//===- llvm/unittest/ADT/SmallVectorTest.cpp ------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // SmallVector unit tests. // //===----------------------------------------------------------------------===// #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/SmallVector.h" #include "llvm/Support/Compiler.h" #include "gtest/gtest.h" #include <list> #include <stdarg.h> using namespace llvm; namespace { /// A helper class that counts the total number of constructor and /// destructor calls. class Constructable { private: static int numConstructorCalls; static int numMoveConstructorCalls; static int numCopyConstructorCalls; static int numDestructorCalls; static int numAssignmentCalls; static int numMoveAssignmentCalls; static int numCopyAssignmentCalls; bool constructed; int value; public: Constructable() : constructed(true), value(0) { ++numConstructorCalls; } Constructable(int val) : constructed(true), value(val) { ++numConstructorCalls; } Constructable(const Constructable & src) : constructed(true) { value = src.value; ++numConstructorCalls; ++numCopyConstructorCalls; } Constructable(Constructable && src) : constructed(true) { value = src.value; ++numConstructorCalls; ++numMoveConstructorCalls; } ~Constructable() { EXPECT_TRUE(constructed); ++numDestructorCalls; constructed = false; } Constructable & operator=(const Constructable & src) { EXPECT_TRUE(constructed); value = src.value; ++numAssignmentCalls; ++numCopyAssignmentCalls; return *this; } Constructable & operator=(Constructable && src) { EXPECT_TRUE(constructed); value = src.value; ++numAssignmentCalls; ++numMoveAssignmentCalls; return *this; } int getValue() const { return abs(value); } static void reset() { numConstructorCalls = 0; numMoveConstructorCalls = 0; numCopyConstructorCalls = 0; numDestructorCalls = 0; numAssignmentCalls = 0; numMoveAssignmentCalls = 0; numCopyAssignmentCalls = 0; } static int getNumConstructorCalls() { return numConstructorCalls; } static int getNumMoveConstructorCalls() { return numMoveConstructorCalls; } static int getNumCopyConstructorCalls() { return numCopyConstructorCalls; } static int getNumDestructorCalls() { return numDestructorCalls; } static int getNumAssignmentCalls() { return numAssignmentCalls; } static int getNumMoveAssignmentCalls() { return numMoveAssignmentCalls; } static int getNumCopyAssignmentCalls() { return numCopyAssignmentCalls; } friend bool operator==(const Constructable & c0, const Constructable & c1) { return c0.getValue() == c1.getValue(); } friend bool LLVM_ATTRIBUTE_UNUSED operator!=(const Constructable & c0, const Constructable & c1) { return c0.getValue() != c1.getValue(); } }; int Constructable::numConstructorCalls; int Constructable::numCopyConstructorCalls; int Constructable::numMoveConstructorCalls; int Constructable::numDestructorCalls; int Constructable::numAssignmentCalls; int Constructable::numCopyAssignmentCalls; int Constructable::numMoveAssignmentCalls; struct NonCopyable { NonCopyable() {} NonCopyable(NonCopyable &&) {} NonCopyable &operator=(NonCopyable &&) { return *this; } private: NonCopyable(const NonCopyable &) = delete; NonCopyable &operator=(const NonCopyable &) = delete; }; LLVM_ATTRIBUTE_USED void CompileTest() { SmallVector<NonCopyable, 0> V; V.resize(42); } class SmallVectorTestBase : public testing::Test { protected: void SetUp() override { Constructable::reset(); } template <typename VectorT> void assertEmpty(VectorT & v) { // Size tests EXPECT_EQ(0u, v.size()); EXPECT_TRUE(v.empty()); // Iterator tests EXPECT_TRUE(v.begin() == v.end()); } // Assert that v contains the specified values, in order. template <typename VectorT> void assertValuesInOrder(VectorT & v, size_t size, ...) { EXPECT_EQ(size, v.size()); va_list ap; va_start(ap, size); for (size_t i = 0; i < size; ++i) { int value = va_arg(ap, int); EXPECT_EQ(value, v[i].getValue()); } va_end(ap); } // Generate a sequence of values to initialize the vector. template <typename VectorT> void makeSequence(VectorT & v, int start, int end) { for (int i = start; i <= end; ++i) { v.push_back(Constructable(i)); } } }; // Test fixture class template <typename VectorT> class SmallVectorTest : public SmallVectorTestBase { protected: VectorT theVector; VectorT otherVector; }; typedef ::testing::Types<SmallVector<Constructable, 0>, SmallVector<Constructable, 1>, SmallVector<Constructable, 2>, SmallVector<Constructable, 4>, SmallVector<Constructable, 5> > SmallVectorTestTypes; TYPED_TEST_CASE(SmallVectorTest, SmallVectorTestTypes); // New vector test. TYPED_TEST(SmallVectorTest, EmptyVectorTest) { SCOPED_TRACE("EmptyVectorTest"); this->assertEmpty(this->theVector); EXPECT_TRUE(this->theVector.rbegin() == this->theVector.rend()); EXPECT_EQ(0, Constructable::getNumConstructorCalls()); EXPECT_EQ(0, Constructable::getNumDestructorCalls()); } // Simple insertions and deletions. TYPED_TEST(SmallVectorTest, PushPopTest) { SCOPED_TRACE("PushPopTest"); // Track whether the vector will potentially have to grow. bool RequiresGrowth = this->theVector.capacity() < 3; // Push an element this->theVector.push_back(Constructable(1)); // Size tests this->assertValuesInOrder(this->theVector, 1u, 1); EXPECT_FALSE(this->theVector.begin() == this->theVector.end()); EXPECT_FALSE(this->theVector.empty()); // Push another element this->theVector.push_back(Constructable(2)); this->assertValuesInOrder(this->theVector, 2u, 1, 2); // Insert at beginning this->theVector.insert(this->theVector.begin(), this->theVector[1]); this->assertValuesInOrder(this->theVector, 3u, 2, 1, 2); // Pop one element this->theVector.pop_back(); this->assertValuesInOrder(this->theVector, 2u, 2, 1); // Pop remaining elements this->theVector.pop_back(); this->theVector.pop_back(); this->assertEmpty(this->theVector); // Check number of constructor calls. Should be 2 for each list element, // one for the argument to push_back, one for the argument to insert, // and one for the list element itself. if (!RequiresGrowth) { EXPECT_EQ(5, Constructable::getNumConstructorCalls()); EXPECT_EQ(5, Constructable::getNumDestructorCalls()); } else { // If we had to grow the vector, these only have a lower bound, but should // always be equal. EXPECT_LE(5, Constructable::getNumConstructorCalls()); EXPECT_EQ(Constructable::getNumConstructorCalls(), Constructable::getNumDestructorCalls()); } } // Clear test. TYPED_TEST(SmallVectorTest, ClearTest) { SCOPED_TRACE("ClearTest"); this->theVector.reserve(2); this->makeSequence(this->theVector, 1, 2); this->theVector.clear(); this->assertEmpty(this->theVector); EXPECT_EQ(4, Constructable::getNumConstructorCalls()); EXPECT_EQ(4, Constructable::getNumDestructorCalls()); } // Resize