//===- X86InstrCompiler.td - Compiler Pseudos and Patterns -*- tablegen -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file describes the various pseudo instructions used by the compiler, // as well as Pat patterns used during instruction selection. // //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // Pattern Matching Support def GetLo32XForm : SDNodeXForm<imm, [{ // Transformation function: get the low 32 bits. return getI32Imm((unsigned)N->getZExtValue(), SDLoc(N)); }]>; def GetLo8XForm : SDNodeXForm<imm, [{ // Transformation function: get the low 8 bits. return getI8Imm((uint8_t)N->getZExtValue(), SDLoc(N)); }]>; //===----------------------------------------------------------------------===// // Random Pseudo Instructions. // PIC base construction. This expands to code that looks like this: // call $next_inst // popl %destreg" let hasSideEffects = 0, isNotDuplicable = 1, Uses = [ESP] in def MOVPC32r : Ii32<0xE8, Pseudo, (outs GR32:$reg), (ins i32imm:$label), "", []>; // ADJCALLSTACKDOWN/UP implicitly use/def ESP because they may be expanded into // a stack adjustment and the codegen must know that they may modify the stack // pointer before prolog-epilog rewriting occurs. // Pessimistically assume ADJCALLSTACKDOWN / ADJCALLSTACKUP will become // sub / add which can clobber EFLAGS. let Defs = [ESP, EFLAGS], Uses = [ESP] in { def ADJCALLSTACKDOWN32 : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2), "#ADJCALLSTACKDOWN", []>, Requires<[NotLP64]>; def ADJCALLSTACKUP32 : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2), "#ADJCALLSTACKUP", [(X86callseq_end timm:$amt1, timm:$amt2)]>, Requires<[NotLP64]>; } def : Pat<(X86callseq_start timm:$amt1), (ADJCALLSTACKDOWN32 i32imm:$amt1, 0)>, Requires<[NotLP64]>; // ADJCALLSTACKDOWN/UP implicitly use/def RSP because they may be expanded into // a stack adjustment and the codegen must know that they may modify the stack // pointer before prolog-epilog rewriting occurs. // Pessimistically assume ADJCALLSTACKDOWN / ADJCALLSTACKUP will become // sub / add which can clobber EFLAGS. let Defs = [RSP, EFLAGS], Uses = [RSP] in { def ADJCALLSTACKDOWN64 : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2), "#ADJCALLSTACKDOWN", []>, Requires<[IsLP64]>; def ADJCALLSTACKUP64 : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2), "#ADJCALLSTACKUP", [(X86callseq_end timm:$amt1, timm:$amt2)]>, Requires<[IsLP64]>; } def : Pat<(X86callseq_start timm:$amt1), (ADJCALLSTACKDOWN64 i32imm:$amt1, 0)>, Requires<[IsLP64]>; // x86-64 va_start lowering magic. let usesCustomInserter = 1, Defs = [EFLAGS] in { def VASTART_SAVE_XMM_REGS : I<0, Pseudo, (outs), (ins GR8:$al, i64imm:$regsavefi, i64imm:$offset, variable_ops), "#VASTART_SAVE_XMM_REGS $al, $regsavefi, $offset", [(X86vastart_save_xmm_regs GR8:$al, imm:$regsavefi, imm:$offset), (implicit EFLAGS)]>; // The VAARG_64 pseudo-instruction takes the address of the va_list, // and places the address of the next argument into a register. let Defs = [EFLAGS] in def VAARG_64 : I<0, Pseudo, (outs GR64:$dst), (ins i8mem:$ap, i32imm:$size, i8imm:$mode, i32imm:$align), "#VAARG_64 $dst, $ap, $size, $mode, $align", [(set GR64:$dst, (X86vaarg64 addr:$ap, imm:$size, imm:$mode, imm:$align)), (implicit EFLAGS)]>; // When using segmented stacks these are lowered into instructions which first // check if the current stacklet has enough free memory. If it does, memory is // allocated by bumping the stack pointer. Otherwise memory is allocated from // the heap. let Defs = [EAX, ESP, EFLAGS], Uses = [ESP] in def SEG_ALLOCA_32 : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$size), "# variable sized alloca for segmented stacks", [(set GR32:$dst, (X86SegAlloca GR32:$size))]>, Requires<[NotLP64]>; let Defs = [RAX, RSP, EFLAGS], Uses = [RSP] in def SEG_ALLOCA_64 : I<0, Pseudo, (outs GR64:$dst), (ins GR64:$size), "# variable sized alloca for segmented stacks", [(set GR64:$dst, (X86SegAlloca GR64:$size))]>, Requires<[In64BitMode]>; } // Dynamic stack allocation yields a _chkstk or _alloca call for all Windows // targets. These calls are needed to probe the stack when allocating more than // 4k bytes in one go. Touching the stack at 4K increments is necessary to // ensure that the guard pages used by the OS virtual memory manager are // allocated in correct sequence. // The main point of having separate instruction are extra unmodelled effects // (compared to ordinary calls) like stack pointer change. let Defs = [EAX, ESP, EFLAGS], Uses = [ESP] in def WIN_ALLOCA_32 : I<0, Pseudo, (outs), (ins GR32:$size), "# dynamic stack allocation", [(X86WinAlloca GR32:$size)]>, Requires<[NotLP64]>; let Defs = [RAX, RSP, EFLAGS], Uses = [RSP] in def WIN_ALLOCA_64 : I<0, Pseudo, (outs), (ins GR64:$size), "# dynamic stack allocation", [(X86WinAlloca GR64:$size)]>, Requires<[In64BitMode]>; //===----------------------------------------------------------------------===// // EH Pseudo Instructions // let SchedRW = [WriteSystem] in { let isTerminator = 1, isReturn = 1, isBarrier = 1, hasCtrlDep = 1, isCodeGenOnly = 1 in { def EH_RETURN : I<0xC3, RawFrm, (outs), (ins GR32:$addr), "ret\t#eh_return, addr: $addr", [(X86ehret GR32:$addr)], IIC_RET>, Sched<[WriteJumpLd]>; } let isTerminator = 1, isReturn = 1, isBarrier = 1, hasCtrlDep = 1, isCodeGenOnly = 1 in { def EH_RETURN64 : I<0xC3, RawFrm, (outs), (ins GR64:$addr), "ret\t#eh_return, addr: $addr", [(X86ehret GR64:$addr)], IIC_RET>, Sched<[WriteJumpLd]>; } let isTerminator = 1, hasSideEffects = 1, isBarrier = 1, hasCtrlDep = 1, isCodeGenOnly = 1, isReturn = 1 in { def CLEANUPRET : I<0, Pseudo, (outs), (ins), "# CLEANUPRET", [(cleanupret)]>; // CATCHRET needs a custom inserter for SEH. let usesCustomInserter = 1 in def CATCHRET : I<0, Pseudo, (outs), (ins brtarget32:$dst, brtarget32:$from), "# CATCHRET", [(catchret bb:$dst, bb:$from)]>; } let hasSideEffects = 1, hasCtrlDep = 1, isCodeGenOnly = 1, usesCustomInserter = 1 in def CATCHPAD : I<0, Pseudo, (outs), (ins), "# CATCHPAD", [(catchpad)]>; // This instruction is responsible for re-establishing stack pointers after an // exception has been caught and we are rejoining normal control flow in the // parent function or funclet. It generally sets ESP and EBP, and optionally // ESI. It is only needed for 32-bit WinEH, as the runtime restores CSRs for us // elsewhere. let hasSideEffects = 1, hasCtrlDep = 1, isCodeGenOnly = 1 in def EH_RESTORE : I<0, Pseudo, (outs), (ins), "# EH_RESTORE", []>; let hasSideEffects = 1, isBarrier = 1, isCodeGenOnly = 1, usesCustomInserter = 1 in { def EH_SjLj_SetJmp32 : I<0, Pseudo, (outs GR32:$dst), (ins i32mem:$buf), "#EH_SJLJ_SETJMP32", [(set GR32:$dst, (X86eh_sjlj_setjmp addr:$buf))]>, Requires<[Not64BitMode]>; def EH_SjLj_SetJmp64 : I<0, Pseudo, (outs GR32:$dst), (ins i64mem:$buf), "#EH_SJLJ_SETJMP64", [(set GR32:$dst, (X86eh_sjlj_setjmp addr:$buf))]>, Requires<[In64BitMode]>; let isTerminator = 1 in { def EH_SjLj_LongJmp32 : I<0, Pseudo, (outs), (ins i32mem:$buf), "#EH_SJLJ_LONGJMP32", [(X86eh_sjlj_longjmp addr:$buf)]>, Requires<[Not64BitMode]>; def EH_SjLj_LongJmp64 : I<0, Pseudo, (outs), (ins i64mem:$buf), "#EH_SJLJ_LONGJMP64", [(X86eh_sjlj_longjmp addr:$buf)]>, Requires<[In64BitMode]>; } } } // SchedRW let isBranch = 1, isTerminator = 1, isCodeGenOnly = 1 in { def EH_SjLj_Setup : I<0, Pseudo, (outs), (ins brtarget:$dst), "#EH_SjLj_Setup\t$dst", []>; } //===----------------------------------------------------------------------===// // Pseudo instructions used by unwind info. // let isPseudo = 1 in { def SEH_PushReg : I<0, Pseudo, (outs), (ins i32imm:$reg), "#SEH_PushReg $reg", []>; def SEH_SaveReg : I<0, Pseudo, (outs), (ins i32imm:$reg, i32imm:$dst), "#SEH_SaveReg $reg, $dst", []>; def SEH_SaveXMM : I<0, Pseudo, (outs), (ins i32imm:$reg, i32imm:$dst), "#SEH_SaveXMM $reg, $dst", []>; def SEH_StackAlloc : I<0, Pseudo, (outs), (ins i32imm:$size), "#SEH_StackAlloc $size", []>; def SEH_SetFrame : I<0, Pseudo, (outs), (ins i32imm:$reg, i32imm:$offset), "#SEH_SetFrame $reg, $offset", []>; def SEH_PushFrame : I<0, Pseudo, (outs), (ins i1imm:$mode), "#SEH_PushFrame $mode", []>; def SEH_EndPrologue : I<0, Pseudo, (outs), (ins), "#SEH_EndPrologue", []>; def SEH_Epilogue : I<0, Pseudo, (outs), (ins), "#SEH_Epilogue", []>; } //===----------------------------------------------------------------------===// // Pseudo instructions used by segmented stacks. // // This is lowered into a RET instruction by MCInstLower. We need // this so that we don't have to have a MachineBasicBlock which ends // with a RET and also has successors. let isPseudo = 1 in { def MORESTACK_RET: I<0, Pseudo, (outs), (ins), "", []>; // This instruction is lowered to a RET followed by a MOV. The two // instructions are not generated on a higher level since then the // verifier sees a MachineBasicBlock ending with a non-terminator. def MORESTACK_RET_RESTORE_R10 : I<0, Pseudo, (outs), (ins), "", []>; } //===----------------------------------------------------------------------===// // Alias Instructions //===----------------------------------------------------------------------===// // Alias instruction mapping movr0 to xor. // FIXME: remove when we can teach regalloc that xor reg, reg is ok. let Defs = [EFLAGS], isReMaterializable = 1, isAsCheapAsAMove = 1, isPseudo = 1, AddedComplexity = 20 in def MOV32r0 : I<0, Pseudo, (outs GR32:$dst), (ins), "", [(set GR32:$dst, 0)], IIC_ALU_NONMEM>, Sched<[WriteZero]>; // Other widths can also make use of the 32-bit xor, which may have a smaller // encoding and avoid partial register updates. def : Pat<(i8 0), (EXTRACT_SUBREG (MOV32r0), sub_8bit)>; def : Pat<(i16 0), (EXTRACT_SUBREG (MOV32r0), sub_16bit)>; def : Pat<(i64 0), (SUBREG_TO_REG (i64 0), (MOV32r0), sub_32bit)> { let AddedComplexity = 20; } let Predicates = [OptForSize, NotSlowIncDec, Not64BitMode], AddedComplexity = 15 in { // Pseudo instructions for materializing 1 and -1 using XOR+INC/DEC, // which only require 3 bytes compared to MOV32ri which requires 5. let Defs = [EFLAGS], isReMaterializable = 1, isPseudo = 1 in { def MOV32r1 : I<0, Pseudo, (outs GR32:$dst), (ins), "", [(set GR32:$dst, 1)]>; def MOV32r_1 : I<0, Pseudo, (outs GR32:$dst), (ins), "", [(set GR32:$dst, -1)]>; } // MOV16ri is 4 bytes, so the instructions above are smaller. def : Pat<(i16 1), (EXTRACT_SUBREG (MOV32r1), sub_16bit)>; def : Pat<(i16 -1), (EXTRACT_SUBREG (MOV32r_1), sub_16bit)>; } let isReMaterializable = 1, isPseudo = 1, AddedComplexity = 10 in { // AddedComplexity higher than MOV64ri but lower than MOV32r0 and MOV32r1. // FIXME: Add itinerary class and Schedule. def MOV32ImmSExti8 : I<0, Pseudo, (outs GR32:$dst), (ins i32i8imm:$src), "", [(set GR32:$dst, i32immSExt8:$src)]>, Requires<[OptForMinSize, NotWin64WithoutFP]>; def MOV64ImmSExti8 : I<0, Pseudo, (outs GR64:$dst), (ins i64i8imm:$src), "", [(set GR64:$dst, i64immSExt8:$src)]>, Requires<[OptForMinSize, NotWin64WithoutFP]>; } // Materialize i64 constant where top 32-bits are zero. This could theoretically // use MOV32ri with a SUBREG_TO_REG to represent the zero-extension, however // that would make it more difficult to rematerialize. let isReMaterializable = 1, isAsCheapAsAMove = 1, isPseudo = 1, hasSideEffects = 0 in def MOV32ri64 : I<0, Pseudo, (outs GR32:$dst), (ins i64i32imm:$src), "", []>; // This 64-bit pseudo-move can be used for both a 64-bit constant that is // actually the zero-extension of a 32-bit constant and for labels in the // x86-64 small code model. def mov64imm32 : ComplexPattern<i64, 1, "selectMOV64Imm32", [imm, X86Wrapper]>; let AddedComplexity = 1 in def : Pat<(i64 mov64imm32:$src), (SUBREG_TO_REG (i64 0), (MOV32ri64 mov64imm32:$src), sub_32bit)>; // Use sbb to materialize carry bit. let Uses = [EFLAGS], Defs = [EFLAGS], isPseudo = 1, SchedRW = [WriteALU] in { // FIXME: These are pseudo ops that should be replaced with Pat<> patterns. // However, Pat<> can't replicate the destination reg into the inputs of the // result. def SETB_C8r : I<0, Pseudo, (outs GR8:$dst), (ins), "", [(set GR8:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>; def SETB_C16r : I<0, Pseudo, (outs GR16:$dst), (ins), "", [(set GR16:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>; def SETB_C32r : I<0, Pseudo, (outs GR32:$dst), (ins), "", [(set GR32:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>; def SETB_C64r : I<0, Pseudo, (outs GR64:$dst), (ins), "", [(set GR64:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>; } // isCodeGenOnly def : Pat<(i16 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))), (SETB_C16r)>; def : Pat<(i32 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))), (SETB_C32r)>; def : Pat<(i64 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))), (SETB_C64r)>; def : Pat<(i16 (sext (i8 (X86setcc_c X86_COND_B, EFLAGS)))), (SETB_C16r)>; def : Pat<(i32 (sext (i8 (X86setcc_c X86_COND_B, EFLAGS)))), (SETB_C32r)>; def : Pat<(i64 (sext (i8 (X86setcc_c X86_COND_B, EFLAGS)))), (SETB_C64r)>; // We canonicalize 'setb' to "(and (sbb reg,reg), 1)" on the hope that the and // will be eliminated and that the sbb can be extended up to a wider type. When // this happens, it is great. However, if we are left with an 8-bit sbb and an // and, we might as well just match it as a setb. def : Pat<(and (i8 (X86setcc_c X86_COND_B, EFLAGS)), 1), (SETBr)>; // (add OP, SETB) -> (adc OP, 0) def : Pat<(add (and (i8 (X86setcc_c X86_COND_B, EFLAGS)), 1), GR8:$op), (ADC8ri GR8:$op, 0)>; def : Pat<(add (and (i32 (X86setcc_c X86_COND_B, EFLAGS)), 1), GR32:$op), (ADC32ri8 GR32:$op, 0)>; def : Pat<(add (and (i64 (X86setcc_c X86_COND_B, EFLAGS)), 1), GR64:$op), (ADC64ri8 GR64:$op, 0)>; // (sub OP, SETB) -> (sbb OP, 0) def : Pat<(sub GR8:$op, (and (i8 (X86setcc_c X86_COND_B, EFLAGS)), 1)), (SBB8ri GR8:$op, 0)>; def : Pat<(sub GR32:$op, (and (i32 (X86setcc_c X86_COND_B, EFLAGS)), 1)), (SBB32ri8 GR32:$op, 0)>; def : Pat<(sub GR64:$op, (and (i64 (X86setcc_c X86_COND_B, EFLAGS)), 1)), (SBB64ri8 GR64:$op, 0)>; // (sub OP, SETCC_CARRY) -> (adc OP, 0) def : Pat<(sub GR8:$op, (i8 (X86setcc_c X86_COND_B, EFLAGS))), (ADC8ri GR8:$op, 0)>; def : Pat<(sub GR32:$op, (i32 (X86setcc_c X86_COND_B, EFLAGS))), (ADC32ri8 GR32:$op, 0)>; def : Pat<(sub GR64:$op, (i64 (X86setcc_c X86_COND_B, EFLAGS))), (ADC64ri8 GR64:$op, 0)>; //===----------------------------------------------------------------------===// // String Pseudo Instructions // let SchedRW = [WriteMicrocoded] in { let Defs = [ECX,EDI,ESI], Uses = [ECX,EDI,ESI], isCodeGenOnly = 1 in { def REP_MOVSB_32 : I<0xA4, RawFrm, (outs), (ins), "{rep;movsb|rep movsb}", [(X86rep_movs i8)], IIC_REP_MOVS>, REP, Requires<[Not64BitMode]>; def REP_MOVSW_32 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsw|rep movsw}", [(X86rep_movs i16)], IIC_REP_MOVS>, REP, OpSize16, Requires<[Not64BitMode]>; def REP_MOVSD_32 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsl|rep movsd}", [(X86rep_movs i32)], IIC_REP_MOVS>, REP, OpSize32, Requires<[Not64BitMode]>; } let Defs = [RCX,RDI,RSI], Uses = [RCX,RDI,RSI], isCodeGenOnly = 1 in { def REP_MOVSB_64 : I<0xA4, RawFrm, (outs), (ins), "{rep;movsb|rep movsb}", [(X86rep_movs i8)], IIC_REP_MOVS>, REP, Requires<[In64BitMode]>; def REP_MOVSW_64 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsw|rep movsw}", [(X86rep_movs i16)], IIC_REP_MOVS>, REP, OpSize16, Requires<[In64BitMode]>; def REP_MOVSD_64 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsl|rep movsd}", [(X86rep_movs i32)], IIC_REP_MOVS>, REP, OpSize32, Requires<[In64BitMode]>; def REP_MOVSQ_64 : RI<0xA5, RawFrm, (outs), (ins), "{rep;movsq|rep movsq}", [(X86rep_movs i64)], IIC_REP_MOVS>, REP, Requires<[In64BitMode]>; } // FIXME: Should use "(X86rep_stos AL)" as the pattern. let Defs = [ECX,EDI], isCodeGenOnly = 1 in { let Uses = [AL,ECX,EDI] in def REP_STOSB_32 : I<0xAA, RawFrm, (outs), (ins), "{rep;stosb|rep stosb}", [(X86rep_stos i8)], IIC_REP_STOS>, REP, Requires<[Not64BitMode]>; let Uses = [AX,ECX,EDI] in def REP_STOSW_32 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosw|rep stosw}", [(X86rep_stos i16)], IIC_REP_STOS>, REP, OpSize16, Requires<[Not64BitMode]>; let Uses = [EAX,ECX,EDI] in def REP_STOSD_32 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosl|rep stosd}", [(X86rep_stos i32)], IIC_REP_STOS>, REP, OpSize32, Requires<[Not64BitMode]>; } let Defs = [RCX,RDI], isCodeGenOnly = 1 in { let Uses = [AL,RCX,RDI] in def REP_STOSB_64 : I<0xAA, RawFrm, (outs), (ins), "{rep;stosb|rep stosb}", [(X86rep_stos i8)], IIC_REP_STOS>, REP, Requires<[In64BitMode]>; let Uses = [AX,RCX,RDI] in def REP_STOSW_64 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosw|rep stosw}", [(X86rep_stos i16)], IIC_REP_STOS>, REP, OpSize16, Requires<[In64BitMode]>; let Uses = [RAX,RCX,RDI] in def REP_STOSD_64 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosl|rep stosd}", [(X86rep_stos i32)], IIC_REP_STOS>, REP, OpSize32, Requires<[In64BitMode]>; let Uses = [RAX,RCX,RDI] in def REP_STOSQ_64 : RI<0xAB, RawFrm, (outs), (ins), "{rep;stosq|rep stosq}", [(X86rep_stos i64)], IIC_REP_STOS>, REP, Requires<[In64BitMode]>; } } // SchedRW //===----------------------------------------------------------------------===// // Thread Local Storage Instructions // // ELF TLS Support // All calls clobber the non-callee saved registers. ESP is marked as // a use to prevent stack-pointer assignments that appear immediately // before calls from potentially appearing dead. let Defs = [EAX, ECX, EDX, FP0, FP1, FP2, FP3, FP4, FP5, FP6, FP7, ST0, ST1, ST2, ST3, ST4, ST5, ST6, ST7, MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7, XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7, XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS], usesCustomInserter = 1, Uses = [ESP] in { def TLS_addr32 : I<0, Pseudo, (outs), (ins i32mem:$sym), "# TLS_addr32", [(X86tlsaddr tls32addr:$sym)]>, Requires<[Not64BitMode]>; def TLS_base_addr32 : I<0, Pseudo, (outs), (ins i32mem:$sym), "# TLS_base_addr32", [(X86tlsbaseaddr tls32baseaddr:$sym)]>, Requires<[Not64BitMode]>; } // All calls clobber the non-callee saved registers. RSP is marked as // a use to prevent stack-pointer assignments that appear immediately // before calls from potentially appearing dead. let Defs = [RAX, RCX, RDX, RSI, RDI, R8, R9, R10, R11, FP0, FP1, FP2, FP3, FP4, FP5, FP6, FP7, ST0, ST1, ST2, ST3, ST4, ST5, ST6, ST7, MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7, XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7, XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS], usesCustomInserter = 1, Uses = [RSP] in { def TLS_addr64 : I<0, Pseudo, (outs), (ins i64mem:$sym), "# TLS_addr64", [(X86tlsaddr tls64addr:$sym)]>, Requires<[In64BitMode]>; def TLS_base_addr64 : I<0, Pseudo, (outs), (ins i64mem:$sym), "# TLS_base_addr64", [(X86tlsbaseaddr tls64baseaddr:$sym)]>, Requires<[In64BitMode]>; } // Darwin TLS Support // For i386, the address of the thunk is passed on the stack, on return the // address of the variable is in %eax. %ecx is trashed during the function // call. All other registers are preserved. let Defs = [EAX, ECX, EFLAGS], Uses = [ESP], usesCustomInserter = 1 in def TLSCall_32 : I<0, Pseudo, (outs), (ins i32mem:$sym), "# TLSCall_32", [(X86TLSCall