//===-------- X86PadShortFunction.cpp - pad short functions -----------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the pass which will pad short functions to prevent // a stall if a function returns before the return address is ready. This // is needed for some Intel Atom processors. // //===----------------------------------------------------------------------===// #include <algorithm> #include "X86.h" #include "X86InstrInfo.h" #include "X86Subtarget.h" #include "llvm/ADT/Statistic.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/Passes.h" #include "llvm/IR/Function.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetInstrInfo.h" using namespace llvm; #define DEBUG_TYPE "x86-pad-short-functions" STATISTIC(NumBBsPadded, "Number of basic blocks padded"); namespace { struct VisitedBBInfo { // HasReturn - Whether the BB contains a return instruction bool HasReturn; // Cycles - Number of cycles until return if HasReturn is true, otherwise // number of cycles until end of the BB unsigned int Cycles; VisitedBBInfo() : HasReturn(false), Cycles(0) {} VisitedBBInfo(bool HasReturn, unsigned int Cycles) : HasReturn(HasReturn), Cycles(Cycles) {} }; struct PadShortFunc : public MachineFunctionPass { static char ID; PadShortFunc() : MachineFunctionPass(ID) , Threshold(4), STI(nullptr), TII(nullptr) {} bool runOnMachineFunction(MachineFunction &MF) override; MachineFunctionProperties getRequiredProperties() const override { return MachineFunctionProperties().set( MachineFunctionProperties::Property::AllVRegsAllocated); } const char *getPassName() const override { return "X86 Atom pad short functions"; } private: void findReturns(MachineBasicBlock *MBB, unsigned int Cycles = 0); bool cyclesUntilReturn(MachineBasicBlock *MBB, unsigned int &Cycles); void addPadding(MachineBasicBlock *MBB, MachineBasicBlock::iterator &MBBI, unsigned int NOOPsToAdd); const unsigned int Threshold; // ReturnBBs - Maps basic blocks that return to the minimum number of // cycles until the return, starting from the entry block. DenseMap<MachineBasicBlock*, unsigned int> ReturnBBs; // VisitedBBs - Cache of previously visited BBs. DenseMap<MachineBasicBlock*, VisitedBBInfo> VisitedBBs; const X86Subtarget *STI; const TargetInstrInfo *TII; }; char PadShortFunc::ID = 0; } FunctionPass *llvm::createX86PadShortFunctions() { return new PadShortFunc(); } /// runOnMachineFunction - Loop over all of the basic blocks, inserting /// NOOP instructions before early exits. bool PadShortFunc::runOnMachineFunction(MachineFunction &MF) { if (skipFunction(*MF.getFunction())) return false; if (MF.getFunction()->optForSize()) { return false; } STI = &MF.getSubtarget<X86Subtarget>(); if (!STI->padShortFunctions()) return false; TII = STI->getInstrInfo(); // Search through basic blocks and mark the ones that have early returns ReturnBBs.clear(); VisitedBBs.clear(); findReturns(&MF.front()); bool MadeChange = false; MachineBasicBlock *MBB; unsigned int Cycles = 0; // Pad the identified basic blocks with NOOPs for (DenseMap<MachineBasicBlock*, unsigned int>::iterator I = ReturnBBs.begin(); I != ReturnBBs.end(); ++I) { MBB = I->first; Cycles = I->second; if (Cycles < Threshold) { // BB ends in a return. Skip over any DBG_VALUE instructions // trailing the terminator. assert(MBB->size() > 0 && "Basic block should contain at least a RET but is empty"); MachineBasicBlock::iterator ReturnLoc = --MBB->end(); while (ReturnLoc->isDebugValue()) --ReturnLoc; assert(ReturnLoc->isReturn() && !ReturnLoc->isCall() && "Basic block does not end with RET"); addPadding(MBB, ReturnLoc, Threshold - Cycles); NumBBsPadded++; MadeChange = true; } } return MadeChange; } /// findReturn - Starting at MBB, follow control flow and add all /// basic blocks that contain a return to ReturnBBs. void PadShortFunc::findReturns(MachineBasicBlock *MBB, unsigned int Cycles) { // If this BB has a return, note how many cycles it takes to get there. bool hasReturn = cyclesUntilReturn(MBB, Cycles); if (Cycles >= Threshold) return; if (hasReturn) { ReturnBBs[MBB] = std::max(ReturnBBs[MBB], Cycles); return; } // Follow branches in BB and look for returns for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(); I != MBB->succ_end(); ++I) { if (*I == MBB) continue; findReturns(*I, Cycles); } } /// cyclesUntilReturn - return true if the MBB has a return instruction, /// and return false otherwise. /// Cycles will be incremented by the number of cycles taken to reach the /// return or the end of the BB, whichever occurs first. bool PadShortFunc::cyclesUntilReturn(MachineBasicBlock *MBB, unsigned int &Cycles) { // Return cached result if BB was previously visited DenseMap<MachineBasicBlock*, VisitedBBInfo>::iterator it = VisitedBBs.find(MBB); if (it != VisitedBBs.end()) { VisitedBBInfo BBInfo = it->second; Cycles += BBInfo.Cycles; return BBInfo.HasReturn; } unsigned int CyclesToEnd = 0; for (MachineInstr &MI : *MBB) { // Mark basic blocks with a return instruction. Calls to other // functions do not count because the called function will be padded, // if necessary. if (MI.isReturn() && !MI.isCall()) { VisitedBBs[MBB] = VisitedBBInfo(true, CyclesToEnd); Cycles += CyclesToEnd; return true; } CyclesToEnd += TII->getInstrLatency(STI->getInstrItineraryData(), MI); } VisitedBBs[MBB] = VisitedBBInfo(false, CyclesToEnd); Cycles += CyclesToEnd; return false; } /// addPadding - Add the given number of NOOP instructions to the function /// just prior to the return at MBBI void PadShortFunc::addPadding(MachineBasicBlock *MBB, MachineBasicBlock::iterator &MBBI, unsigned int NOOPsToAdd) { DebugLoc DL = MBBI->getDebugLoc(); while (NOOPsToAdd-- > 0) { BuildMI(*MBB, MBBI, DL, TII->get(X86::NOOP)); BuildMI(*MBB, MBBI, DL, TII->get(X86::NOOP)); } }