smaller test. TYPED_TEST(SmallVectorTest, ResizeShrinkTest) { SCOPED_TRACE("ResizeShrinkTest"); this->theVector.reserve(3); this->makeSequence(this->theVector, 1, 3); this->theVector.resize(1); this->assertValuesInOrder(this->theVector, 1u, 1); EXPECT_EQ(6, Constructable::getNumConstructorCalls()); EXPECT_EQ(5, Constructable::getNumDestructorCalls()); } // Resize bigger test. TYPED_TEST(SmallVectorTest, ResizeGrowTest) { SCOPED_TRACE("ResizeGrowTest"); this->theVector.resize(2); EXPECT_EQ(2, Constructable::getNumConstructorCalls()); EXPECT_EQ(0, Constructable::getNumDestructorCalls()); EXPECT_EQ(2u, this->theVector.size()); } TYPED_TEST(SmallVectorTest, ResizeWithElementsTest) { this->theVector.resize(2); Constructable::reset(); this->theVector.resize(4); size_t Ctors = Constructable::getNumConstructorCalls(); EXPECT_TRUE(Ctors == 2 || Ctors == 4); size_t MoveCtors = Constructable::getNumMoveConstructorCalls(); EXPECT_TRUE(MoveCtors == 0 || MoveCtors == 2); size_t Dtors = Constructable::getNumDestructorCalls(); EXPECT_TRUE(Dtors == 0 || Dtors == 2); } // Resize with fill value. TYPED_TEST(SmallVectorTest, ResizeFillTest) { SCOPED_TRACE("ResizeFillTest"); this->theVector.resize(3, Constructable(77)); this->assertValuesInOrder(this->theVector, 3u, 77, 77, 77); } // Overflow past fixed size. TYPED_TEST(SmallVectorTest, OverflowTest) { SCOPED_TRACE("OverflowTest"); // Push more elements than the fixed size. this->makeSequence(this->theVector, 1, 10); // Test size and values. EXPECT_EQ(10u, this->theVector.size()); for (int i = 0; i < 10; ++i) { EXPECT_EQ(i+1, this->theVector[i].getValue()); } // Now resize back to fixed size. this->theVector.resize(1); this->assertValuesInOrder(this->theVector, 1u, 1); } // Iteration tests. TYPED_TEST(SmallVectorTest, IterationTest) { this->makeSequence(this->theVector, 1, 2); // Forward Iteration typename TypeParam::iterator it = this->theVector.begin(); EXPECT_TRUE(*it == this->theVector.front()); EXPECT_TRUE(*it == this->theVector[0]); EXPECT_EQ(1, it->getValue()); ++it; EXPECT_TRUE(*it == this->theVector[1]); EXPECT_TRUE(*it == this->theVector.back()); EXPECT_EQ(2, it->getValue()); ++it; EXPECT_TRUE(it == this->theVector.end()); --it; EXPECT_TRUE(*it == this->theVector[1]); EXPECT_EQ(2, it->getValue()); --it; EXPECT_TRUE(*it == this->theVector[0]); EXPECT_EQ(1, it->getValue()); // Reverse Iteration typename TypeParam::reverse_iterator rit = this->theVector.rbegin(); EXPECT_TRUE(*rit == this->theVector[1]); EXPECT_EQ(2, rit->getValue()); ++rit; EXPECT_TRUE(*rit == this->theVector[0]); EXPECT_EQ(1, rit->getValue()); ++rit; EXPECT_TRUE(rit == this->theVector.rend()); --rit; EXPECT_TRUE(*rit == this->theVector[0]); EXPECT_EQ(1, rit->getValue()); --rit; EXPECT_TRUE(*rit == this->theVector[1]); EXPECT_EQ(2, rit->getValue()); } // Swap test. TYPED_TEST(SmallVectorTest, SwapTest) { SCOPED_TRACE("SwapTest"); this->makeSequence(this->theVector, 1, 2); std::swap(this->theVector, this->otherVector); this->assertEmpty(this->theVector); this->assertValuesInOrder(this->otherVector, 2u, 1, 2); } // Append test TYPED_TEST(SmallVectorTest, AppendTest) { SCOPED_TRACE("AppendTest"); this->makeSequence(this->otherVector, 2, 