addr:$sym)]>, Requires<[Not64BitMode]>; // For x86_64, the address of the thunk is passed in %rdi, but the // pseudo directly use the symbol, so do not add an implicit use of // %rdi. The lowering will do the right thing with RDI. // On return the address of the variable is in %rax. All other // registers are preserved. let Defs = [RAX, EFLAGS], Uses = [RSP], usesCustomInserter = 1 in def TLSCall_64 : I<0, Pseudo, (outs), (ins i64mem:$sym), "# TLSCall_64", [(X86TLSCall addr:$sym)]>, Requires<[In64BitMode]>; //===----------------------------------------------------------------------===// // Conditional Move Pseudo Instructions // CMOV* - Used to implement the SELECT DAG operation. Expanded after // instruction selection into a branch sequence. multiclass CMOVrr_PSEUDO<RegisterClass RC, ValueType VT> { def CMOV#NAME : I<0, Pseudo, (outs RC:$dst), (ins RC:$t, RC:$f, i8imm:$cond), "#CMOV_"#NAME#" PSEUDO!", [(set RC:$dst, (VT (X86cmov RC:$t, RC:$f, imm:$cond, EFLAGS)))]>; } let usesCustomInserter = 1, Uses = [EFLAGS] in { // X86 doesn't have 8-bit conditional moves. Use a customInserter to // emit control flow. An alternative to this is to mark i8 SELECT as Promote, // however that requires promoting the operands, and can induce additional // i8 register pressure. defm _GR8 : CMOVrr_PSEUDO<GR8, i8>; let Predicates = [NoCMov] in { defm _GR32 : CMOVrr_PSEUDO<GR32, i32>; defm _GR16 : CMOVrr_PSEUDO<GR16, i16>; } // Predicates = [NoCMov] // fcmov doesn't handle all possible EFLAGS, provide a fallback if there is no // SSE1/SSE2. let Predicates = [FPStackf32] in defm _RFP32 : CMOVrr_PSEUDO<RFP32, f32>; let Predicates = [FPStackf64] in defm _RFP64 : CMOVrr_PSEUDO<RFP64, f64>; defm _RFP80 : CMOVrr_PSEUDO<RFP80, f80>; defm _FR32 : CMOVrr_PSEUDO<FR32, f32>; defm _FR64 : CMOVrr_PSEUDO<FR64, f64>; defm _FR128 : CMOVrr_PSEUDO<FR128, f128>; defm _V4F32 : CMOVrr_PSEUDO<VR128, v4f32>; defm _V2F64 : CMOVrr_PSEUDO<VR128, v2f64>; defm _V2I64 : CMOVrr_PSEUDO<VR128, v2i64>; defm _V8F32 : CMOVrr_PSEUDO<VR256, v8f32>; defm _V4F64 : CMOVrr_PSEUDO<VR256, v4f64>; defm _V4I64 : CMOVrr_PSEUDO<VR256, v4i64>; defm _V8I64 : CMOVrr_PSEUDO<VR512, v8i64>; defm _V8F64 : CMOVrr_PSEUDO<VR512, v8f64>; defm _V16F32 : CMOVrr_PSEUDO<VR512, v16f32>; defm _V8I1 : CMOVrr_PSEUDO<VK8, v8i1>; defm _V16I1 : CMOVrr_PSEUDO<VK16, v16i1>; defm _V32I1 : CMOVrr_PSEUDO<VK32, v32i1>; defm _V64I1 : CMOVrr_PSEUDO<VK64, v64i1>; } // usesCustomInserter = 1, Uses = [EFLAGS] //===----------------------------------------------------------------------===// // Normal-Instructions-With-Lock-Prefix Pseudo Instructions //===----------------------------------------------------------------------===// // FIXME: Use normal instructions and add lock prefix dynamically. // Memory barriers // TODO: Get this to fold the constant into the instruction. let isCodeGenOnly = 1, Defs = [EFLAGS] in def OR32mrLocked : I<0x09, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$zero), "or{l}\t{$zero, $dst|$dst, $zero}", [], IIC_ALU_MEM>, Requires<[Not64BitMode]>, OpSize32, LOCK, Sched<[WriteALULd, WriteRMW]>; let hasSideEffects = 1 in def Int_MemBarrier : I<0, Pseudo, (outs), (ins), "#MEMBARRIER", [(X86MemBarrier)]>, Sched<[WriteLoad]>; // RegOpc corresponds to the mr version of the instruction // ImmOpc corresponds to the mi version of the instruction // ImmOpc8 corresponds to the mi8 version of the instruction // ImmMod corresponds to the instruction format of the mi and mi8 versions multiclass LOCK_ArithBinOp<bits<8> RegOpc, bits<8> ImmOpc, bits<8> ImmOpc8, Format ImmMod, SDPatternOperator Op, string mnemonic> { let Defs = [EFLAGS], mayLoad = 1, mayStore = 1, isCodeGenOnly = 1, SchedRW = [WriteALULd, WriteRMW] in { def NAME#8mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4}, RegOpc{3}, RegOpc{2}, RegOpc{1}, 0 }, MRMDestMem, (outs), (ins i8mem:$dst, GR8:$src2), !strconcat(mnemonic, "{b}\t", "{$src2, $dst|$dst, $src2}"), [(set EFLAGS, (Op addr:$dst, GR8:$src2))], IIC_ALU_NONMEM>, LOCK; def NAME#16mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4}, RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 }, MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src2), !strconcat(mnemonic, "{w}\t", "{$src2, $dst|$dst, $src2}"), [(set EFLAGS, (Op addr:$dst, GR16:$src2))], IIC_ALU_NONMEM>, OpSize16, LOCK; def NAME#32mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4}, RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 }, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src2), !strconcat(mnemonic, "{l}\t", "{$src2, $dst|$dst, $src2}"), [(set EFLAGS, (Op addr:$dst, GR32:$src2))], IIC_ALU_NONMEM>, OpSize32, LOCK; def NAME#64mr : RI<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4}, RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 }, MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src2), !strconcat(mnemonic, "{q}\t", "{$src2, $dst|$dst, $src2}"), [(set EFLAGS, (Op addr:$dst, GR64:$src2))], IIC_ALU_NONMEM>, LOCK; def NAME#8mi : Ii8<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4}, ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 0 }, ImmMod, (outs), (ins i8mem :$dst, i8imm :$src2), !strconcat(mnemonic, "{b}\t", "{$src2, $dst|$dst, $src2}"), [(set EFLAGS, (Op addr:$dst, (i8 imm:$src2)))], IIC_ALU_MEM>, LOCK; def NAME#16mi : Ii16<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4}, ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 }, ImmMod, (outs), (ins i16mem :$dst, i16imm :$src2), !strconcat(mnemonic, "{w}\t", "{$src2, $dst|$dst, $src2}"), [(set EFLAGS, (Op addr:$dst, (i16 imm:$src2)))], IIC_ALU_MEM>, OpSize16, LOCK; def NAME#32mi : Ii32<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4}, ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 }, ImmMod, (outs), (ins i32mem :$dst, i32imm :$src2), !strconcat(mnemonic, "{l}\t", "{$src2, $dst|$dst, $src2}"), [(set EFLAGS, (Op addr:$dst, (i32 imm:$src2)))], IIC_ALU_MEM>, OpSize32, LOCK; def NAME#64mi32 : RIi32S<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4}, ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 }, ImmMod, (outs), (ins i64mem :$dst, i64i32imm :$src2), !strconcat(mnemonic, "{q}\t", "{$src2, $dst|$dst, $src2}"), [(set EFLAGS, (Op addr:$dst, i64immSExt32:$src2))], IIC_ALU_MEM>, LOCK; def NAME#16mi8 : Ii8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4}, ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 }, ImmMod, (outs), (ins i16mem :$dst, i16i8imm :$src2), !strconcat(mnemonic, "{w}\t", "{$src2, $dst|$dst, $src2}"), [(set EFLAGS, (Op addr:$dst, i16immSExt8:$src2))], IIC_ALU_MEM>, OpSize16, LOCK; def NAME#32mi8 : Ii8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4}, ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 }, ImmMod, (outs), (ins i32mem :$dst, i32i8imm :$src2), !strconcat(mnemonic, "{l}\t", "{$src2, $dst|$dst, $src2}"), [(set EFLAGS, (Op addr:$dst, i32immSExt8:$src2))], IIC_ALU_MEM>, OpSize32, LOCK; def NAME#64mi8 : RIi8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4}, ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 }, ImmMod, (outs), (ins i64mem :$dst, i64i8imm :$src2), !strconcat(mnemonic, "{q}\t", "{$src2, $dst|$dst, $src2}"), [(set EFLAGS, (Op addr:$dst, i64immSExt8:$src2))], IIC_ALU_MEM>, LOCK; } } defm LOCK_ADD : LOCK_ArithBinOp<0x00, 0x80, 0x83, MRM0m, X86lock_add, "add">; defm LOCK_SUB : LOCK_ArithBinOp<0x28, 0x80, 0x83, MRM5m, X86lock_sub, "sub">; defm LOCK_OR : LOCK_ArithBinOp<0x08, 0x80, 0x83, MRM1m, X86lock_or , "or">; defm LOCK_AND : LOCK_ArithBinOp<0x20, 0x80, 0x83, MRM4m, X86lock_and, "and">; defm LOCK_XOR : LOCK_ArithBinOp<0x30, 0x80, 0x83, MRM6m, X86lock_xor, "xor">; multiclass LOCK_ArithUnOp<bits<8> Opc8, bits<8> Opc, Format Form, int Increment, string mnemonic> { let Defs = [EFLAGS], mayLoad = 1, mayStore = 1, isCodeGenOnly = 1, SchedRW = [WriteALULd, WriteRMW], Predicates = [NotSlowIncDec] in { def NAME#8m : I<Opc8, Form, (outs), (ins i8mem :$dst), !strconcat(mnemonic, "{b}\t$dst"), [(set EFLAGS, (X86lock_add addr:$dst, (i8 Increment)))], IIC_UNARY_MEM>, LOCK; def NAME#16m : I<Opc, Form, (outs), (ins i16mem:$dst), !strconcat(mnemonic, "{w}\t$dst"), [(set EFLAGS, (X86lock_add addr:$dst, (i16 Increment)))], IIC_UNARY_MEM>, OpSize16, LOCK; def NAME#32m : I<Opc, Form, (outs), (ins i32mem:$dst), !strconcat(mnemonic, "{l}\t$dst"), [(set EFLAGS, (X86lock_add addr:$dst, (i32 Increment)))], IIC_UNARY_MEM>, OpSize32, LOCK; def NAME#64m : RI<Opc, Form, (outs), (ins i64mem:$dst), !strconcat(mnemonic, "{q}\t$dst"), [(set EFLAGS, (X86lock_add addr:$dst, (i64 Increment)))], IIC_UNARY_MEM>, LOCK; } } defm LOCK_INC : LOCK_ArithUnOp<0xFE, 0xFF, MRM0m, 1, "inc">; defm LOCK_DEC : LOCK_ArithUnOp<0xFE, 0xFF, MRM1m, -1, "dec">; // Atomic compare and swap. multiclass LCMPXCHG_UnOp<bits<8> Opc, Format Form, string mnemonic, SDPatternOperator frag, X86MemOperand x86memop, InstrItinClass itin> { let isCodeGenOnly = 1 in { def NAME : I<Opc, Form, (outs), (ins x86memop:$ptr), !strconcat(mnemonic, "\t$ptr"), [(frag addr:$ptr)], itin>, TB, LOCK; } } multiclass LCMPXCHG_BinOp<bits<8> Opc8, bits<8> Opc, Format Form, string mnemonic, SDPatternOperator frag, InstrItinClass itin8, InstrItinClass itin> { let isCodeGenOnly = 1, SchedRW = [WriteALULd, WriteRMW] in { let Defs = [AL, EFLAGS], Uses = [AL] in def NAME#8 : I<Opc8, Form, (outs), (ins i8mem:$ptr, GR8:$swap), !strconcat(mnemonic, "{b}\t{$swap, $ptr|$ptr, $swap}"), [(frag addr:$ptr, GR8:$swap, 1)], itin8>, TB, LOCK; let Defs = [AX, EFLAGS], Uses = [AX] in def NAME#16 : I<Opc, Form, (outs), (ins i16mem:$ptr, GR16:$swap), !strconcat(mnemonic, "{w}\t{$swap, $ptr|$ptr, $swap}"), [(frag