//===-- NVPTXTargetMachine.cpp - Define TargetMachine for NVPTX -----------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Top-level implementation for the NVPTX target.
//
//===----------------------------------------------------------------------===//

#include "NVPTXTargetMachine.h"
#include "MCTargetDesc/NVPTXMCAsmInfo.h"
#include "NVPTX.h"
#include "NVPTXAllocaHoisting.h"
#include "NVPTXLowerAggrCopies.h"
#include "NVPTXTargetObjectFile.h"
#include "NVPTXTargetTransformInfo.h"
#include "llvm/Analysis/Passes.h"
#include "llvm/CodeGen/AsmPrinter.h"
#include "llvm/CodeGen/MachineFunctionAnalysis.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/IRPrintingPasses.h"
#include "llvm/IR/LegacyPassManager.h"
#include "llvm/IR/Verifier.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/FormattedStream.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetLowering.h"
#include "llvm/Target/TargetLoweringObjectFile.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Target/TargetSubtargetInfo.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Scalar/GVN.h"

using namespace llvm;

static cl::opt<bool> UseInferAddressSpaces(
    "nvptx-use-infer-addrspace", cl::init(false), cl::Hidden,
    cl::desc("Optimize address spaces using NVPTXInferAddressSpaces instead of "
             "NVPTXFavorNonGenericAddrSpaces"));

namespace llvm {
void initializeNVVMIntrRangePass(PassRegistry&);
void initializeNVVMReflectPass(PassRegistry&);
void initializeGenericToNVVMPass(PassRegistry&);
void initializeNVPTXAllocaHoistingPass(PassRegistry &);
void initializeNVPTXAssignValidGlobalNamesPass(PassRegistry&);
void initializeNVPTXFavorNonGenericAddrSpacesPass(PassRegistry &);
void initializeNVPTXInferAddressSpacesPass(PassRegistry &);
void initializeNVPTXLowerAggrCopiesPass(PassRegistry &);
void initializeNVPTXLowerKernelArgsPass(PassRegistry &);
void initializeNVPTXLowerAllocaPass(PassRegistry &);
}

extern "C" void LLVMInitializeNVPTXTarget() {
  // Register the target.
  RegisterTargetMachine<NVPTXTargetMachine32> X(TheNVPTXTarget32);
  RegisterTargetMachine<NVPTXTargetMachine64> Y(TheNVPTXTarget64);

  // FIXME: This pass is really intended to be invoked during IR optimization,
  // but it's very NVPTX-specific.
  PassRegistry &PR = *PassRegistry::getPassRegistry();
  initializeNVVMReflectPass(PR);
  initializeNVVMIntrRangePass(PR);
  initializeGenericToNVVMPass(PR);
  initializeNVPTXAllocaHoistingPass(PR);
  initializeNVPTXAssignValidGlobalNamesPass(PR);
  initializeNVPTXFavorNonGenericAddrSpacesPass(PR);
  initializeNVPTXInferAddressSpacesPass(PR);
  initializeNVPTXLowerKernelArgsPass(PR);
  initializeNVPTXLowerAllocaPass(PR);
  initializeNVPTXLowerAggrCopiesPass(PR);
}

static std::string computeDataLayout(bool is64Bit) {
  std::string Ret = "e";

  if (!is64Bit)
    Ret += "-p:32:32";

  Ret += "-i64:64-v16:16-v32:32-n16:32:64";

  return Ret;
}

NVPTXTargetMachine::NVPTXTargetMachine(const Target &T, const Triple &TT,
                                       StringRef CPU, StringRef FS,
                                       const TargetOptions &Options,
                                       Optional<Reloc::Model> RM,
                                       CodeModel::Model CM,
                                       CodeGenOpt::Level OL, bool is64bit)
    // The pic relocation model is used regardless of what the client has
    // specified, as it is the only relocation model currently supported.
    : LLVMTargetMachine(T, computeDataLayout(is64bit), TT, CPU, FS, Options,
                        Reloc::PIC_, CM, OL),
      is64bit(is64bit),
      TLOF(make_unique<NVPTXTargetObjectFile>()),
      Subtarget(TT, CPU, FS, *this) {
  if (TT.getOS() == Triple::NVCL)
    drvInterface = NVPTX::NVCL;
  else
    drvInterface = NVPTX::CUDA;
  initAsmInfo();
}