3); this->theVector.push_back(Constructable(1)); this->theVector.append(this->otherVector.begin(), this->otherVector.end()); this->assertValuesInOrder(this->theVector, 3u, 1, 2, 3); } // Append repeated test TYPED_TEST(SmallVectorTest, AppendRepeatedTest) { SCOPED_TRACE("AppendRepeatedTest"); this->theVector.push_back(Constructable(1)); this->theVector.append(2, Constructable(77)); this->assertValuesInOrder(this->theVector, 3u, 1, 77, 77); } // Assign test TYPED_TEST(SmallVectorTest, AssignTest) { SCOPED_TRACE("AssignTest"); this->theVector.push_back(Constructable(1)); this->theVector.assign(2, Constructable(77)); this->assertValuesInOrder(this->theVector, 2u, 77, 77); } // Move-assign test TYPED_TEST(SmallVectorTest, MoveAssignTest) { SCOPED_TRACE("MoveAssignTest"); // Set up our vector with a single element, but enough capacity for 4. this->theVector.reserve(4); this->theVector.push_back(Constructable(1)); // Set up the other vector with 2 elements. this->otherVector.push_back(Constructable(2)); this->otherVector.push_back(Constructable(3)); // Move-assign from the other vector. this->theVector = std::move(this->otherVector); // Make sure we have the right result. this->assertValuesInOrder(this->theVector, 2u, 2, 3); // Make sure the # of constructor/destructor calls line up. There // are two live objects after clearing the other vector. this->otherVector.clear(); EXPECT_EQ(Constructable::getNumConstructorCalls()-2, Constructable::getNumDestructorCalls()); // There shouldn't be any live objects any more. this->theVector.clear(); EXPECT_EQ(Constructable::getNumConstructorCalls(), Constructable::getNumDestructorCalls()); } // Erase a single element TYPED_TEST(SmallVectorTest, EraseTest) { SCOPED_TRACE("EraseTest"); this->makeSequence(this->theVector, 1, 3); const auto &theConstVector = this->theVector; this->theVector.erase(theConstVector.begin()); this->assertValuesInOrder(this->theVector, 2u, 2, 3); } // Erase a range of elements TYPED_TEST(SmallVectorTest, EraseRangeTest) { SCOPED_TRACE("EraseRangeTest"); this->makeSequence(this->theVector, 1, 3); const auto &theConstVector = this->theVector; this->theVector.erase(theConstVector.begin(), theConstVector.begin() + 2); this->assertValuesInOrder(this->theVector, 1u, 3); } // Insert a single element. TYPED_TEST(SmallVectorTest, InsertTest) { SCOPED_TRACE("InsertTest"); this->makeSequence(this->theVector, 1, 3); typename TypeParam::iterator I = this->theVector.insert(this->theVector.begin() + 1, Constructable(77)); EXPECT_EQ(this->theVector.begin() + 1, I); this->assertValuesInOrder(this->theVector, 4u, 1, 77, 2, 3); } // Insert a copy of a single element. TYPED_TEST(SmallVectorTest, InsertCopy) { SCOPED_TRACE("InsertTest"); this->makeSequence(this->theVector, 1, 3); Constructable C(77); typename TypeParam::iterator I = this->theVector.insert(this->theVector.begin() + 1, C); EXPECT_EQ(this->theVector.begin() + 1, I); this->assertValuesInOrder(this->theVector, 4u, 1, 77, 2, 3); } // Insert repeated elements. TYPED_TEST(SmallVectorTest, InsertRepeatedTest) { SCOPED_TRACE("InsertRepeatedTest"); this->makeSequence(this->theVector, 1, 4); Constructable::reset(); auto I = this->theVector.insert(this->theVector.begin() + 1, 2, Constructable(16)); // Move construct the top element into newly