addr:$ptr, GR16:$swap, 2)], itin>, TB, OpSize16, LOCK; let Defs = [EAX, EFLAGS], Uses = [EAX] in def NAME#32 : I<Opc, Form, (outs), (ins i32mem:$ptr, GR32:$swap), !strconcat(mnemonic, "{l}\t{$swap, $ptr|$ptr, $swap}"), [(frag addr:$ptr, GR32:$swap, 4)], itin>, TB, OpSize32, LOCK; let Defs = [RAX, EFLAGS], Uses = [RAX] in def NAME#64 : RI<Opc, Form, (outs), (ins i64mem:$ptr, GR64:$swap), !strconcat(mnemonic, "{q}\t{$swap, $ptr|$ptr, $swap}"), [(frag addr:$ptr, GR64:$swap, 8)], itin>, TB, LOCK; } } let Defs = [EAX, EDX, EFLAGS], Uses = [EAX, EBX, ECX, EDX], SchedRW = [WriteALULd, WriteRMW] in { defm LCMPXCHG8B : LCMPXCHG_UnOp<0xC7, MRM1m, "cmpxchg8b", X86cas8, i64mem, IIC_CMPX_LOCK_8B>; } // This pseudo must be used when the frame uses RBX as // the base pointer. Indeed, in such situation RBX is a reserved // register and the register allocator will ignore any use/def of // it. In other words, the register will not fix the clobbering of // RBX that will happen when setting the arguments for the instrucion. // // Unlike the actual related instuction, we mark that this one // defines EBX (instead of using EBX). // The rationale is that we will define RBX during the expansion of // the pseudo. The argument feeding EBX is ebx_input. // // The additional argument, $ebx_save, is a temporary register used to // save the value of RBX accross the actual instruction. // // To make sure the register assigned to $ebx_save does not interfere with // the definition of the actual instruction, we use a definition $dst which // is tied to $rbx_save. That way, the live-range of $rbx_save spans accross // the instruction and we are sure we will have a valid register to restore // the value of RBX. let Defs = [EAX, EDX, EBX, EFLAGS], Uses = [EAX, ECX, EDX], SchedRW = [WriteALULd, WriteRMW], isCodeGenOnly = 1, isPseudo = 1, Constraints = "$ebx_save = $dst", usesCustomInserter = 1 in { def LCMPXCHG8B_SAVE_EBX : I<0, Pseudo, (outs GR32:$dst), (ins i64mem:$ptr, GR32:$ebx_input, GR32:$ebx_save), !strconcat("cmpxchg8b", "\t$ptr"), [(set GR32:$dst, (X86cas8save_ebx addr:$ptr, GR32:$ebx_input, GR32:$ebx_save))], IIC_CMPX_LOCK_8B>; } let Defs = [RAX, RDX, EFLAGS], Uses = [RAX, RBX, RCX, RDX], Predicates = [HasCmpxchg16b], SchedRW = [WriteALULd, WriteRMW] in { defm LCMPXCHG16B : LCMPXCHG_UnOp<0xC7, MRM1m, "cmpxchg16b", X86cas16, i128mem, IIC_CMPX_LOCK_16B>, REX_W; } // Same as LCMPXCHG8B_SAVE_RBX but for the 16 Bytes variant. let Defs = [RAX, RDX, RBX, EFLAGS], Uses = [RAX, RCX, RDX], Predicates = [HasCmpxchg16b], SchedRW = [WriteALULd, WriteRMW], isCodeGenOnly = 1, isPseudo = 1, Constraints = "$rbx_save = $dst", usesCustomInserter = 1 in { def LCMPXCHG16B_SAVE_RBX : I<0, Pseudo, (outs GR64:$dst), (ins i128mem:$ptr, GR64:$rbx_input, GR64:$rbx_save), !strconcat("cmpxchg16b", "\t$ptr"), [(set GR64:$dst, (X86cas16save_rbx addr:$ptr, GR64:$rbx_input, GR64:$rbx_save))], IIC_CMPX_LOCK_16B>; } defm LCMPXCHG : LCMPXCHG_BinOp<0xB0, 0xB1, MRMDestMem, "cmpxchg", X86cas, IIC_CMPX_LOCK_8, IIC_CMPX_LOCK>; // Atomic exchange and add multiclass ATOMIC_LOAD_BINOP<bits<8> opc8, bits<8> opc, string mnemonic, string frag, InstrItinClass itin8, InstrItinClass itin> { let Constraints = "$val = $dst", Defs = [EFLAGS], isCodeGenOnly = 1, SchedRW = [WriteALULd, WriteRMW] in { def NAME#8 : I<opc8, MRMSrcMem, (outs GR8:$dst), (ins GR8:$val, i8mem:$ptr), !strconcat(mnemonic, "{b}\t{$val, $ptr|$ptr, $val}"), [(set GR8:$dst, (!cast<PatFrag>(frag # "_8") addr:$ptr, GR8:$val))], itin8>; def NAME#16 : I<opc, MRMSrcMem, (outs GR16:$dst), (ins GR16:$val, i16mem:$ptr), !strconcat(mnemonic, "{w}\t{$val, $ptr|$ptr, $val}"), [(set GR16:$dst, (!cast<PatFrag>(frag # "_16") addr:$ptr, GR16:$val))], itin>, OpSize16; def NAME#32 : I<opc, MRMSrcMem, (outs GR32:$dst), (ins GR32:$val, i32mem:$ptr), !strconcat(mnemonic, "{l}\t{$val, $ptr|$ptr, $val}"), [(set GR32:$dst, (!cast<PatFrag>(frag # "_32") addr:$ptr, GR32:$val))], itin>, OpSize32; def NAME#64 : RI<opc, MRMSrcMem, (outs GR64:$dst), (ins GR64:$val, i64mem:$ptr), !strconcat(mnemonic, "{q}\t{$val, $ptr|$ptr, $val}"), [(set GR64:$dst, (!cast<PatFrag>(frag # "_64") addr:$ptr, GR64:$val))], itin>; } } defm LXADD : ATOMIC_LOAD_BINOP<0xc0, 0xc1, "xadd", "atomic_load_add", IIC_XADD_LOCK_MEM8, IIC_XADD_LOCK_MEM>, TB, LOCK; /* The following multiclass tries to make sure that in code like * x.store (immediate op x.load(acquire), release) * and * x.store (register op x.load(acquire), release) * an operation directly on memory is generated instead of wasting a register. * It is not automatic as atomic_store/load are only lowered to MOV instructions * extremely late to prevent them from being accidentally reordered in the backend * (see below the RELEASE_MOV* / ACQUIRE_MOV* pseudo-instructions) */ multiclass RELEASE_BINOP_MI<SDNode op> { def NAME#8mi : I<0, Pseudo, (outs), (ins i8mem:$dst, i8imm:$src), "#BINOP "#NAME#"8mi PSEUDO!", [(atomic_store_8 addr:$dst, (op (atomic_load_8 addr:$dst), (i8 imm:$src)))]>; def NAME#8mr : I<0, Pseudo, (outs), (ins i8mem:$dst, GR8:$src), "#BINOP "#NAME#"8mr PSEUDO!", [(atomic_store_8 addr:$dst, (op (atomic_load_8 addr:$dst), GR8:$src))]>; // NAME#16 is not generated as 16-bit arithmetic instructions are considered // costly and avoided as far as possible by this backend anyway def NAME#32mi : I<0, Pseudo, (outs), (ins i32mem:$dst, i32imm:$src), "#BINOP "#NAME#"32mi PSEUDO!", [(atomic_store_32 addr:$dst, (op (atomic_load_32 addr:$dst), (i32 imm:$src)))]>; def NAME#32mr : I<0, Pseudo, (outs), (ins i32mem:$dst, GR32:$src), "#BINOP "#NAME#"32mr PSEUDO!", [(atomic_store_32 addr:$dst, (op (atomic_load_32 addr:$dst), GR32:$src))]>; def NAME#64mi32 : I<0, Pseudo, (outs), (ins i64mem:$dst, i64i32imm:$src), "#BINOP "#NAME#"64mi32 PSEUDO!", [(atomic_store_64 addr:$dst, (op (atomic_load_64 addr:$dst), (i64immSExt32:$src)))]>; def NAME#64mr : I<0, Pseudo, (outs), (ins i64mem:$dst, GR64:$src), "#BINOP "#NAME#"64mr PSEUDO!", [(atomic_store_64 addr:$dst, (op (atomic_load_64 addr:$dst), GR64:$src))]>; } let Defs = [EFLAGS] in { defm RELEASE_ADD : RELEASE_BINOP_MI<add>; defm RELEASE_AND : RELEASE_BINOP_MI<and>; defm RELEASE_OR : RELEASE_BINOP_MI<or>; defm RELEASE_XOR : RELEASE_BINOP_MI<xor>; // Note: we don't deal with sub, because substractions of constants are // optimized into additions before this code can run. } // Same as above, but for floating-point. // FIXME: imm version. // FIXME: Version that doesn't clobber $src, using AVX's VADDSS. // FIXME: This could also handle SIMD operations with *ps and *pd instructions. let usesCustomInserter = 1 in { multiclass RELEASE_FP_BINOP_MI<SDNode op> { def NAME#32mr : I<0, Pseudo, (outs), (ins i32mem:$dst, FR32:$src), "#BINOP "#NAME#"32mr PSEUDO!", [(atomic_store_32 addr:$dst, (i32 (bitconvert (op (f32 (bitconvert (i32 (atomic_load_32 addr:$dst)))), FR32:$src))))]>, Requires<[HasSSE1]>; def NAME#64mr : I<0, Pseudo, (outs), (ins i64mem:$dst, FR64:$src), "#BINOP "#NAME#"64mr PSEUDO!", [(atomic_store_64 addr:$dst, (i64 (bitconvert (op (f64 (bitconvert (i64 (atomic_load_64 addr:$dst)))), FR64:$src))))]>, Requires<[HasSSE2]>; } defm RELEASE_FADD : RELEASE_FP_BINOP_MI<fadd>; // FIXME: Add fsub, fmul, fdiv, ... } multiclass RELEASE_UNOP<dag dag8, dag dag16, dag dag32, dag dag64> { def NAME#8m : I<0, Pseudo, (outs), (ins i8mem:$dst), "#UNOP "#NAME#"8m PSEUDO!", [(atomic_store_8 addr:$dst, dag8)]>; def NAME#16m : I<0, Pseudo, (outs), (ins i16mem:$dst), "#UNOP "#NAME#"16m PSEUDO!", [(atomic_store_16 addr:$dst, dag16)]>; def NAME#32m : I<0, Pseudo, (outs), (ins i32mem:$dst), "#UNOP "#NAME#"32m PSEUDO!", [(atomic_store_32 addr:$dst, dag32)]>; def NAME#64m : I<0, Pseudo, (outs), (ins i64mem:$dst), "#UNOP "#NAME#"64m PSEUDO!", [(atomic_store_64 addr:$dst, dag64)]>; } let Defs = [EFLAGS] in { defm RELEASE_INC : RELEASE_UNOP< (add (atomic_load_8 addr:$dst), (i8 1)), (add (atomic_load_16 addr:$dst), (i16 1)), (add (atomic_load_32 addr:$dst), (i32 1)), (add (atomic_load_64 addr:$dst), (i64 1))>, Requires<[NotSlowIncDec]>; defm RELEASE_DEC : RELEASE_UNOP< (add (atomic_load_8 addr:$dst), (i8 -1)), (add (atomic_load_16 addr:$dst), (i16 -1)), (add (atomic_load_32 addr:$dst), (i32 -1)), (add (atomic_load_64 addr:$dst), (i64 -1))>, Requires<[NotSlowIncDec]>; } /* TODO: These don't work because the type inference of TableGen fails. TODO: find a way to fix it. let Defs = [EFLAGS] in { defm RELEASE_NEG : RELEASE_UNOP< (ineg (atomic_load_8 addr:$dst)), (ineg (atomic_load_16 addr:$dst)), (ineg (atomic_load_32 addr:$dst)), (ineg (atomic_load_64 addr:$dst))>; } // NOT doesn't set flags. defm RELEASE_NOT : RELEASE_UNOP< (not (atomic_load_8 addr:$dst)), (not (atomic_load_16 addr:$dst)), (not (atomic_load_32 addr:$dst)), (not (atomic_load_64 addr:$dst))>; */ def RELEASE_MOV8mi : I<0, Pseudo, (outs), (ins i8mem:$dst, i8imm:$src), "#RELEASE_MOV8mi PSEUDO!", [(atomic_store_8 addr:$dst, (i8 imm:$src))]>; def RELEASE_MOV16mi : I<0, Pseudo, (outs), (ins i16mem:$dst, i16imm:$src), "#RELEASE_MOV16mi PSEUDO!", [(atomic_store_16 addr:$dst, (i16 imm:$src))]>; def RELEASE_MOV32mi : I<0, Pseudo, (outs), (ins i32mem:$dst, i32imm:$src), "#RELEASE_MOV32mi PSEUDO!", [(atomic_store_32 addr:$dst, (i32 imm:$src))]>; def RELEASE_MOV64mi32 : I<0, Pseudo, (outs), (ins i64mem:$dst, i64i32imm:$src), "#RELEASE_MOV64mi32 PSEUDO!", [(atomic_store_64 addr:$dst, i64immSExt32:$src)]>; def RELEASE_MOV8mr : I<0, Pseudo, (outs), (ins i8mem :$dst, GR8 :$src), "#RELEASE_MOV8mr PSEUDO!", [(atomic_store_8 addr:$dst, GR8 :$src)]>; def RELEASE_MOV16mr : I<0, Pseudo, (outs), (ins i16mem:$dst, GR16:$src), "#RELEASE_MOV16mr