//==- SystemZInstrFP.td - Floating-point SystemZ instructions --*- tblgen-*-==// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // Select instructions //===----------------------------------------------------------------------===// // C's ?: operator for floating-point operands. def SelectF32 : SelectWrapper<FP32>; def SelectF64 : SelectWrapper<FP64>; def SelectF128 : SelectWrapper<FP128>; defm CondStoreF32 : CondStores<FP32, nonvolatile_store, nonvolatile_load, bdxaddr20only>; defm CondStoreF64 : CondStores<FP64, nonvolatile_store, nonvolatile_load, bdxaddr20only>; //===----------------------------------------------------------------------===// // Move instructions //===----------------------------------------------------------------------===// // Load zero. let hasSideEffects = 0, isAsCheapAsAMove = 1, isMoveImm = 1 in { def LZER : InherentRRE<"lzer", 0xB374, FP32, (fpimm0)>; def LZDR : InherentRRE<"lzdr", 0xB375, FP64, (fpimm0)>; def LZXR : InherentRRE<"lzxr", 0xB376, FP128, (fpimm0)>; } // Moves between two floating-point registers. let hasSideEffects = 0 in { def LER : UnaryRR <"le", 0x38, null_frag, FP32, FP32>; def LDR : UnaryRR <"ld", 0x28, null_frag, FP64, FP64>; def LXR : UnaryRRE<"lx", 0xB365, null_frag, FP128, FP128>; // For z13 we prefer LDR over LER to avoid partial register dependencies. let isCodeGenOnly = 1 in def LDR32 : UnaryRR<"ld", 0x28, null_frag, FP32, FP32>; } // Moves between two floating-point registers that also set the condition // codes. let Defs = [CC], CCValues = 0xF, CompareZeroCCMask = 0xF in { defm LTEBR : LoadAndTestRRE<"lteb", 0xB302, FP32>; defm LTDBR : LoadAndTestRRE<"ltdb", 0xB312, FP64>; defm LTXBR : LoadAndTestRRE<"ltxb", 0xB342, FP128>; } // Note that LTxBRCompare is not available if we have vector support, // since load-and-test instructions will partially clobber the target // (vector) register. let Predicates = [FeatureNoVector] in { defm : CompareZeroFP<LTEBRCompare, FP32>; defm : CompareZeroFP<LTDBRCompare, FP64>; defm : CompareZeroFP<LTXBRCompare, FP128>; } // Use a normal load-and-test for compare against zero in case of // vector support (via a pseudo to simplify instruction selection). let Defs = [CC], usesCustomInserter = 1 in { def LTEBRCompare_VecPseudo : Pseudo<(outs), (ins FP32:$R1, FP32:$R2), []>; def LTDBRCompare_VecPseudo : Pseudo<(outs), (ins FP64:$R1, FP64:$R2), []>; def LTXBRCompare_VecPseudo : Pseudo<(outs), (ins FP128:$R1, FP128:$R2), []>; } let Predicates = [FeatureVector] in { defm : CompareZeroFP<LTEBRCompare_VecPseudo, FP32>; defm : CompareZeroFP<LTDBRCompare_VecPseudo, FP64>; defm : CompareZeroFP<LTXBRCompare_VecPseudo, FP128>; } // Moves between 64-bit integer and floating-point registers. def LGDR : UnaryRRE<"lgd", 0xB3CD, bitconvert, GR64, FP64>; def LDGR : UnaryRRE<"ldg", 0xB3C1, bitconvert, FP64, GR64>; // fcopysign with an FP32 result. let isCodeGenOnly = 1 in { def CPSDRss : BinaryRRF<"cpsd", 0xB372, fcopysign, FP32, FP32>; def CPSDRsd : BinaryRRF<"cpsd", 0xB372, fcopysign, FP32, FP64>; } // The sign of an FP128 is in the high register. def : Pat<(fcopysign FP32:$src1, FP128:$src2), (CPSDRsd FP32:$src1, (EXTRACT_SUBREG