allocated space, and optionally // reallocate the whole buffer, move constructing into it. // FIXME: This is inefficient, we shouldn't move things into newly allocated // space, then move them up/around, there should only be 2 or 4 move // constructions here. EXPECT_TRUE(Constructable::getNumMoveConstructorCalls() == 2 || Constructable::getNumMoveConstructorCalls() == 6); // Move assign the next two to shift them up and make a gap. EXPECT_EQ(1, Constructable::getNumMoveAssignmentCalls()); // Copy construct the two new elements from the parameter. EXPECT_EQ(2, Constructable::getNumCopyAssignmentCalls()); // All without any copy construction. EXPECT_EQ(0, Constructable::getNumCopyConstructorCalls()); EXPECT_EQ(this->theVector.begin() + 1, I); this->assertValuesInOrder(this->theVector, 6u, 1, 16, 16, 2, 3, 4); } TYPED_TEST(SmallVectorTest, InsertRepeatedAtEndTest) { SCOPED_TRACE("InsertRepeatedTest"); this->makeSequence(this->theVector, 1, 4); Constructable::reset(); auto I = this->theVector.insert(this->theVector.end(), 2, Constructable(16)); // Just copy construct them into newly allocated space EXPECT_EQ(2, Constructable::getNumCopyConstructorCalls()); // Move everything across if reallocation is needed. EXPECT_TRUE(Constructable::getNumMoveConstructorCalls() == 0 || Constructable::getNumMoveConstructorCalls() == 4); // Without ever moving or copying anything else. EXPECT_EQ(0, Constructable::getNumCopyAssignmentCalls()); EXPECT_EQ(0, Constructable::getNumMoveAssignmentCalls()); EXPECT_EQ(this->theVector.begin() + 4, I); this->assertValuesInOrder(this->theVector, 6u, 1, 2, 3, 4, 16, 16); } TYPED_TEST(SmallVectorTest, InsertRepeatedEmptyTest) { SCOPED_TRACE("InsertRepeatedTest"); this->makeSequence(this->theVector, 10, 15); // Empty insert. EXPECT_EQ(this->theVector.end(), this->theVector.insert(this->theVector.end(), 0, Constructable(42))); EXPECT_EQ(this->theVector.begin() + 1, this->theVector.insert(this->theVector.begin() + 1, 0, Constructable(42))); } // Insert range. TYPED_TEST(SmallVectorTest, InsertRangeTest) { SCOPED_TRACE("InsertRangeTest"); Constructable Arr[3] = { Constructable(77), Constructable(77), Constructable(77) }; this->makeSequence(this->theVector, 1, 3); Constructable::reset(); auto I = this->theVector.insert(this->theVector.begin() + 1, Arr, Arr + 3); // Move construct the top 3 elements into newly allocated space. // Possibly move the whole sequence into new space first. // FIXME: This is inefficient, we shouldn't move things into newly allocated // space, then move them up/around, there should only be 2 or 3 move // constructions here. EXPECT_TRUE(Constructable::getNumMoveConstructorCalls() == 2 || Constructable::getNumMoveConstructorCalls() == 5); // Copy assign the lower 2 new elements into existing space. EXPECT_EQ(2, Constructable::getNumCopyAssignmentCalls()); // Copy construct the third element into newly allocated space. EXPECT_EQ(1, Constructable::getNumCopyConstructorCalls()); EXPECT_EQ(this->theVector.begin() + 1, I); this->assertValuesInOrder(this->theVector, 6u, 1, 77, 77, 77, 2, 3); } TYPED_TEST(SmallVectorTest, InsertRangeAtEndTest) { SCOPED_TRACE("InsertRangeTest"); Constructable Arr[3] = { Constructable(77), Constructable(77), Constructable(77) }; this->makeSequence(this->theVector, 1, 