PSEUDO!", [(atomic_store_16 addr:$dst, GR16:$src)]>; def RELEASE_MOV32mr : I<0, Pseudo, (outs), (ins i32mem:$dst, GR32:$src), "#RELEASE_MOV32mr PSEUDO!", [(atomic_store_32 addr:$dst, GR32:$src)]>; def RELEASE_MOV64mr : I<0, Pseudo, (outs), (ins i64mem:$dst, GR64:$src), "#RELEASE_MOV64mr PSEUDO!", [(atomic_store_64 addr:$dst, GR64:$src)]>; def ACQUIRE_MOV8rm : I<0, Pseudo, (outs GR8 :$dst), (ins i8mem :$src), "#ACQUIRE_MOV8rm PSEUDO!", [(set GR8:$dst, (atomic_load_8 addr:$src))]>; def ACQUIRE_MOV16rm : I<0, Pseudo, (outs GR16:$dst), (ins i16mem:$src), "#ACQUIRE_MOV16rm PSEUDO!", [(set GR16:$dst, (atomic_load_16 addr:$src))]>; def ACQUIRE_MOV32rm : I<0, Pseudo, (outs GR32:$dst), (ins i32mem:$src), "#ACQUIRE_MOV32rm PSEUDO!", [(set GR32:$dst, (atomic_load_32 addr:$src))]>; def ACQUIRE_MOV64rm : I<0, Pseudo, (outs GR64:$dst), (ins i64mem:$src), "#ACQUIRE_MOV64rm PSEUDO!", [(set GR64:$dst, (atomic_load_64 addr:$src))]>; //===----------------------------------------------------------------------===// // DAG Pattern Matching Rules //===----------------------------------------------------------------------===// // Use AND/OR to store 0/-1 in memory when optimizing for minsize. This saves // binary size compared to a regular MOV, but it introduces an unnecessary // load, so is not suitable for regular or optsize functions. let Predicates = [OptForMinSize] in { def : Pat<(store (i16 0), addr:$dst), (AND16mi8 addr:$dst, 0)>; def : Pat<(store (i32 0), addr:$dst), (AND32mi8 addr:$dst, 0)>; def : Pat<(store (i64 0), addr:$dst), (AND64mi8 addr:$dst, 0)>; def : Pat<(store (i16 -1), addr:$dst), (OR16mi8 addr:$dst, -1)>; def : Pat<(store (i32 -1), addr:$dst), (OR32mi8 addr:$dst, -1)>; def : Pat<(store (i64 -1), addr:$dst), (OR64mi8 addr:$dst, -1)>; } // ConstantPool GlobalAddress, ExternalSymbol, and JumpTable def : Pat<(i32 (X86Wrapper tconstpool :$dst)), (MOV32ri tconstpool :$dst)>; def : Pat<(i32 (X86Wrapper tjumptable :$dst)), (MOV32ri tjumptable :$dst)>; def : Pat<(i32 (X86Wrapper tglobaltlsaddr:$dst)),(MOV32ri tglobaltlsaddr:$dst)>; def : Pat<(i32 (X86Wrapper tglobaladdr :$dst)), (MOV32ri tglobaladdr :$dst)>; def : Pat<(i32 (X86Wrapper texternalsym:$dst)), (MOV32ri texternalsym:$dst)>; def : Pat<(i32 (X86Wrapper mcsym:$dst)), (MOV32ri mcsym:$dst)>; def : Pat<(i32 (X86Wrapper tblockaddress:$dst)), (MOV32ri tblockaddress:$dst)>; def : Pat<(add GR32:$src1, (X86Wrapper tconstpool:$src2)), (ADD32ri GR32:$src1, tconstpool:$src2)>; def : Pat<(add GR32:$src1, (X86Wrapper tjumptable:$src2)), (ADD32ri GR32:$src1, tjumptable:$src2)>; def : Pat<(add GR32:$src1, (X86Wrapper tglobaladdr :$src2)), (ADD32ri GR32:$src1, tglobaladdr:$src2)>; def : Pat<(add GR32:$src1, (X86Wrapper texternalsym:$src2)), (ADD32ri GR32:$src1, texternalsym:$src2)>; def : Pat<(add GR32:$src1, (X86Wrapper mcsym:$src2)), (ADD32ri GR32:$src1, mcsym:$src2)>; def : Pat<(add GR32:$src1, (X86Wrapper tblockaddress:$src2)), (ADD32ri GR32:$src1, tblockaddress:$src2)>; def : Pat<(store (i32 (X86Wrapper tglobaladdr:$src)), addr:$dst), (MOV32mi addr:$dst, tglobaladdr:$src)>; def : Pat<(store (i32 (X86Wrapper texternalsym:$src)), addr:$dst), (MOV32mi addr:$dst, texternalsym:$src)>; def : Pat<(store (i32 (X86Wrapper mcsym:$src)), addr:$dst), (MOV32mi addr:$dst, mcsym:$src)>; def : Pat<(store (i32 (X86Wrapper tblockaddress:$src)), addr:$dst), (MOV32mi addr:$dst, tblockaddress:$src)>; // ConstantPool GlobalAddress, ExternalSymbol, and JumpTable when not in small // code model mode, should use 'movabs'. FIXME: This is really a hack, the // 'movabs' predicate should handle this sort of thing. def : Pat<(i64 (X86Wrapper tconstpool :$dst)), (MOV64ri tconstpool :$dst)>, Requires<[FarData]>; def : Pat<(i64 (X86Wrapper tjumptable :$dst)), (MOV64ri tjumptable :$dst)>, Requires<[FarData]>; def : Pat<(i64 (X86Wrapper tglobaladdr :$dst)), (MOV64ri tglobaladdr :$dst)>, Requires<[FarData]>; def : Pat<(i64 (X86Wrapper texternalsym:$dst)), (MOV64ri texternalsym:$dst)>, Requires<[FarData]>; def : Pat<(i64 (X86Wrapper mcsym:$dst)), (MOV64ri mcsym:$dst)>, Requires<[FarData]>; def : Pat<(i64 (X86Wrapper tblockaddress:$dst)), (MOV64ri tblockaddress:$dst)>, Requires<[FarData]>; // In kernel code model, we can get the address of a label // into a register with 'movq'. FIXME: This is a hack, the 'imm' predicate of // the MOV64ri32 should accept these. def : Pat<(i64 (X86Wrapper tconstpool :$dst)), (MOV64ri32 tconstpool :$dst)>, Requires<[KernelCode]>; def : Pat<(i64 (X86Wrapper tjumptable :$dst)), (MOV64ri32 tjumptable :$dst)>, Requires<[KernelCode]>; def : Pat<(i64 (X86Wrapper tglobaladdr :$dst)), (MOV64ri32 tglobaladdr :$dst)>, Requires<[KernelCode]>; def : Pat<(i64 (X86Wrapper texternalsym:$dst)), (MOV64ri32 texternalsym:$dst)>, Requires<[KernelCode]>; def : Pat<(i64 (X86Wrapper mcsym:$dst)), (MOV64ri32 mcsym:$dst)>, Requires<[KernelCode]>; def : Pat<(i64 (X86Wrapper tblockaddress:$dst)), (MOV64ri32 tblockaddress:$dst)>, Requires<[KernelCode]>; // If we have small model and -static mode, it is safe to store global addresses // directly as immediates. FIXME: This is really a hack, the 'imm' predicate // for MOV64mi32 should handle this sort of thing. def : Pat<(store (i64 (X86Wrapper tconstpool:$src)), addr:$dst), (MOV64mi32 addr:$dst, tconstpool:$src)>, Requires<[NearData, IsNotPIC]>; def : Pat<(store (i64 (X86Wrapper tjumptable:$src)), addr:$dst), (MOV64mi32 addr:$dst, tjumptable:$src)>, Requires<[NearData, IsNotPIC]>; def : Pat<(store (i64 (X86Wrapper tglobaladdr:$src)), addr:$dst), (MOV64mi32 addr:$dst, tglobaladdr:$src)>, Requires<[NearData, IsNotPIC]>; def : Pat<(store (i64 (X86Wrapper texternalsym:$src)), addr:$dst), (MOV64mi32 addr:$dst, texternalsym:$src)>, Requires<[NearData, IsNotPIC]>; def : Pat<(store (i64 (X86Wrapper mcsym:$src)), addr:$dst), (MOV64mi32 addr:$dst, mcsym:$src)>, Requires<[NearData, IsNotPIC]>; def : Pat<(store (i64 (X86Wrapper tblockaddress:$src)), addr:$dst), (MOV64mi32 addr:$dst, tblockaddress:$src)>, Requires<[NearData, IsNotPIC]>; def : Pat<(i32 (X86RecoverFrameAlloc mcsym:$dst)), (MOV32ri mcsym:$dst)>; def : Pat<(i64 (X86RecoverFrameAlloc mcsym:$dst)), (MOV64ri mcsym:$dst)>; // Calls // tls has some funny stuff here... // This corresponds to movabs $foo@tpoff, %rax def : Pat<(i64 (X86Wrapper tglobaltlsaddr :$dst)), (MOV64ri32 tglobaltlsaddr :$dst)>; // This corresponds to add $foo@tpoff, %rax def : Pat<(add GR64:$src1, (X86Wrapper tglobaltlsaddr :$dst)), (ADD64ri32 GR64:$src1, tglobaltlsaddr :$dst)>; // Direct PC relative function call for small code model. 32-bit displacement // sign extended to 64-bit. def : Pat<(X86call (i64 tglobaladdr:$dst)), (CALL64pcrel32 tglobaladdr:$dst)>; def : Pat<(X86call (i64 texternalsym:$dst)), (CALL64pcrel32 texternalsym:$dst)>; // Tailcall stuff. The TCRETURN instructions execute after the epilog, so they // can never use callee-saved registers. That is the purpose of the GR64_TC // register classes. // // The only volatile register that is never used by the calling convention is // %r11. This happens when calling a vararg function with 6 arguments. // // Match an X86tcret that uses less than 7 volatile registers. def X86tcret_6regs : PatFrag<(ops node:$ptr, node:$off), (X86tcret node:$ptr, node:$off), [{ // X86tcret args: (*chain, ptr, imm, regs..., glue) unsigned NumRegs = 0; for (unsigned i = 3, e = N->getNumOperands(); i != e; ++i) if (isa<RegisterSDNode>(N->getOperand(i)) && ++NumRegs > 6) return false; return true; }]>; def : Pat<(X86tcret ptr_rc_tailcall:$dst, imm:$off), (TCRETURNri ptr_rc_tailcall:$dst, imm:$off)>, Requires<[Not64BitMode]>; // FIXME: This is disabled for 32-bit PIC mode because the global base // register which is part of the address mode may be assigned a // callee-saved register. def : Pat<(X86tcret (load addr:$dst), imm:$off), (TCRETURNmi addr:$dst, imm:$off)>, Requires<[Not64BitMode, IsNotPIC]>; def : Pat<(X86tcret (i32 tglobaladdr:$dst), imm:$off), (TCRETURNdi tglobaladdr:$dst, imm:$off)>, Requires<[NotLP64]>; def : Pat<(X86tcret (i32 texternalsym:$dst), imm:$off), (TCRETURNdi texternalsym:$dst, imm:$off)>, Requires<[NotLP64]>; def : Pat<(X86tcret ptr_rc_tailcall:$dst, imm:$off), (TCRETURNri64 ptr_rc_tailcall:$dst, imm:$off)>, Requires<[In64BitMode]>; // Don't fold loads into X86tcret requiring more than 6 regs. // There wouldn't be enough scratch registers for base+index. def : Pat<(X86tcret_6regs (load addr:$dst), imm:$off), (TCRETURNmi64 addr:$dst, imm:$off)>, Requires<[In64BitMode]>; def : Pat<(X86tcret (i64 tglobaladdr:$dst), imm:$off), (TCRETURNdi64 tglobaladdr:$dst, imm:$off)>, Requires<[IsLP64]>; def : Pat<(X86tcret (i64 texternalsym:$dst), imm:$off), (TCRETURNdi64 texternalsym:$dst, imm:$off)>, Requires<[IsLP64]>; // Normal calls, with various flavors of addresses. def : Pat<(X86call (i32 tglobaladdr:$dst)), (CALLpcrel32 tglobaladdr:$dst)>; def : Pat<(X86call (i32 texternalsym:$dst)), (CALLpcrel32 texternalsym:$dst)>; def : Pat<(X86call (i32 imm:$dst)), (CALLpcrel32 imm:$dst)>, Requires<[CallImmAddr]>; // Comparisons. // TEST R,R is smaller than CMP R,0 def : Pat<(X86cmp GR8:$src1, 0), (TEST8rr GR8:$src1, GR8:$src1)>; def : Pat<(X86cmp GR16:$src1, 0), (TEST16rr GR16:$src1, GR16:$src1)>; def : Pat<(X86cmp GR32:$src1, 0), (TEST32rr GR32:$src1, GR32:$src1)>; def : Pat<(X86cmp GR64:$src1, 0), (TEST64rr GR64:$src1, GR64:$src1)>; // Conditional moves with folded loads with operands swapped and conditions // inverted. multiclass CMOVmr<PatLeaf InvertedCond, Instruction Inst16, Instruction Inst32, Instruction Inst64> { let Predicates = [HasCMov] in { def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, InvertedCond, EFLAGS), (Inst16 