FP128:$src2, subreg_h64))>; // fcopysign with an FP64 result. let isCodeGenOnly = 1 in def CPSDRds : BinaryRRF<"cpsd", 0xB372, fcopysign, FP64, FP32>; def CPSDRdd : BinaryRRF<"cpsd", 0xB372, fcopysign, FP64, FP64>; // The sign of an FP128 is in the high register. def : Pat<(fcopysign FP64:$src1, FP128:$src2), (CPSDRdd FP64:$src1, (EXTRACT_SUBREG FP128:$src2, subreg_h64))>; // fcopysign with an FP128 result. Use "upper" as the high half and leave // the low half as-is. class CopySign128<RegisterOperand cls, dag upper> : Pat<(fcopysign FP128:$src1, cls:$src2), (INSERT_SUBREG FP128:$src1, upper, subreg_h64)>; def : CopySign128<FP32, (CPSDRds (EXTRACT_SUBREG FP128:$src1, subreg_h64), FP32:$src2)>; def : CopySign128<FP64, (CPSDRdd (EXTRACT_SUBREG FP128:$src1, subreg_h64), FP64:$src2)>; def : CopySign128<FP128, (CPSDRdd (EXTRACT_SUBREG FP128:$src1, subreg_h64), (EXTRACT_SUBREG FP128:$src2, subreg_h64))>; defm LoadStoreF32 : MVCLoadStore<load, f32, MVCSequence, 4>; defm LoadStoreF64 : MVCLoadStore<load, f64, MVCSequence, 8>; defm LoadStoreF128 : MVCLoadStore<load, f128, MVCSequence, 16>; //===----------------------------------------------------------------------===// // Load instructions //===----------------------------------------------------------------------===// let canFoldAsLoad = 1, SimpleBDXLoad = 1 in { defm LE : UnaryRXPair<"le", 0x78, 0xED64, load, FP32, 4>; defm LD : UnaryRXPair<"ld", 0x68, 0xED65, load, FP64, 8>; // For z13 we prefer LDE over LE to avoid partial register dependencies. def LDE32 : UnaryRXE<"lde", 0xED24, null_frag, FP32, 4>; // These instructions are split after register allocation, so we don't // want a custom inserter. let Has20BitOffset = 1, HasIndex = 1, Is128Bit = 1 in { def LX : Pseudo<(outs FP128:$dst), (ins bdxaddr20only128:$src), [(set FP128:$dst, (load bdxaddr20only128:$src))]>; } } //===----------------------------------------------------------------------===// // Store instructions //===----------------------------------------------------------------------===// let SimpleBDXStore = 1 in { defm STE : StoreRXPair<"ste", 0x70, 0xED66, store, FP32, 4>; defm STD : StoreRXPair<"std", 0x60, 0xED67, store, FP64, 8>; // These instructions are split after register allocation, so we don't // want a custom inserter. let Has20BitOffset = 1, HasIndex = 1, Is128Bit = 1 in { def STX : Pseudo<(outs), (ins FP128:$src, bdxaddr20only128:$dst), [(store FP128:$src, bdxaddr20only128:$dst)]>; } } //===----------------------------------------------------------------------===// // Conversion instructions //===----------------------------------------------------------------------===// // Convert floating-point values to narrower representations, rounding // according to the current mode. The destination of LEXBR and LDXBR // is a 128-bit value, but only the first register of the pair is used. def LEDBR : UnaryRRE<"ledb", 0xB344, fround, FP32, FP64>; def LEXBR : UnaryRRE<"lexb", 0xB346, null_frag, FP128, FP128>; def LDXBR : UnaryRRE<"ldxb", 0xB345, null_frag, FP128, FP128>; def LEDBRA : UnaryRRF4<"ledbra", 0xB344, FP32, FP64>, Requires<[FeatureFPExtension]>; def LEXBRA : UnaryRRF4<"lexbra", 