3); // Insert at end. Constructable::reset(); auto I = this->theVector.insert(this->theVector.end(), Arr, Arr+3); // Copy construct the 3 elements into new space at the top. EXPECT_EQ(3, Constructable::getNumCopyConstructorCalls()); // Don't copy/move anything else. EXPECT_EQ(0, Constructable::getNumCopyAssignmentCalls()); // Reallocation might occur, causing all elements to be moved into the new // buffer. EXPECT_TRUE(Constructable::getNumMoveConstructorCalls() == 0 || Constructable::getNumMoveConstructorCalls() == 3); EXPECT_EQ(0, Constructable::getNumMoveAssignmentCalls()); EXPECT_EQ(this->theVector.begin() + 3, I); this->assertValuesInOrder(this->theVector, 6u, 1, 2, 3, 77, 77, 77); } TYPED_TEST(SmallVectorTest, InsertEmptyRangeTest) { SCOPED_TRACE("InsertRangeTest"); this->makeSequence(this->theVector, 1, 3); // Empty insert. EXPECT_EQ(this->theVector.end(), this->theVector.insert(this->theVector.end(), this->theVector.begin(), this->theVector.begin())); EXPECT_EQ(this->theVector.begin() + 1, this->theVector.insert(this->theVector.begin() + 1, this->theVector.begin(), this->theVector.begin())); } // Comparison tests. TYPED_TEST(SmallVectorTest, ComparisonTest) { SCOPED_TRACE("ComparisonTest"); this->makeSequence(this->theVector, 1, 3); this->makeSequence(this->otherVector, 1, 3); EXPECT_TRUE(this->theVector == this->otherVector); EXPECT_FALSE(this->theVector != this->otherVector); this->otherVector.clear(); this->makeSequence(this->otherVector, 2, 4); EXPECT_FALSE(this->theVector == this->otherVector); EXPECT_TRUE(this->theVector != this->otherVector); } // Constant vector tests. TYPED_TEST(SmallVectorTest, ConstVectorTest) { const TypeParam constVector; EXPECT_EQ(0u, constVector.size()); EXPECT_TRUE(constVector.empty()); EXPECT_TRUE(constVector.begin() == constVector.end()); } // Direct array access. TYPED_TEST(SmallVectorTest, DirectVectorTest) { EXPECT_EQ(0u, this->theVector.size()); this->theVector.reserve(4); EXPECT_LE(4u, this->theVector.capacity()); EXPECT_EQ(0, Constructable::getNumConstructorCalls()); this->theVector.push_back(1); this->theVector.push_back(2); this->theVector.push_back(3); this->theVector.push_back(4); EXPECT_EQ(4u, this->theVector.size()); EXPECT_EQ(8, Constructable::getNumConstructorCalls()); EXPECT_EQ(1, this->theVector[0].getValue()); EXPECT_EQ(2, this->theVector[1].getValue()); EXPECT_EQ(3, this->theVector[2].getValue()); EXPECT_EQ(4, this->theVector[3].getValue()); } TYPED_TEST(SmallVectorTest, IteratorTest) { std::list<int> L; this->theVector.insert(this->theVector.end(), L.begin(), L.end()); } template <typename InvalidType> class DualSmallVectorsTest; template <typename VectorT1, typename VectorT2> class DualSmallVectorsTest<std::pair<VectorT1, VectorT2>> : public SmallVectorTestBase { protected: VectorT1 theVector; VectorT2 otherVector; template <typename T, unsigned N> static unsigned NumBuiltinElts(const SmallVector<T, N>&) { return N; } }; typedef ::testing::Types< // Small mode -> Small mode. std::pair<SmallVector<Constructable, 4>, SmallVector<Constructable, 4>>, // Small mode -> Big mode. std::pair<SmallVector<Constructable, 4>, SmallVector<Constructable, 2>>, // Big mode -> Small mode. std::pair<SmallVector<Constructable, 2>, SmallVector<Constructable, 4>>, // Big mode -> Big