) return false; assert(NA.Addr->getFlags() & NodeAttrs::PhiRef); NodeAddr<PhiUseNode*> PUA = NA; return PUA.Addr->getPredecessor() == BA.Id; }; MachineBasicBlock *MBB = BA.Addr->getCode(); for (auto SB : MBB->successors()) { auto SBA = Func.Addr->findBlock(SB, *this); for (NodeAddr<InstrNode*> IA : SBA.Addr->members_if(IsPhi, *this)) { // Go over each phi use associated with MBB, and link it. for (auto U : IA.Addr->members_if(IsUseForBA, *this)) { NodeAddr<PhiUseNode*> PUA = U; RegisterRef RR = PUA.Addr->getRegRef(); linkRefUp<UseNode*>(IA, PUA, DefM[RR]); } } } // Pop all defs from this block from the definition stacks. releaseBlock(BA.Id, DefM); } // Remove the use node UA from any data-flow and structural links. void DataFlowGraph::unlinkUseDF(NodeAddr<UseNode*> UA) { NodeId RD = UA.Addr->getReachingDef(); NodeId Sib = UA.Addr->getSibling(); if (RD == 0) { assert(Sib == 0); return; } auto RDA = addr<DefNode*>(RD); auto TA = addr<UseNode*>(RDA.Addr->getReachedUse()); if (TA.Id == UA.Id) { RDA.Addr->setReachedUse(Sib); return; } while (TA.Id != 0) { NodeId S = TA.Addr->getSibling(); if (S == UA.Id) { TA.Addr->setSibling(UA.Addr->getSibling()); return; } TA = addr<UseNode*>(S); } } // Remove the def node DA from any data-flow and structural links. void DataFlowGraph::unlinkDefDF(NodeAddr<DefNode*> DA) { // // RD // | reached // | def // : // . // +----+ // ... -- | DA | -- ... -- 0 : sibling chain of DA // +----+ // | | reached // | : def // | . // | ... : Siblings (defs) // | // : reached // . use // ... : sibling chain of reached uses NodeId RD = DA.Addr->getReachingDef(); // Visit all siblings of the reached def and reset their reaching defs. // Also, defs reached by DA are now "promoted" to being reached by RD, // so all of them will need to be spliced into the sibling chain where // DA belongs. auto getAllNodes = [this] (NodeId N) -> NodeList { NodeList Res; while (N) { auto RA = addr<RefNode*>(N); // Keep the nodes in the exact sibling order. Res.push_back(RA); N = RA.Addr->getSibling(); } return Res; }; NodeList ReachedDefs = getAllNodes(DA.Addr->getReachedDef()); NodeList ReachedUses = getAllNodes(DA.Addr->getReachedUse()); if (RD == 0) { for (NodeAddr<RefNode*> I : ReachedDefs) I.Addr->setSibling(0); for (NodeAddr<RefNode*> I : ReachedUses) I.Addr->setSibling(0); } for (NodeAddr<DefNode*> I : ReachedDefs) I.Addr->setReachingDef(RD); for (NodeAddr<UseNode*> I : ReachedUses) I.Addr->setReachingDef(RD); NodeId Sib = DA.Addr->getSibling(); if (RD == 0) { assert(Sib == 0); return; } // Update the reaching def node and remove DA from the sibling list. auto RDA = addr<DefNode*>(RD); auto TA = addr<DefNode*>(RDA.Addr->getReachedDef()); if (TA.Id == DA.Id) { // If DA is the first reached def, just update the RD's reached def // to the DA's sibling. RDA.Addr->setReachedDef(Sib); } else { // Otherwise, traverse the sibling list of the reached defs and remove // DA from it. while (TA.Id != 0) { NodeId S = TA.Addr->getSibling(); if (S == DA.Id) { TA.Addr->setSibling(Sib); break; } TA = addr<DefNode*>(S); } } // Splice the DA's reached defs into the RDA's reached def chain. if (!ReachedDefs.empty()) { auto Last = NodeAddr<DefNode*>(ReachedDefs.back()); Last.Addr->setSibling(RDA.Addr->getReachedDef()); RDA.Addr->setReachedDef(ReachedDefs.front().Id); } // Splice the DA's reached uses into the RDA's reached use chain. if (!ReachedUses.empty()) { auto Last = NodeAddr<UseNode*>(ReachedUses.back()); Last.Addr->setSibling(RDA.Addr->getReachedUse()); RDA.Addr->setReachedUse(ReachedUses.front().Id); } }