0xB346, FP128, FP128>, Requires<[FeatureFPExtension]>; def LDXBRA : UnaryRRF4<"ldxbra", 0xB345, FP128, FP128>, Requires<[FeatureFPExtension]>; def : Pat<(f32 (fround FP128:$src)), (EXTRACT_SUBREG (LEXBR FP128:$src), subreg_hr32)>; def : Pat<(f64 (fround FP128:$src)), (EXTRACT_SUBREG (LDXBR FP128:$src), subreg_h64)>; // Extend register floating-point values to wider representations. def LDEBR : UnaryRRE<"ldeb", 0xB304, fextend, FP64, FP32>; def LXEBR : UnaryRRE<"lxeb", 0xB306, fextend, FP128, FP32>; def LXDBR : UnaryRRE<"lxdb", 0xB305, fextend, FP128, FP64>; // Extend memory floating-point values to wider representations. def LDEB : UnaryRXE<"ldeb", 0xED04, extloadf32, FP64, 4>; def LXEB : UnaryRXE<"lxeb", 0xED06, extloadf32, FP128, 4>; def LXDB : UnaryRXE<"lxdb", 0xED05, extloadf64, FP128, 8>; // Convert a signed integer register value to a floating-point one. def CEFBR : UnaryRRE<"cefb", 0xB394, sint_to_fp, FP32, GR32>; def CDFBR : UnaryRRE<"cdfb", 0xB395, sint_to_fp, FP64, GR32>; def CXFBR : UnaryRRE<"cxfb", 0xB396, sint_to_fp, FP128, GR32>; def CEGBR : UnaryRRE<"cegb", 0xB3A4, sint_to_fp, FP32, GR64>; def CDGBR : UnaryRRE<"cdgb", 0xB3A5, sint_to_fp, FP64, GR64>; def CXGBR : UnaryRRE<"cxgb", 0xB3A6, sint_to_fp, FP128, GR64>; // Convert am unsigned integer register value to a floating-point one. let Predicates = [FeatureFPExtension] in { def CELFBR : UnaryRRF4<"celfbr", 0xB390, FP32, GR32>; def CDLFBR : UnaryRRF4<"cdlfbr", 0xB391, FP64, GR32>; def CXLFBR : UnaryRRF4<"cxlfbr", 0xB392, FP128, GR32>; def CELGBR : UnaryRRF4<"celgbr", 0xB3A0, FP32, GR64>; def CDLGBR : UnaryRRF4<"cdlgbr", 0xB3A1, FP64, GR64>; def CXLGBR : UnaryRRF4<"cxlgbr", 0xB3A2, FP128, GR64>; def : Pat<(f32 (uint_to_fp GR32:$src)), (CELFBR 0, GR32:$src, 0)>; def : Pat<(f64 (uint_to_fp GR32:$src)), (CDLFBR 0, GR32:$src, 0)>; def : Pat<(f128 (uint_to_fp GR32:$src)), (CXLFBR 0, GR32:$src, 0)>; def : Pat<(f32 (uint_to_fp GR64:$src)), (CELGBR 0, GR64:$src, 0)>; def : Pat<(f64 (uint_to_fp GR64:$src)), (CDLGBR 0, GR64:$src, 0)>; def : Pat<(f128 (uint_to_fp GR64:$src)), (CXLGBR 0, GR64:$src, 0)>; } // Convert a floating-point register value to a signed integer value, // with the second operand (modifier M3) specifying the rounding mode. let Defs = [CC] in { def CFEBR : UnaryRRF<"cfeb", 0xB398, GR32, FP32>; def CFDBR : UnaryRRF<"cfdb", 0xB399, GR32, FP64>; def CFXBR : UnaryRRF<"cfxb", 0xB39A, GR32, FP128>; def CGEBR : UnaryRRF<"cgeb", 0xB3A8, GR64, FP32>; def CGDBR : UnaryRRF<"cgdb", 0xB3A9, GR64, FP64>; def CGXBR : UnaryRRF<"cgxb", 0xB3AA, GR64, FP128>; } // fp_to_sint always rounds towards zero, which is modifier value 5. def : Pat<(i32 (fp_to_sint FP32:$src)), (CFEBR 5, FP32:$src)>; def : Pat<(i32 (fp_to_sint FP64:$src)), (CFDBR 5, FP64:$src)>; def : Pat<(i32 (fp_to_sint FP128:$src)), (CFXBR 5, FP128:$src)>; def : Pat<(i64 (fp_to_sint FP32:$src)), (CGEBR 5, FP32:$src)>; def : Pat<(i64 (fp_to_sint FP64:$src)), (CGDBR 5, FP64:$src)>; def : Pat<(i64 (fp_to_sint FP128:$src)), (CGXBR 5, FP128:$src)>; // Convert a floating-point register value to an unsigned integer value. let Predicates = [FeatureFPExtension] in { let Defs = [CC] in { def CLFEBR : UnaryRRF4<"clfebr", 0xB39C, GR32, FP32>; def CLFDBR : UnaryRRF4<"clfdbr", 0xB39D, GR32, FP64>; def CLFXBR : UnaryRRF4<"clfxbr", 0xB39E, GR32, FP128>; def CLGEBR : UnaryRRF4<"clgebr", 0xB3AC, GR64, FP32>; def CLGDBR : UnaryRRF4<"clgdbr", 0xB3AD, GR64, FP64>; def CLGXBR : UnaryRRF4<"clgxbr", 0xB3AE, GR64, FP128>; } def : Pat<(i32 (fp_to_uint FP32:$src)), (CLFEBR 5, FP32:$src, 0)>; def : Pat<(i32 (fp_to_uint FP64:$src)), (CLFDBR 5, FP64:$src, 0)>; def : Pat<(i32 (fp_to_uint FP128:$src)), (CLFXBR 5, FP128:$src, 0)>; def : Pat<(i64 (fp_to_uint FP32:$src)), (CLGEBR 5, FP32:$src, 0)>; def : Pat<(i64 (fp_to_uint FP64:$src)), (CLGDBR 5, FP64:$src, 0)>; def : Pat<(i64 (fp_to_uint FP128:$src)), (CLGXBR 5, FP128:$src, 0)>; } //===----------------------------------------------------------------------===// // Unary arithmetic //===----------------------------------------------------------------------===// // We prefer generic instructions during isel, because they do not // clobber CC and therefore give the scheduler more freedom. In cases // the CC is actually useful, the SystemZElimCompare pass will try to // convert generic instructions into opcodes that also set CC. Note // that lcdf / lpdf / lndf only affect the sign bit, and can therefore // be used with fp32 as well. This could be done for fp128, in which // case the operands would have to be tied. // Negation (Load Complement). let Defs = [CC], CCValues = 0xF, CompareZeroCCMask = 0xF in { def LCEBR : UnaryRRE<"lceb", 0xB303, null_frag, FP32, FP32>; def LCDBR : UnaryRRE<"lcdb", 0xB313, null_frag, FP64, FP64>; def LCXBR : UnaryRRE<"lcxb", 0xB343, fneg, FP128, FP128>; } // Generic form, which does not set CC. def LCDFR : UnaryRRE<"lcdf", 0xB373, fneg, FP64, FP64>; let isCodeGenOnly = 1 in def LCDFR_32 : UnaryRRE<"lcdf", 0xB373, fneg, FP32, FP32>; // Absolute value (Load Positive). let Defs = [CC], CCValues = 0xF, CompareZeroCCMask = 0xF in { def LPEBR : UnaryRRE<"lpeb", 0xB300, null_frag, FP32, FP32>; def LPDBR : UnaryRRE<"lpdb", 0xB310, null_frag, FP64, FP64>; def LPXBR : UnaryRRE<"lpxb", 0xB340, fabs, FP128, FP128>; } // Generic form, which does not set CC. def LPDFR : UnaryRRE<"lpdf", 0xB370, fabs, FP64, FP64>; let isCodeGenOnly = 1 in def LPDFR_32 : UnaryRRE<"lpdf", 0xB370, fabs, FP32, FP32>; // Negative absolute value (Load Negative). let Defs = [CC], CCValues = 0xF, CompareZeroCCMask = 0xF in { def LNEBR : UnaryRRE<"lneb", 0xB301, null_frag, FP32, FP32>; def LNDBR : UnaryRRE<"lndb", 0xB311, null_frag, FP64, FP64>; def LNXBR : UnaryRRE<"lnxb", 0xB341, fnabs, FP128, FP128>; } // Generic form, which does not set CC. def LNDFR : UnaryRRE<"lndf", 0xB371, fnabs, FP64, FP64>; let isCodeGenOnly = 1 in def LNDFR_32 : UnaryRRE<"lndf", 0xB371, fnabs, FP32, FP32>; // Square root. def SQEBR : UnaryRRE<"sqeb", 0xB314, fsqrt, FP32, FP32>; def SQDBR : UnaryRRE<"sqdb", 0xB315, fsqrt, FP64, FP64>; def SQXBR : UnaryRRE<"sqxb", 0xB316, fsqrt, FP128, FP128>; def SQEB : UnaryRXE<"sqeb", 0xED14, loadu<fsqrt>, FP32, 4>; def SQDB : UnaryRXE<"sqdb", 0xED15, loadu<fsqrt>, FP64, 8>; // Round to an integer, with the second operand (modifier M3) specifying // the rounding mode. These