NVPTXTargetMachine::~NVPTXTargetMachine() {}

void NVPTXTargetMachine32::anchor() {}

NVPTXTargetMachine32::NVPTXTargetMachine32(const Target &T, const Triple &TT,
                                           StringRef CPU, StringRef FS,
                                           const TargetOptions &Options,
                                           Optional<Reloc::Model> RM,
                                           CodeModel::Model CM,
                                           CodeGenOpt::Level OL)
    : NVPTXTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, false) {}

void NVPTXTargetMachine64::anchor() {}

NVPTXTargetMachine64::NVPTXTargetMachine64(const Target &T, const Triple &TT,
                                           StringRef CPU, StringRef FS,
                                           const TargetOptions &Options,
                                           Optional<Reloc::Model> RM,
                                           CodeModel::Model CM,
                                           CodeGenOpt::Level OL)
    : NVPTXTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, true) {}

namespace {
class NVPTXPassConfig : public TargetPassConfig {
public:
  NVPTXPassConfig(NVPTXTargetMachine *TM, PassManagerBase &PM)
      : TargetPassConfig(TM, PM) {}

  NVPTXTargetMachine &getNVPTXTargetMachine() const {
    return getTM<NVPTXTargetMachine>();
  }

  void addIRPasses() override;
  bool addInstSelector() override;
  void addPostRegAlloc() override;
  void addMachineSSAOptimization() override;

  FunctionPass *createTargetRegisterAllocator(bool) override;
  void addFastRegAlloc(FunctionPass *RegAllocPass) override;
  void addOptimizedRegAlloc(FunctionPass *RegAllocPass) override;

private:
  // If the opt level is aggressive, add GVN; otherwise, add EarlyCSE. This
  // function is only called in opt mode.
  void addEarlyCSEOrGVNPass();

  // Add passes that propagate special memory spaces.
  void addAddressSpaceInferencePasses();

  // Add passes that perform straight-line scalar optimizations.
  void addStraightLineScalarOptimizationPasses();
};
} // end anonymous namespace

TargetPassConfig *NVPTXTargetMachine::createPassConfig(PassManagerBase &PM) {
  return new NVPTXPassConfig(this, PM);
}

void NVPTXTargetMachine::addEarlyAsPossiblePasses(PassManagerBase &PM) {
  PM.add(createNVVMReflectPass());
  PM.add(createNVVMIntrRangePass(Subtarget.getSmVersion()));
}

TargetIRAnalysis NVPTXTargetMachine::getTargetIRAnalysis() {
  return TargetIRAnalysis([this](const Function &F) {
    return TargetTransformInfo(NVPTXTTIImpl(this, F));
  });
}

void NVPTXPassConfig::addEarlyCSEOrGVNPass() {
  if (getOptLevel() == CodeGenOpt::Aggressive)
    addPass(createGVNPass());
  else
    addPass(createEarlyCSEPass());
}

void NVPTXPassConfig::addAddressSpaceInferencePasses() {
  // NVPTXLowerKernelArgs emits alloca for byval parameters which can often
  // be eliminated by SROA.
  addPass(createSROAPass());
  addPass(createNVPTXLowerAllocaPass());
  if (UseInferAddressSpaces) {
    addPass(createNVPTXInferAddressSpacesPass());
  } else {
    addPass(createNVPTXFavorNonGenericAddrSpacesPass());
    // FavorNonGenericAddrSpaces shortcuts unnecessary addrspacecasts, and leave
    // them unused. We could remove dead code in an ad-hoc manner, but that
    // requires manual work and might be error-prone.
    addPass(createDeadCodeEliminationPass());
  }
}

void NVPTXPassConfig::addStraightLineScalarOptimizationPasses() {
  addPass(createSeparateConstOffsetFromGEPPass());
  addPass(createSpeculativeExecutionPass());
  // ReassociateGEPs exposes more opportunites for SLSR. See
  // the example in reassociate-geps-and-slsr.ll.
  addPass(createStraightLineStrengthReducePass());
  // SeparateConstOffsetFromGEP and SLSR creates common expressions which GVN or
  // EarlyCSE can reuse. GVN generates significantly better code than EarlyCSE
  // for some of our benchmarks.
  addEarlyCSEOrGVNPass();
  // Run NaryReassociate after EarlyCSE/GVN to be more effective.
  addPass(createNaryReassociatePass());
  // NaryReassociate on GEPs creates redundant common expressions, so run
  // EarlyCSE after it.
  addPass(createEarlyCSEPass());
}

void NVPTXPassConfig::addIRPasses() {
  // The following passes are known to not play well with virtual regs hanging
  // around after register allocation (which in our case, is *all* registers).
  // We explicitly disable them here.  We do, however, need some functionality
  // of the PrologEpilogCodeInserter pass, so we emulate that behavior in the
  // NVPTXPrologEpilog pass (see NVPTXPrologEpilogPass.cpp).
  disablePass(&PrologEpilogCodeInserterID);
  disablePass(&MachineCopyPropagationID);
  disablePass(&TailDuplicateID);
  disablePass(&StackMapLivenessID);
  disablePass(&LiveDebugValuesID);
  disablePass(&PostRASchedulerID);
  disablePass(&FuncletLayoutID);
  disablePass(&PatchableFunctionID);