GR16:$src2, addr:$src1)>; def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, InvertedCond, EFLAGS), (Inst32 GR32:$src2, addr:$src1)>; def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, InvertedCond, EFLAGS), (Inst64 GR64:$src2, addr:$src1)>; } } defm : CMOVmr<X86_COND_B , CMOVAE16rm, CMOVAE32rm, CMOVAE64rm>; defm : CMOVmr<X86_COND_AE, CMOVB16rm , CMOVB32rm , CMOVB64rm>; defm : CMOVmr<X86_COND_E , CMOVNE16rm, CMOVNE32rm, CMOVNE64rm>; defm : CMOVmr<X86_COND_NE, CMOVE16rm , CMOVE32rm , CMOVE64rm>; defm : CMOVmr<X86_COND_BE, CMOVA16rm , CMOVA32rm , CMOVA64rm>; defm : CMOVmr<X86_COND_A , CMOVBE16rm, CMOVBE32rm, CMOVBE64rm>; defm : CMOVmr<X86_COND_L , CMOVGE16rm, CMOVGE32rm, CMOVGE64rm>; defm : CMOVmr<X86_COND_GE, CMOVL16rm , CMOVL32rm , CMOVL64rm>; defm : CMOVmr<X86_COND_LE, CMOVG16rm , CMOVG32rm , CMOVG64rm>; defm : CMOVmr<X86_COND_G , CMOVLE16rm, CMOVLE32rm, CMOVLE64rm>; defm : CMOVmr<X86_COND_P , CMOVNP16rm, CMOVNP32rm, CMOVNP64rm>; defm : CMOVmr<X86_COND_NP, CMOVP16rm , CMOVP32rm , CMOVP64rm>; defm : CMOVmr<X86_COND_S , CMOVNS16rm, CMOVNS32rm, CMOVNS64rm>; defm : CMOVmr<X86_COND_NS, CMOVS16rm , CMOVS32rm , CMOVS64rm>; defm : CMOVmr<X86_COND_O , CMOVNO16rm, CMOVNO32rm, CMOVNO64rm>; defm : CMOVmr<X86_COND_NO, CMOVO16rm , CMOVO32rm , CMOVO64rm>; // zextload bool -> zextload byte // i1 stored in one byte in zero-extended form. // Upper bits cleanup should be executed before Store. def : Pat<(zextloadi8i1 addr:$src), (MOV8rm addr:$src)>; def : Pat<(zextloadi16i1 addr:$src), (MOVZX16rm8 addr:$src)>; def : Pat<(zextloadi32i1 addr:$src), (MOVZX32rm8 addr:$src)>; def : Pat<(zextloadi64i1 addr:$src), (SUBREG_TO_REG (i64 0), (MOVZX32rm8 addr:$src), sub_32bit)>; // extload bool -> extload byte // When extloading from 16-bit and smaller memory locations into 64-bit // registers, use zero-extending loads so that the entire 64-bit register is // defined, avoiding partial-register updates. def : Pat<(extloadi8i1 addr:$src), (MOV8rm addr:$src)>; def : Pat<(extloadi16i1 addr:$src), (MOVZX16rm8 addr:$src)>; def : Pat<(extloadi32i1 addr:$src), (MOVZX32rm8 addr:$src)>; def : Pat<(extloadi16i8 addr:$src), (MOVZX16rm8 addr:$src)>; def : Pat<(extloadi32i8 addr:$src), (MOVZX32rm8 addr:$src)>; def : Pat<(extloadi32i16 addr:$src), (MOVZX32rm16 addr:$src)>; // For other extloads, use subregs, since the high contents of the register are // defined after an extload. def : Pat<(extloadi64i1 addr:$src), (SUBREG_TO_REG (i64 0), (MOVZX32rm8 addr:$src), sub_32bit)>; def : Pat<(extloadi64i8 addr:$src), (SUBREG_TO_REG (i64 0), (MOVZX32rm8 addr:$src), sub_32bit)>; def : Pat<(extloadi64i16 addr:$src), (SUBREG_TO_REG (i64 0), (MOVZX32rm16 addr:$src), sub_32bit)>; def : Pat<(extloadi64i32 addr:$src), (SUBREG_TO_REG (i64 0), (MOV32rm addr:$src), sub_32bit)>; // anyext. Define these to do an explicit zero-extend to // avoid partial-register updates. def : Pat<(i16 (anyext GR8 :$src)), (EXTRACT_SUBREG (MOVZX32rr8 GR8 :$src), sub_16bit)>; def : Pat<(i32 (anyext GR8 :$src)), (MOVZX32rr8 GR8 :$src)>; // Except for i16 -> i32 since isel expect i16 ops to be promoted to i32. def : Pat<(i32 (anyext GR16:$src)), (INSERT_SUBREG (i32 (IMPLICIT_DEF)), GR16:$src, sub_16bit)>; def : Pat<(i64 (anyext GR8 :$src)), (SUBREG_TO_REG (i64 0), (MOVZX32rr8 GR8 :$src), sub_32bit)>; def : Pat<(i64 (anyext GR16:$src)), (SUBREG_TO_REG (i64 0), (MOVZX32rr16 GR16 :$src), sub_32bit)>; def : Pat<(i64 (anyext GR32:$src)), (SUBREG_TO_REG (i64 0), GR32:$src, sub_32bit)>; // Any instruction that defines a 32-bit result leaves the high half of the // register. Truncate can be lowered to EXTRACT_SUBREG. CopyFromReg may // be copying from a truncate. And x86's cmov doesn't do anything if the // condition is false. But any other 32-bit operation will zero-extend // up to 64 bits. def def32 : PatLeaf<(i32 GR32:$src), [{ return N->getOpcode() != ISD::TRUNCATE && N->getOpcode() != TargetOpcode::EXTRACT_SUBREG && N->getOpcode() != ISD::CopyFromReg && N->getOpcode() != ISD::AssertSext && N->getOpcode() != X86ISD::CMOV; }]>; // In the case of a 32-bit def that is known to implicitly zero-extend, // we can use a SUBREG_TO_REG. def : Pat<(i64 (zext def32:$src)), (SUBREG_TO_REG (i64 0), GR32:$src, sub_32bit)>; //===----------------------------------------------------------------------===// // Pattern match OR as ADD //===----------------------------------------------------------------------===// // If safe, we prefer to pattern match OR as ADD at isel time. ADD can be // 3-addressified into an LEA instruction to avoid copies. However, we also // want to finally emit these instructions as an or at the end of the code // generator to make the generated code easier to read. To do this, we select // into "disjoint bits" pseudo ops. // Treat an 'or' node is as an 'add' if the or'ed bits are known to be zero. def or_is_add : PatFrag<(ops node:$lhs, node:$rhs), (or node:$lhs, node:$rhs),[{ if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N->getOperand(1))) return CurDAG->MaskedValueIsZero(N->getOperand(0), CN->getAPIntValue()); APInt KnownZero0, KnownOne0; CurDAG->computeKnownBits(N->getOperand(0), KnownZero0, KnownOne0, 0); APInt KnownZero1, KnownOne1; CurDAG->computeKnownBits(N->getOperand(1), KnownZero1, KnownOne1, 0); return (~KnownZero0 & ~KnownZero1) == 0; }]>; // (or x1, x2) -> (add x1, x2) if two operands are known not to share bits. // Try this before the selecting to OR. let AddedComplexity = 5, SchedRW = [WriteALU] in { let isConvertibleToThreeAddress = 1, Constraints = "$src1 = $dst", Defs = [EFLAGS] in { let isCommutable = 1 in { def ADD16rr_DB : I<0, Pseudo, (outs GR16:$dst), (ins GR16:$src1, GR16:$src2), "", // orw/addw REG, REG [(set GR16:$dst, (or_is_add GR16:$src1, GR16:$src2))]>; def ADD32rr_DB : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2), "", // orl/addl REG, REG [(set GR32:$dst, (or_is_add GR32:$src1, GR32:$src2))]>; def ADD64rr_DB : I<0, Pseudo, (outs GR64:$dst), (ins GR64:$src1, GR64:$src2), "", // orq/addq REG, REG [(set GR64:$dst, (or_is_add GR64:$src1, GR64:$src2))]>; } // isCommutable // NOTE: These are order specific, we want the ri8 forms to be listed // first so that they are slightly preferred to the ri forms. def ADD16ri8_DB : I<0, Pseudo, (outs GR16:$dst), (ins GR16:$src1, i16i8imm:$src2), "", // orw/addw REG, imm8 [(set GR16:$dst,(or_is_add GR16:$src1,i16immSExt8:$src2))]>; def ADD16ri_DB : I<0, Pseudo, (outs GR16:$dst), (ins GR16:$src1, i16imm:$src2), "", // orw/addw REG, imm [(set GR16:$dst, (or_is_add GR16:$src1, imm:$src2))]>; def ADD32ri8_DB : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$src1, i32i8imm:$src2), "", // orl/addl REG, imm8 [(set GR32:$dst,(or_is_add GR32:$src1,i32immSExt8:$src2))]>; def ADD32ri_DB : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$src1, i32imm:$src2), "", // orl/addl REG, imm [(set GR32:$dst, (or_is_add GR32:$src1, imm:$src2))]>; def ADD64ri8_DB : I<0, Pseudo, (outs GR64:$dst), (ins GR64:$src1, i64i8imm:$src2), "", // orq/addq REG, imm8 [(set GR64:$dst, (or_is_add GR64:$src1, i64immSExt8:$src2))]>; def ADD64ri32_DB : I<0, Pseudo, (outs GR64:$dst), (ins GR64:$src1, i64i32imm:$src2), "", // orq/addq REG, imm [(set GR64:$dst, (or_is_add GR64:$src1, i64immSExt32:$src2))]>; } } // AddedComplexity, SchedRW //===----------------------------------------------------------------------===// // Some peepholes //===----------------------------------------------------------------------===// // Odd encoding trick: -128 fits into an 8-bit immediate field while // +128 doesn't, so in this special case use a sub instead of an add. def : Pat<(add GR16:$src1, 128), (SUB16ri8 GR16:$src1, -128)>; def : Pat<(store (add (loadi16 addr:$dst), 128), addr:$dst), (SUB16mi8 addr:$dst, -128)>; def : Pat<(add GR32:$src1, 128), (SUB32ri8 GR32:$src1, -128)>; def : Pat<(store (add (loadi32 addr:$dst), 128), addr:$dst), (SUB32mi8 addr:$dst, -128)>; def : Pat<(add GR64:$src1, 128), (SUB64ri8 GR64:$src1, -128)>; def : Pat<(store (add (loadi64 addr:$dst), 128), addr:$dst), (SUB64mi8 addr:$dst, -128)>; // The same trick applies for 32-bit immediate fields in 64-bit // instructions. def : Pat<(add GR64:$src1, 0x0000000080000000), (SUB64ri32 GR64:$src1, 0xffffffff80000000)>; def : Pat<(store (add (loadi64 addr:$dst), 0x0000000080000000), addr:$dst), (SUB64mi32 addr:$dst, 0xffffffff80000000)>; // To avoid needing to materialize an immediate in a register, use a 32-bit and // with implicit zero-extension instead of a 64-bit and if the immediate has at // least 32 bits of leading zeros. If in addition the last 32 bits can be // represented with a sign extension of a 8 bit constant, use that. // This can also reduce instruction size by eliminating the need for the REX // prefix. // AddedComplexity is needed to give priority over i64immSExt8 and i64immSExt32. let AddedComplexity = 1 in { def : Pat<(and GR64:$src, i64immZExt32SExt8:$imm), (SUBREG_TO_REG (i64 0), (AND32ri8 (EXTRACT_SUBREG GR64:$src, sub_32bit), (i32 (GetLo8XForm imm:$imm))), sub_32bit)>; def : Pat<(and GR64:$src, i64immZExt32:$imm), (SUBREG_TO_REG (i64 0), (AND32ri (EXTRACT_SUBREG GR64:$src, sub_32bit), (i32 (GetLo32XForm imm:$imm))), sub_32bit)>; } // AddedComplexity = 1 // AddedComplexity is needed due to the increased complexity on the // i64immZExt32SExt8 and i64immZExt32 patterns above. Applying this to all // the MOVZX patterns keeps thems together in DAGIsel tables. let AddedComplexity = 1 in { // r & (2^16-1) ==> movz def : Pat<(and GR32:$src1, 0xffff), (MOVZX32rr16 (EXTRACT_SUBREG GR32:$src1, sub_16bit))>; // r & (2^8-1) ==> movz def : Pat<(and GR32:$src1, 0xff), (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src1, GR32_ABCD)), sub_8bit))>, Requires<[Not64BitMode]>; // r & (2^8-1) ==> movz def : Pat<(and GR16:$src1, 0xff), (EXTRACT_SUBREG (MOVZX32rr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src1, GR16_ABCD)), sub_8bit)), sub_16bit)>, Requires<[Not64BitMode]>; // r & (2^32-1) ==> movz def : Pat<(and GR64:$src, 0x00000000FFFFFFFF), (SUBREG_TO_REG (i64 0), (MOV32rr (EXTRACT_SUBREG GR64:$src, sub_32bit)), sub_32bit)>; // r & (2^16-1) ==> movz def : Pat<(and GR64:$src, 0xffff), (SUBREG_TO_REG (i64 0), (MOVZX32rr16 (i16 (EXTRACT_SUBREG GR64:$src, sub_16bit))), sub_32bit)>; // r & (2^8-1) ==> movz def : Pat<(and GR64:$src, 0xff), (SUBREG_TO_REG (i64 0), (MOVZX32rr8 (i8 (EXTRACT_SUBREG GR64:$src, sub_8bit))), sub_32bit)>; // r & (2^8-1) ==> movz def : Pat<(and GR32:$src1, 0xff), (MOVZX32rr8 (EXTRACT_SUBREG GR32:$src1, sub_8bit))>, Requires<[In64BitMode]>; // r & (2^8-1) ==> movz def : Pat<(and GR16:$src1, 0xff), (EXTRACT_SUBREG (MOVZX32rr8 (i8 (EXTRACT_SUBREG GR16:$src1, sub_8bit))), sub_16bit)>, Requires<[In64BitMode]>; } // AddedComplexity = 1 // sext_inreg patterns def : Pat<(sext_inreg GR32:$src, i16), (MOVSX32rr16 (EXTRACT_SUBREG GR32:$src, sub_16bit))>; def : Pat<(sext_inreg GR32:$src, i8), (MOVSX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)), sub_8bit))>, Requires<[Not64BitMode]>; def : Pat<(sext_inreg GR16:$src, i8), (EXTRACT_SUBREG (i32 (MOVSX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)), sub_8bit))), sub_16bit)>, Requires<[Not64BitMode]>; def : Pat<(sext_inreg GR64:$src, i32), (MOVSX64rr32 (EXTRACT_SUBREG GR64:$src, sub_32bit))>; def : Pat<(sext_inreg GR64:$src, i16), (MOVSX64rr16 (EXTRACT_SUBREG GR64:$src, sub_16bit))>; def : Pat<(sext_inreg GR64:$src, i8), (MOVSX64rr8 (EXTRACT_SUBREG GR64:$src, sub_8bit))>; def : Pat<(sext_inreg GR32:$src, i8), (MOVSX32rr8 (EXTRACT_SUBREG GR32:$src, sub_8bit))>, Requires<[In64BitMode]>; def : Pat<(sext_inreg GR16:$src, i8), (EXTRACT_SUBREG (MOVSX32rr8 (EXTRACT_SUBREG GR16:$src, sub_8bit)), sub_16bit)>, Requires<[In64BitMode]>; // sext, sext_load, zext, zext_load def: Pat<(i16 (sext GR8:$src)), (EXTRACT_SUBREG (MOVSX32rr8 GR8:$src), sub_16bit)>; def: Pat<(sextloadi16i8 addr:$src), (EXTRACT_SUBREG (MOVSX32rm8 addr:$src), sub_16bit)>; def: Pat<(i16 (zext GR8:$src)), (EXTRACT_SUBREG (MOVZX32rr8 GR8:$src), sub_16bit)>; def: Pat<(zextloadi16i8 addr:$src), (EXTRACT_SUBREG (MOVZX32rm8 addr:$src), sub_16bit)>; // trunc patterns def : Pat<(i16 (trunc GR32:$src)), (EXTRACT_SUBREG GR32:$src, sub_16bit)>; def : Pat<(i8 (trunc GR32:$src)), (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)), sub_8bit)>, Requires<[Not64BitMode]>; def : Pat<(i8 (trunc GR16:$src)), (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)), sub_8bit)>, Requires<[Not64BitMode]>; def : Pat<(i32 (trunc GR64:$src)), (EXTRACT_SUBREG GR64:$src, sub_32bit)>; def : Pat<(i16 (trunc GR64:$src)), (EXTRACT_SUBREG GR64:$src, sub_16bit)>; def : Pat<(i8 (trunc GR64:$src)), (EXTRACT_SUBREG GR64:$src, sub_8bit)>; def : Pat<(i8 (trunc GR32:$src)), (EXTRACT_SUBREG GR32:$src, sub_8bit)>, Requires<[In64BitMode]>; def : Pat<(i8 (trunc GR16:$src)), (EXTRACT_SUBREG GR16:$src, sub_8bit)>, Requires<[In64BitMode]>; // h-register tricks def : Pat<(i8 (trunc (srl_su GR16:$src, (i8 8)))), (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)), sub_8bit_hi)>, Requires<[Not64BitMode]>; def : Pat<(i8 (trunc (srl_su (i32 (anyext GR16:$src)), (i8 8)))), (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)), sub_8bit_hi)>, Requires<[Not64BitMode]>; def : Pat<(i8 (trunc (srl_su GR32:$src, (i8 8)))), (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)), sub_8bit_hi)>, Requires<[Not64BitMode]>; def : Pat<(srl GR16:$src, (i8 8)), (EXTRACT_SUBREG (MOVZX32rr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)), sub_8bit_hi)), sub_16bit)>, Requires<[Not64BitMode]>; def : Pat<(i32 (zext (srl_su GR16:$src, (i8 8)))), (MOVZX32rr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)), sub_8bit_hi))>, Requires<[Not64BitMode]>; def : Pat<(i32 (anyext (srl_su GR16:$src, (i8 8)))), (MOVZX32rr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)), sub_8bit_hi))>, Requires<[Not64BitMode]>; def : Pat<(and (srl_su GR32:$src, (i8 8)), (i32 255)), (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)), sub_8bit_hi))>, Requires<[Not64BitMode]>; def : Pat<(srl (and_su GR32:$src, 0xff00), (i8 8)), (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)), sub_8bit_hi))>, Requires<[Not64BitMode]>; // h-register tricks. // For now, be conservative on x86-64 and use an h-register extract only if the // value is immediately zero-extended or stored, which are somewhat common // cases. This uses a bunch of code to prevent a register requiring a REX prefix // from being allocated in the same instruction as the h register, as there's // currently no way to describe this requirement to the register allocator. // h-register extract and zero-extend. def : Pat<(and (srl_su GR64:$src, (i8 8)), (i64 255)), (SUBREG_TO_REG (i64 0), (MOVZX32_NOREXrr8 (EXTRACT_SUBREG (i64 (COPY_TO_REGCLASS GR64:$src, GR64_ABCD)), sub_8bit_hi)), sub_32bit)>; def : Pat<(and (srl_su GR32:$src, (i8 8)), (i32 255)), (MOVZX32_NOREXrr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)), sub_8bit_hi))>, Requires<[In64BitMode]>; def : Pat<(srl (and_su GR32:$src, 0xff00), (i8 8)), (MOVZX32_NOREXrr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)), sub_8bit_hi))>, Requires<[In64BitMode]>; def : Pat<(srl GR16:$src, (i8 8)), (EXTRACT_SUBREG (MOVZX32_NOREXrr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)), sub_8bit_hi)), sub_16bit)>, Requires<[In64BitMode]>; def : Pat<(i32 (zext (srl_su GR16:$src, (i8 8)))), (MOVZX32_NOREXrr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)), sub_8bit_hi))>, Requires<[In64BitMode]>; def : Pat<(i32 (anyext (srl_su GR16:$src, (i8 8)))), (MOVZX32_NOREXrr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)), sub_8bit_hi))>, Requires<[In64BitMode]>; def : Pat<(i64 (zext (srl_su GR16:$src, (i8 8)))), (SUBREG_TO_REG (i64 0), (MOVZX32_NOREXrr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)), sub_8bit_hi)), sub_32bit)>; def : Pat<(i64 (anyext (srl_su GR16:$src, (i8 8)))), (SUBREG_TO_REG (i64 0), (MOVZX32_NOREXrr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)), sub_8bit_hi)), sub_32bit)>; // h-register extract and store. def : Pat<(store (i8 (trunc_su (srl_su GR64:$src, (i8 8)))), addr:$dst), (MOV8mr_NOREX addr:$dst, (EXTRACT_SUBREG (i64 (COPY_TO_REGCLASS GR64:$src, GR64_ABCD)), sub_8bit_hi))>; def : Pat<(store (i8 (trunc_su (srl_su GR32:$src, (i8 8)))), addr:$dst), (MOV8mr_NOREX addr:$dst, (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)), sub_8bit_hi))>, Requires<[In64BitMode]>; def : Pat<(store (i8 (trunc_su (srl_su GR16:$src, (i8 8)))), addr:$dst), (MOV8mr_NOREX addr:$dst, (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)), sub_8bit_hi))>, Requires<[In64BitMode]>; // (shl x, 1) ==> (add x, x) // Note that if x is undef (immediate or otherwise), we could theoretically // end up with the two uses of x getting different values, producing a result // where the least significant bit is not 0. However, the probability of this // happening is considered low enough that this is officially not a // "real problem". def : Pat<(shl GR8 :$src1, (i8 1)), (ADD8rr GR8 :$src1, GR8 :$src1)>; def : Pat<(shl GR16:$src1, (i8 1)), (ADD16rr GR16:$src1, GR16:$src1)>; def : Pat<(shl GR32:$src1, (i8 1)), (ADD32rr GR32:$src1, GR32:$src1)>; def : Pat<(shl GR64:$src1, (i8 1)), (ADD64rr GR64:$src1, GR64:$src1)>; // Helper imms that check if a mask doesn't change significant shift bits. def immShift32 : ImmLeaf<i8, [{ return countTrailingOnes<uint64_t>(Imm) >= 5; }]>; def immShift64 : ImmLeaf<i8, [{ return countTrailingOnes<uint64_t>(Imm) >= 6; }]>; // Shift amount is implicitly masked. multiclass MaskedShiftAmountPats<SDNode frag, string name> { // (shift x (and y, 31)) ==> (shift x, y) def : Pat<(frag GR8:$src1, (and CL, immShift32)), (!cast<Instruction>(name # "8rCL") GR8:$src1)>; def : Pat<(frag GR16:$src1, (and CL, immShift32)), (!cast<Instruction>(name # "16rCL") GR16:$src1)>; def : Pat<(frag GR32:$src1, (and CL, immShift32)), (!cast<Instruction>(name # "32rCL") GR32:$src1)>; def : Pat<(store (frag (loadi8 addr:$dst), (and CL, immShift32)), addr:$dst), (!cast<Instruction>(name # "8mCL") addr:$dst)>; def : Pat<(store (frag (loadi16 addr:$dst), (and CL, immShift32)), addr:$dst), (!cast<Instruction>(name # "16mCL") addr:$dst)>; def : Pat<(store (frag (loadi32 addr:$dst), (and CL, immShift32)), addr:$dst), (!cast<Instruction>(name # "32mCL") addr:$dst)>; // (shift x (and y, 63)) ==> (shift x, y) def : Pat<(frag GR64:$src1, (and CL, immShift64)), (!cast<Instruction>(name # "64rCL") GR64:$src1)>; def : Pat<(store (frag (loadi64 addr:$dst), (and CL, 63)), addr:$dst), (!cast<Instruction>(name # "64mCL") addr:$dst)>; } defm : MaskedShiftAmountPats<shl, "SHL">; defm : MaskedShiftAmountPats<srl, "SHR">; defm : MaskedShiftAmountPats<sra, "SAR">; defm : MaskedShiftAmountPats<rotl, "ROL">; defm : MaskedShiftAmountPats<rotr, "ROR">; // (anyext (setcc_carry)) -> (setcc_carry) def : Pat<(i16 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))), (SETB_C16r)>; def : Pat<(i32 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))), (SETB_C32r)>; def : Pat<(i32 (anyext (i16 (X86setcc_c X86_COND_B, EFLAGS)))), (SETB_C32r)>; //===----------------------------------------------------------------------===// // EFLAGS-defining Patterns //===----------------------------------------------------------------------===// // add reg, reg def : Pat<(add GR8 :$src1, GR8 :$src2), (ADD8rr GR8 :$src1, GR8 :$src2)>; def : Pat<(add GR16:$src1, GR16:$src2), (ADD16rr GR16:$src1, GR16:$src2)>; def : Pat<(add GR32:$src1, GR32:$src2), (ADD32rr GR32:$src1, GR32:$src2)>; // add reg, mem def : Pat<(add GR8:$src1, (loadi8 addr:$src2)), (ADD8rm GR8:$src1, addr:$src2)>; def : Pat<(add GR16:$src1, (loadi16 addr:$src2)), (ADD16rm GR16:$src1, addr:$src2)>; def : Pat<(add GR32:$src1, (loadi32 addr:$src2)), (ADD32rm GR32:$src1, addr:$src2)>; // add reg, imm def : Pat<(add GR8 :$src1, imm:$src2), (ADD8ri GR8:$src1 , imm:$src2)>; def : Pat<(add GR16:$src1, imm:$src2), (ADD16ri GR16:$src1, imm:$src2)>; def : Pat<(add GR32:$src1, imm:$src2), (ADD32ri GR32:$src1, imm:$src2)>; def : Pat<(add GR16:$src1, i16immSExt8:$src2), (ADD16ri8 GR16:$src1, i16immSExt8:$src2)>; def : Pat<(add GR32:$src1, i32immSExt8:$src2), (ADD32ri8 GR32:$src1, i32immSExt8:$src2)>; // sub reg, reg def : Pat<(sub GR8 :$src1, GR8 :$src2), (SUB8rr GR8 :$src1, GR8 :$src2)>; def : Pat<(sub GR16:$src1, GR16:$src2), (SUB16rr GR16:$src1, GR16:$src2)>; def : Pat<(sub GR32:$src1, GR32:$src2), (SUB32rr GR32:$src1, GR32:$src2)>; // sub reg, mem def : Pat<(sub GR8:$src1, (loadi8 addr:$src2)), (SUB8rm GR8:$src1, addr:$src2)>; def : Pat<(sub GR16:$src1, (loadi16 addr:$src2)), (SUB16rm GR16:$src1, addr:$src2)>; def : Pat<(sub GR32:$src1, (loadi32 addr:$src2)), (SUB32rm GR32:$src1, addr:$src2)>; // sub reg, imm def : Pat<(sub GR8:$src1, imm:$src2), (SUB8ri GR8:$src1, imm:$src2)>; def : Pat<(sub GR16:$src1, imm:$src2), (SUB16ri GR16:$src1, imm:$src2)>; def : Pat<(sub GR32:$src1, imm:$src2), (SUB32ri GR32:$src1, imm:$src2)>; def : Pat<(sub GR16:$src1, i16immSExt8:$src2), (SUB16ri8 GR16:$src1, i16immSExt8:$src2)>; def : Pat<(sub GR32:$src1, i32immSExt8:$src2), (SUB32ri8 GR32:$src1, i32immSExt8:$src2)>; // sub 0, reg def : Pat<(X86sub_flag 0, GR8 :$src), (NEG8r GR8 :$src)>; def : Pat<(X86sub_flag 0, GR16:$src), (NEG16r GR16:$src)>; def : Pat<(X86sub_flag 0, GR32:$src), (NEG32r GR32:$src)>; def : Pat<(X86sub_flag 0, GR64:$src), (NEG64r GR64:$src)>; // mul reg, reg def : Pat<(mul GR16:$src1, GR16:$src2), (IMUL16rr GR16:$src1, GR16:$src2)>; def : Pat<(mul GR32:$src1, GR32:$src2), (IMUL32rr GR32:$src1, GR32:$src2)>; // mul reg, mem def : Pat<(mul GR16:$src1, (loadi16 addr:$src2)), (IMUL16rm GR16:$src1, addr:$src2)>; def : Pat<(mul GR32:$src1, (loadi32 addr:$src2)), (IMUL32rm GR32:$src1, addr:$src2)>; // mul reg, imm def : Pat<(mul GR16:$src1, imm:$src2), (IMUL16rri GR16:$src1, imm:$src2)>; def : Pat<(mul GR32:$src1, imm:$src2), (IMUL32rri GR32:$src1, imm:$src2)>; def : Pat<(mul GR16:$src1, i16immSExt8:$src2), (IMUL16rri8 GR16:$src1, i16immSExt8:$src2)>; def : Pat<(mul GR32:$src1, i32immSExt8:$src2), (IMUL32rri8 GR32:$src1, i32immSExt8:$src2)>; // reg = mul mem, imm def : Pat<(mul (loadi16 addr:$src1), imm:$src2), (IMUL16rmi addr:$src1, imm:$src2)>; def : Pat<(mul (loadi32 addr:$src1), imm:$src2), (IMUL32rmi addr:$src1, imm:$src2)>; def : Pat<(mul (loadi16 addr:$src1), i16immSExt8:$src2), (IMUL16rmi8 addr:$src1, i16immSExt8:$src2)>; def : Pat<(mul (loadi32 addr:$src1), i32immSExt8:$src2), (IMUL32rmi8 addr:$src1, i32immSExt8:$src2)>; // Patterns for nodes that do not produce flags, for instructions that do. // addition def : Pat<(add GR64:$src1, GR64:$src2), (ADD64rr GR64:$src1, GR64:$src2)>; def : Pat<(add GR64:$src1, i64immSExt8:$src2), (ADD64ri8 GR64:$src1, i64immSExt8:$src2)>; def : Pat<(add GR64:$src1, i64immSExt32:$src2), (ADD64ri32 GR64:$src1, i64immSExt32:$src2)>; def : Pat<(add GR64:$src1, (loadi64 addr:$src2)), (ADD64rm GR64:$src1, addr:$src2)>; // subtraction def : Pat<(sub GR64:$src1, GR64:$src2), (SUB64rr GR64:$src1, GR64:$src2)>; def : Pat<(sub GR64:$src1, (loadi64 addr:$src2)), (SUB64rm GR64:$src1, addr:$src2)>; def : Pat<(sub GR64:$src1, i64immSExt8:$src2), (SUB64ri8 GR64:$src1, i64immSExt8:$src2)>; def : Pat<(sub GR64:$src1, i64immSExt32:$src2), (SUB64ri32 GR64:$src1, i64immSExt32:$src2)>; // Multiply def : Pat<(mul GR64:$src1, GR64:$src2), (IMUL64rr GR64:$src1, GR64:$src2)>; def : Pat<(mul GR64:$src1, (loadi64 addr:$src2)), (IMUL64rm GR64:$src1, addr:$src2)>; def : Pat<(mul GR64:$src1, i64immSExt8:$src2), (IMUL64rri8 GR64:$src1, i64immSExt8:$src2)>; def : Pat<(mul GR64:$src1, i64immSExt32:$src2), (IMUL64rri32 GR64:$src1, i64immSExt32:$src2)>; def : Pat<(mul (loadi64 addr:$src1), i64immSExt8:$src2), (IMUL64rmi8 addr:$src1, i64immSExt8:$src2)>; def : Pat<(mul (loadi64 addr:$src1), i64immSExt32:$src2), (IMUL64rmi32 addr:$src1, i64immSExt32:$src2)>; // Increment/Decrement reg. // Do not make INC/DEC if it is slow let Predicates = [NotSlowIncDec] in { def : Pat<(add GR8:$src, 1), (INC8r GR8:$src)>; def : Pat<(add GR16:$src, 1), (INC16r GR16:$src)>; def : Pat<(add GR32:$src, 1), (INC32r GR32:$src)>; def : Pat<(add GR64:$src, 1), (INC64r GR64:$src)>; def : Pat<(add GR8:$src, -1), (DEC8r GR8:$src)>; def : Pat<(add GR16:$src, -1), (DEC16r GR16:$src)>; def : Pat<(add GR32:$src, -1), (DEC32r GR32:$src)>; def : Pat<(add GR64:$src, -1), (DEC64r GR64:$src)>; } // or reg/reg. def : Pat<(or GR8 :$src1, GR8 :$src2), (OR8rr GR8 :$src1, GR8 :$src2)>; def : Pat<(or GR16:$src1, GR16:$src2), (OR16rr GR16:$src1, GR16:$src2)>; def : Pat<(or GR32:$src1, GR32:$src2), (OR32rr GR32:$src1, GR32:$src2)>; def : Pat<(or GR64:$src1, GR64:$src2), (OR64rr GR64:$src1, GR64:$src2)>; // or reg/mem def : Pat<(or GR8:$src1, (loadi8 addr:$src2)), (OR8rm GR8:$src1, addr:$src2)>; def : Pat<(or GR16:$src1, (loadi16 addr:$src2)), (OR16rm GR16:$src1, addr:$src2)>; def : Pat<(or GR32:$src1, (loadi32 addr:$src2)), (OR32rm GR32:$src1, addr:$src2)>; def : Pat<(or GR64:$src1, (loadi64 addr:$src2)), (OR64rm GR64:$src1, addr:$src2)>; // or reg/imm def : Pat<(or GR8:$src1 , imm:$src2), (OR8ri GR8 :$src1, imm:$src2)>; def : Pat<(or GR16:$src1, imm:$src2), (OR16ri GR16:$src1, imm:$src2)>; def : Pat<(or GR32:$src1, imm:$src2), (OR32ri GR32:$src1, imm:$src2)>; def : Pat<(or GR16:$src1, i16immSExt8:$src2), (OR16ri8 GR16:$src1, i16immSExt8:$src2)>; def : Pat<(or GR32:$src1, i32immSExt8:$src2), (OR32ri8 GR32:$src1, i32immSExt8:$src2)>; def : Pat<(or GR64:$src1, i64immSExt8:$src2), (OR64ri8 GR64:$src1, i64immSExt8:$src2)>; def : Pat<(or GR64:$src1, i64immSExt32:$src2), (OR64ri32 GR64:$src1, i64immSExt32:$src2)>; // xor reg/reg def : Pat<(xor GR8 :$src1, GR8 :$src2), (XOR8rr GR8 :$src1, GR8 :$src2)>; def : Pat<(xor GR16:$src1, GR16:$src2), (XOR16rr GR16:$src1, GR16:$src2)>; def : Pat<(xor GR32:$src1, GR32:$src2), (XOR32rr GR32:$src1, GR32:$src2)>; def : Pat<(xor GR64:$src1, GR64:$src2), (XOR64rr GR64:$src1, GR64:$src2)>; // xor reg/mem def : Pat<(xor GR8:$src1, (loadi8 addr:$src2)), (XOR8rm GR8:$src1, addr:$src2)>; def : Pat<(xor GR16:$src1, (loadi16 addr:$src2)), (XOR16rm GR16:$src1, addr:$src2)>; def : Pat<(xor GR32:$src1, (loadi32 addr:$src2)), (XOR32rm GR32:$src1, addr:$src2)>; def : Pat<(xor GR64:$src1, (loadi64 addr:$src2)), (XOR64rm GR64:$src1, addr:$src2)>; // xor reg/imm def : Pat<(xor GR8:$src1, imm:$src2), (XOR8ri GR8:$src1, imm:$src2)>; def : Pat<(xor GR16:$src1, imm:$src2), (XOR16ri GR16:$src1, imm:$src2)>; def : Pat<(xor GR32:$src1, imm:$src2), (XOR32ri GR32:$src1, imm:$src2)>; def : Pat<(xor GR16:$src1, i16immSExt8:$src2), (XOR16ri8 GR16:$src1, i16immSExt8:$src2)>; def : Pat<(xor GR32:$src1, i32immSExt8:$src2), (XOR32ri8 GR32:$src1, i32immSExt8:$src2)>; def : Pat<(xor GR64:$src1, i64immSExt8:$src2), (XOR64ri8 GR64:$src1, i64immSExt8:$src2)>; def : Pat<(xor GR64:$src1, i64immSExt32:$src2), (XOR64ri32 GR64:$src1, i64immSExt32:$src2)>; // and reg/reg def : Pat<(and GR8 :$src1, GR8 :$src2), (AND8rr GR8 :$src1, GR8 :$src2)>; def : Pat<(and GR16:$src1, GR16:$src2), (AND16rr GR16:$src1, GR16:$src2)>; def : Pat<(and GR32:$src1, GR32:$src2), (AND32rr GR32:$src1, GR32:$src2)>; def : Pat<(and GR64:$src1, GR64:$src2), (AND64rr GR64:$src1, GR64:$src2)>; // and reg/mem def : Pat<(and GR8:$src1, (loadi8 addr:$src2)), (AND8rm GR8:$src1, addr:$src2)>; def : Pat<(and GR16:$src1, (loadi16 addr:$src2)), (AND16rm GR16:$src1, addr:$src2)>; def : Pat<(and GR32:$src1, (loadi32 addr:$src2)), (AND32rm GR32:$src1, addr:$src2)>; def : Pat<(and GR64:$src1, (loadi64 addr:$src2)), (AND64rm GR64:$src1, addr:$src2)>; // and reg/imm def : Pat<(and GR8:$src1, imm:$src2), (AND8ri GR8:$src1, imm:$src2)>; def : Pat<(and GR16:$src1, imm:$src2), (AND16ri GR16:$src1, imm:$src2)>; def : Pat<(and GR32:$src1, imm:$src2), (AND32ri GR32:$src1, imm:$src2)>; def : Pat<(and GR16:$src1, i16immSExt8:$src2), (AND16ri8 GR16:$src1, i16immSExt8:$src2)>; def : Pat<(and GR32:$src1, i32immSExt8:$src2), (AND32ri8 GR32:$src1, i32immSExt8:$src2)>; def : Pat<(and GR64:$src1, i64immSExt8:$src2), (AND64ri8 GR64:$src1, i64immSExt8:$src2)>; def : Pat<(and GR64:$src1, i64immSExt32:$src2), (AND64ri32 GR64:$src1, i64immSExt32:$src2)>; // Bit scan instruction patterns to match explicit zero-undef behavior. def : Pat<(cttz_zero_undef GR16:$src), (BSF16rr GR16:$src)>; def : Pat<(cttz_zero_undef GR32:$src), (BSF32rr GR32:$src)>; def : Pat<(cttz_zero_undef GR64:$src), (BSF64rr GR64:$src)>; def : Pat<(cttz_zero_undef (loadi16 addr:$src)), (BSF16rm addr:$src)>; def : Pat<(cttz_zero_undef (loadi32 addr:$src)), (BSF32rm addr:$src)>; def : Pat<(cttz_zero_undef (loadi64 addr:$src)), (BSF64rm addr:$src)>; // When HasMOVBE is enabled it is possible to get a non-legalized // register-register 16 bit bswap. This maps it to a ROL instruction. let Predicates = [HasMOVBE] in { def : Pat<(bswap GR16:$src), (ROL16ri GR16:$src, (i8 8))>; }