mode. std::pair<SmallVector<Constructable, 2>, SmallVector<Constructable, 2>> > DualSmallVectorTestTypes; TYPED_TEST_CASE(DualSmallVectorsTest, DualSmallVectorTestTypes); TYPED_TEST(DualSmallVectorsTest, MoveAssignment) { SCOPED_TRACE("MoveAssignTest-DualVectorTypes"); // Set up our vector with four elements. for (unsigned I = 0; I < 4; ++I) this->otherVector.push_back(Constructable(I)); const Constructable *OrigDataPtr = this->otherVector.data(); // Move-assign from the other vector. this->theVector = std::move(static_cast<SmallVectorImpl<Constructable>&>(this->otherVector)); // Make sure we have the right result. this->assertValuesInOrder(this->theVector, 4u, 0, 1, 2, 3); // Make sure the # of constructor/destructor calls line up. There // are two live objects after clearing the other vector. this->otherVector.clear(); EXPECT_EQ(Constructable::getNumConstructorCalls()-4, Constructable::getNumDestructorCalls()); // If the source vector (otherVector) was in small-mode, assert that we just // moved the data pointer over. EXPECT_TRUE(this->NumBuiltinElts(this->otherVector) == 4 || this->theVector.data() == OrigDataPtr); // There shouldn't be any live objects any more. this->theVector.clear(); EXPECT_EQ(Constructable::getNumConstructorCalls(), Constructable::getNumDestructorCalls()); // We shouldn't have copied anything in this whole process. EXPECT_EQ(Constructable::getNumCopyConstructorCalls(), 0); } struct notassignable { int &x; notassignable(int &x) : x(x) {} }; TEST(SmallVectorCustomTest, NoAssignTest) { int x = 0; SmallVector<notassignable, 2> vec; vec.push_back(notassignable(x)); x = 42; EXPECT_EQ(42, vec.pop_back_val().x); } struct MovedFrom { bool hasValue; MovedFrom() : hasValue(true) { } MovedFrom(MovedFrom&& m) : hasValue(m.hasValue) { m.hasValue = false; } MovedFrom &operator=(MovedFrom&& m) { hasValue = m.hasValue; m.hasValue = false; return *this; } }; TEST(SmallVectorTest, MidInsert) { SmallVector<MovedFrom, 3> v; v.push_back(MovedFrom()); v.insert(v.begin(), MovedFrom()); for (MovedFrom &m : v) EXPECT_TRUE(m.hasValue); } enum EmplaceableArgState { EAS_Defaulted, EAS_Arg, EAS_LValue, EAS_RValue, EAS_Failure }; template <int I> struct EmplaceableArg { EmplaceableArgState State; EmplaceableArg() : State(EAS_Defaulted) {} EmplaceableArg(EmplaceableArg &&X) : State(X.State == EAS_Arg ? EAS_RValue : EAS_Failure) {} EmplaceableArg(EmplaceableArg &X) : State(X.State == EAS_Arg ? EAS_LValue : EAS_Failure) {} explicit EmplaceableArg(bool) : State(EAS_Arg) {} private: EmplaceableArg &operator=(EmplaceableArg &&) = delete; EmplaceableArg &operator=(const EmplaceableArg &) = delete; }; enum EmplaceableState { ES_Emplaced, ES_Moved }; struct Emplaceable { EmplaceableArg<0> A0; EmplaceableArg<1> A1; EmplaceableArg<2> A2; EmplaceableArg<3> A3; EmplaceableState State; Emplaceable() : State(ES_Emplaced) {} template <class A0Ty> explicit Emplaceable(A0Ty &&A0) : A0(std::forward<A0Ty>(A0)), State(ES_Emplaced) {} template <class A0Ty, class A1Ty> Emplaceable(A0Ty &&A0, A1Ty &&A1) : A0(std::forward<A0Ty>(A0)), A1(std::forward<A1Ty>(A1)), State(ES_Emplaced) {} template <class A0Ty, class A1Ty, class A2Ty> Emplaceable(A0Ty &&A0, A1Ty &&A1, A2Ty &&A2) : A0(std::forward<A0Ty>(A0)), A1(std::forward<A1Ty>(A1)), A2(std::forward<A2Ty>(A2)), State(ES_Emplaced) {} template <class A0Ty, class A1Ty, class A2Ty, class A3Ty> Emplaceable(A0Ty &&A0, A1Ty &&A1, A2Ty &&A2, A3Ty &&A3) : A0(std::forward<A0Ty>(A0)), A1(std::forward<A1Ty>(A1)), A2(std::forward<A2Ty>(A2)), A3(std::forward<A3Ty>(A3)), State(ES_Emplaced) {} Emplaceable(Emplaceable &&) : State(ES_Moved) {} Emplaceable &operator=(Emplaceable &&) { State = ES_Moved; return *this; } private: Emplaceable(const Emplaceable &) = delete; Emplaceable &operator=(const Emplaceable &) = delete; }; TEST(SmallVectorTest, EmplaceBack) { EmplaceableArg<0> A0(true); EmplaceableArg<1> A1(true); EmplaceableArg<2> A2(true); EmplaceableArg<3> A3(true); { SmallVector<Emplaceable, 3> V; V.emplace_back(); EXPECT_TRUE(V.size() == 1); EXPECT_TRUE(V.back().State == ES_Emplaced); EXPECT_TRUE(V.back().A0.State == EAS_Defaulted); EXPECT_TRUE(V.back().A1.State == EAS_Defaulted); EXPECT_TRUE(V.back().A2.State == EAS_Defaulted); EXPECT_TRUE(V.back().A3.State == EAS_Defaulted); } { SmallVector<Emplaceable, 3> V; V.emplace_back(std::move(A0)); EXPECT_TRUE(V.size() == 1); EXPECT_TRUE(V.back().State == ES_Emplaced); EXPECT_TRUE(V.back().A0.State == EAS_RValue); EXPECT_TRUE(V.back().A1.State == EAS_Defaulted); EXPECT_TRUE(V.back().A2.State == EAS_Defaulted); EXPECT_TRUE(V.back().A3.State == EAS_Defaulted); } { SmallVector<Emplaceable, 3> V; V.emplace_back(A0); EXPECT_TRUE(V.size() == 1); EXPECT_TRUE(V.back().State == ES_Emplaced); EXPECT_TRUE(V.back().A0.State == EAS_LValue); EXPECT_TRUE(V.back().A1.State == EAS_Defaulted); EXPECT_TRUE(V.back().A2.State == EAS_Defaulted); EXPECT_TRUE(V.back().A3.State == EAS_Defaulted); } { SmallVector<Emplaceable, 3> V; V.emplace_back(A0, A1); EXPECT_TRUE(V.size() == 1); EXPECT_TRUE(V.back().State == ES_Emplaced); EXPECT_TRUE(V.back().A0.State == EAS_LValue); EXPECT_TRUE(V.back().A1.State == EAS_LValue); EXPECT_TRUE(V.back().A2.State == EAS_Defaulted); EXPECT_TRUE(V.back().A3.State == EAS_Defaulted); } { SmallVector<Emplaceable, 3> V; V.emplace_back(std::move(A0), std::move(A1)); EXPECT_TRUE(V.size() == 1); EXPECT_TRUE(V.back().State == ES_Emplaced); EXPECT_TRUE(V.back().A0.State == EAS_RValue); EXPECT_TRUE(V.back().A1.State == EAS_RValue); EXPECT_TRUE(V.back().A2.State == EAS_Defaulted); EXPECT_TRUE(V.back().A3.State == EAS_Defaulted); } { SmallVector<Emplaceable, 3> V; V.emplace_back(std::move(A0), A1, std::move(A2), A3); EXPECT_TRUE(V.size() == 1); EXPECT_TRUE(V.back().State == ES_Emplaced); EXPECT_TRUE(V.back().A0.State == EAS_RValue); EXPECT_TRUE(V.back().A1.State == EAS_LValue); EXPECT_TRUE(V.back().A2.State == EAS_RValue); EXPECT_TRUE(V.back().A3.State == EAS_LValue); } { SmallVector<int, 1> V; V.emplace_back(); V.emplace_back(42); EXPECT_EQ(2U, V.size()); EXPECT_EQ(0, V[0]); EXPECT_EQ(42, V[1]); } } TEST(SmallVectorTest, InitializerList) { SmallVector<int, 2> V1 = {}; EXPECT_TRUE(V1.empty()); V1 = {0, 0}; EXPECT_TRUE(makeArrayRef(V1).equals({0, 0})); V1 = {-1, -1}; EXPECT_TRUE(makeArrayRef(V1).equals({-1, -1})); SmallVector<int, 2> V2 = {1, 2, 3, 4}; EXPECT_TRUE(makeArrayRef(V2).equals({1, 2, 3, 4})); V2.assign({4}); EXPECT_TRUE(makeArrayRef(V2).equals({4})); V2.append({3, 2}); EXPECT_TRUE(makeArrayRef(V2).equals({4, 3, 2})); V2.insert(V2.begin() + 1, 5); EXPECT_TRUE(makeArrayRef(V2).equals({4, 5, 3, 2})); } } // end namespace