  // NVVMReflectPass is added in addEarlyAsPossiblePasses, so hopefully running
  // it here does nothing.  But since we need it for correctness when lowering
  // to NVPTX, run it here too, in case whoever built our pass pipeline didn't
  // call addEarlyAsPossiblePasses.
  addPass(createNVVMReflectPass());

  if (getOptLevel() != CodeGenOpt::None)
    addPass(createNVPTXImageOptimizerPass());
  addPass(createNVPTXAssignValidGlobalNamesPass());
  addPass(createGenericToNVVMPass());

  // NVPTXLowerKernelArgs is required for correctness and should be run right
  // before the address space inference passes.
  addPass(createNVPTXLowerKernelArgsPass(&getNVPTXTargetMachine()));
  if (getOptLevel() != CodeGenOpt::None) {
    addAddressSpaceInferencePasses();
    addStraightLineScalarOptimizationPasses();
  }

  // === LSR and other generic IR passes ===
  TargetPassConfig::addIRPasses();
  // EarlyCSE is not always strong enough to clean up what LSR produces. For
  // example, GVN can combine
  //
  //   %0 = add %a, %b
  //   %1 = add %b, %a
  //
  // and
  //
  //   %0 = shl nsw %a, 2
  //   %1 = shl %a, 2
  //
  // but EarlyCSE can do neither of them.
  if (getOptLevel() != CodeGenOpt::None)
    addEarlyCSEOrGVNPass();
}

bool NVPTXPassConfig::addInstSelector() {
  const NVPTXSubtarget &ST = *getTM<NVPTXTargetMachine>().getSubtargetImpl();

  addPass(createLowerAggrCopies());
  addPass(createAllocaHoisting());
  addPass(createNVPTXISelDag(getNVPTXTargetMachine(), getOptLevel()));

  if (!ST.hasImageHandles())
    addPass(createNVPTXReplaceImageHandlesPass());

  return false;
}

void NVPTXPassConfig::addPostRegAlloc() {
  addPass(createNVPTXPrologEpilogPass(), false);
  if (getOptLevel() != CodeGenOpt::None) {
    // NVPTXPrologEpilogPass calculates frame object offset and replace frame
    // index with VRFrame register. NVPTXPeephole need to be run after that and
    // will replace VRFrame with VRFrameLocal when possible.
    addPass(createNVPTXPeephole());
  }
}

FunctionPass *NVPTXPassConfig::createTargetRegisterAllocator(bool) {
  return nullptr; // No reg alloc
}

void NVPTXPassConfig::addFastRegAlloc(FunctionPass *RegAllocPass) {
  assert(!RegAllocPass && "NVPTX uses no regalloc!");
  addPass(&PHIEliminationID);
  addPass(&TwoAddressInstructionPassID);
}

void NVPTXPassConfig::addOptimizedRegAlloc(FunctionPass *RegAllocPass) {
  assert(!RegAllocPass && "NVPTX uses no regalloc!");

  addPass(&ProcessImplicitDefsID);
  addPass(&LiveVariablesID);
  addPass(&MachineLoopInfoID);
  addPass(&PHIEliminationID);

  addPass(&TwoAddressInstructionPassID);
  addPass(&RegisterCoalescerID);

  // PreRA instruction scheduling.
  if (addPass(&MachineSchedulerID))
    printAndVerify("After Machine Scheduling");


  addPass(&StackSlotColoringID);

  // FIXME: Needs physical registers
  //addPass(&PostRAMachineLICMID);

  printAndVerify("After StackSlotColoring");
}

void NVPTXPassConfig::addMachineSSAOptimization() {
  // Pre-ra tail duplication.
  if (addPass(&EarlyTailDuplicateID))
    printAndVerify("After Pre-RegAlloc TailDuplicate");

  // Optimize PHIs before DCE: removing dead PHI cycles may make more
  // instructions dead.
  addPass(&OptimizePHIsID);

  // This pass merges large allocas. StackSlotColoring is a different pass
  // which merges spill slots.
  addPass(&StackColoringID);

  // If the target requests it, assign local variables to stack slots relative
  // to one another and simplify frame index references where possible.
  addPass(&LocalStackSlotAllocationID);

  // With optimization, dead code should already be eliminated. However
  // there is one known exception: lowered code for arguments that are only
  // used by tail calls, where the tail calls reuse the incoming stack
  // arguments directly (see t11 in test/CodeGen/X86/sibcall.ll).
  addPass(&DeadMachineInstructionElimID);
  printAndVerify("After codegen DCE pass");

  // Allow targets to insert passes that improve instruction level parallelism,
  // like if-conversion. Such passes will typically need dominator trees and
  // loop info, just like LICM and CSE below.
  if (addILPOpts())
    printAndVerify("After ILP optimizations");

  addPass(&MachineLICMID);
  addPass(&MachineCSEID);

  addPass(&MachineSinkingID);
  printAndVerify("After Machine LICM, CSE and Sinking passes");

  addPass(&PeepholeOptimizerID);
  printAndVerify("After codegen peephole optimization pass");
}