forms always check for inexact conditions. def FIEBR : UnaryRRF<"fieb", 0xB357, FP32, FP32>; def FIDBR : UnaryRRF<"fidb", 0xB35F, FP64, FP64>; def FIXBR : UnaryRRF<"fixb", 0xB347, FP128, FP128>; // frint rounds according to the current mode (modifier 0) and detects // inexact conditions. def : Pat<(frint FP32:$src), (FIEBR 0, FP32:$src)>; def : Pat<(frint FP64:$src), (FIDBR 0, FP64:$src)>; def : Pat<(frint FP128:$src), (FIXBR 0, FP128:$src)>; let Predicates = [FeatureFPExtension] in { // Extended forms of the FIxBR instructions. M4 can be set to 4 // to suppress detection of inexact conditions. def FIEBRA : UnaryRRF4<"fiebra", 0xB357, FP32, FP32>; def FIDBRA : UnaryRRF4<"fidbra", 0xB35F, FP64, FP64>; def FIXBRA : UnaryRRF4<"fixbra", 0xB347, FP128, FP128>; // fnearbyint is like frint but does not detect inexact conditions. def : Pat<(fnearbyint FP32:$src), (FIEBRA 0, FP32:$src, 4)>; def : Pat<(fnearbyint FP64:$src), (FIDBRA 0, FP64:$src, 4)>; def : Pat<(fnearbyint FP128:$src), (FIXBRA 0, FP128:$src, 4)>; // floor is no longer allowed to raise an inexact condition, // so restrict it to the cases where the condition can be suppressed. // Mode 7 is round towards -inf. def : Pat<(ffloor FP32:$src), (FIEBRA 7, FP32:$src, 4)>; def : Pat<(ffloor FP64:$src), (FIDBRA 7, FP64:$src, 4)>; def : Pat<(ffloor FP128:$src), (FIXBRA 7, FP128:$src, 4)>; // Same idea for ceil, where mode 6 is round towards +inf. def : Pat<(fceil FP32:$src), (FIEBRA 6, FP32:$src, 4)>; def : Pat<(fceil FP64:$src), (FIDBRA 6, FP64:$src, 4)>; def : Pat<(fceil FP128:$src), (FIXBRA 6, FP128:$src, 4)>; // Same idea for trunc, where mode 5 is round towards zero. def : Pat<(ftrunc FP32:$src), (FIEBRA 5, FP32:$src, 4)>; def : Pat<(ftrunc FP64:$src), (FIDBRA 5, FP64:$src, 4)>; def : Pat<(ftrunc FP128:$src), (FIXBRA 5, FP128:$src, 4)>; // Same idea for round, where mode 1 is round towards nearest with // ties away from zero. def : Pat<(frnd FP32:$src), (FIEBRA 1, FP32:$src, 4)>; def : Pat<(frnd FP64:$src), (FIDBRA 1, FP64:$src, 4)>; def : Pat<(frnd FP128:$src), (FIXBRA 1, FP128:$src, 4)>; } //===----------------------------------------------------------------------===// // Binary arithmetic //===----------------------------------------------------------------------===// // Addition. let Defs = [CC], CCValues = 0xF, CompareZeroCCMask = 0xF in { let isCommutable = 1 in { def AEBR : BinaryRRE<"aeb", 0xB30A, fadd, FP32, FP32>; def ADBR : BinaryRRE<"adb", 0xB31A, fadd, FP64, FP64>; def AXBR : BinaryRRE<"axb", 0xB34A, fadd, FP128, FP128>; } def AEB : BinaryRXE<"aeb", 0xED0A, fadd, FP32, load, 4>; def ADB : BinaryRXE<"adb", 0xED1A, fadd, FP64, load, 8>; } // Subtraction. let Defs = [CC], CCValues = 0xF, CompareZeroCCMask = 0xF in { def SEBR : BinaryRRE<"seb", 0xB30B, fsub, FP32, FP32>; def SDBR : BinaryRRE<"sdb", 0xB31B, fsub, FP64, FP64>; def SXBR : BinaryRRE<"sxb", 0xB34B, fsub, FP128, FP128>; def SEB : BinaryRXE<"seb", 0xED0B, fsub, FP32, load, 4>; def SDB : BinaryRXE<"sdb", 0xED1B, fsub, FP64, load, 8>; } // Multiplication. let isCommutable = 1 in { def MEEBR : BinaryRRE<"meeb", 0xB317, fmul, FP32, FP32>; def MDBR : BinaryRRE<"mdb", 0xB31C, fmul, FP64, FP64>; def MXBR : BinaryRRE<"mxb", 0xB34C, fmul, FP128, FP128>; } def MEEB : BinaryRXE<"meeb", 0xED17, fmul, FP32, load, 4>; def MDB : BinaryRXE<"mdb", 0xED1C, fmul, FP64, load, 8>; // f64 multiplication of two FP32 registers. def MDEBR : BinaryRRE<"mdeb", 0xB30C, null_frag, FP64, FP32>; def : Pat<(fmul (f64 (fextend FP32:$src1)), (f64 (fextend FP32:$src2))), (MDEBR (INSERT_SUBREG (f64 (IMPLICIT_DEF)), FP32:$src1, subreg_r32), FP32:$src2)>; // f64 multiplication of an FP32 register and an f32 memory. def MDEB : BinaryRXE<"mdeb", 0xED0C, null_frag, FP64, load, 4>; def : Pat<(fmul (f64 (fextend FP32:$src1)), (f64 (extloadf32 bdxaddr12only:$addr))), (MDEB (INSERT_SUBREG (f64 (IMPLICIT_DEF)), FP32:$src1, subreg_r32), bdxaddr12only:$addr)>; // f128 multiplication of two FP64 registers. def MXDBR : BinaryRRE<"mxdb", 0xB307, null_frag, FP128, FP64>; def : Pat<(fmul (f128 (fextend FP64:$src1)), (f128 (fextend FP64:$src2))), (MXDBR (INSERT_SUBREG (f128 (IMPLICIT_DEF)), FP64:$src1, subreg_h64), FP64:$src2)>; // f128 multiplication of an FP64 register and an f64 memory. def MXDB : BinaryRXE<"mxdb", 0xED07, null_frag, FP128, load, 8>; def : Pat<(fmul (f128 (fextend FP64:$src1)), (f128 (extloadf64 bdxaddr12only:$addr))), (MXDB (INSERT_SUBREG (f128 (IMPLICIT_DEF)), FP64:$src1, subreg_h64), bdxaddr12only:$addr)>; // Fused multiply-add. def MAEBR : TernaryRRD<"maeb", 0xB30E, z_fma, FP32>; def MADBR : TernaryRRD<"madb", 0xB31E, z_fma, FP64>; def MAEB : TernaryRXF<"maeb", 0xED0E, z_fma, FP32, load, 4>; def MADB : TernaryRXF<"madb", 0xED1E, z_fma, FP64, load, 8>; // Fused multiply-subtract. def MSEBR : TernaryRRD<"mseb", 0xB30F, z_fms, FP32>; def MSDBR : TernaryRRD<"msdb", 0xB31F, z_fms, FP64>; def MSEB : TernaryRXF<"mseb", 0xED0F, z_fms, FP32, load, 4>; def MSDB : TernaryRXF<"msdb", 0xED1F, z_fms, FP64, load, 8>; // Division. def DEBR : BinaryRRE<"deb", 0xB30D, fdiv, FP32, FP32>; def DDBR : BinaryRRE<"ddb", 0xB31D, fdiv, FP64, FP64>; def DXBR : BinaryRRE<"dxb", 0xB34D, fdiv, FP128, FP128>; def DEB : BinaryRXE<"deb", 0xED0D, fdiv, FP32, load, 4>; def DDB : BinaryRXE<"ddb", 0xED1D, fdiv, FP64, load, 8>; //===----------------------------------------------------------------------===// // Comparisons //===----------------------------------------------------------------------===// let Defs = [CC], CCValues = 0xF in { def CEBR : CompareRRE<"ceb", 0xB309, z_fcmp, FP32, FP32>; def CDBR : CompareRRE<"cdb", 0xB319, z_fcmp, FP64, FP64>; def CXBR : CompareRRE<"cxb", 0xB349, z_fcmp, FP128, FP128>; def CEB : CompareRXE<"ceb", 0xED09, z_fcmp, FP32, load, 4>; def CDB : CompareRXE<"cdb", 0xED19, z_fcmp, FP64, load, 8>; } // Test Data Class. let Defs = [CC], CCValues = 0xC in { def TCEB : TestRXE<"tceb", 0xED10, z_tdc, FP32>; def TCDB : TestRXE<"tcdb", 0xED11, z_tdc, FP64>; def TCXB : TestRXE<"tcxb", 0xED12, z_tdc, FP128>; } //===----------------------------------------------------------------------===// // Peepholes //===----------------------------------------------------------------------===// def : Pat<(f32 fpimmneg0), (LCDFR_32 (LZER))>; def : Pat<(f64 fpimmneg0), (LCDFR (LZDR))>; def : Pat<(f128 fpimmneg0), (LCXBR (LZXR))>;