//===- llvm/unittest/AsmParser/AsmParserTest.cpp - asm parser unittests ---===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "llvm/ADT/StringRef.h" #include "llvm/AsmParser/Parser.h" #include "llvm/AsmParser/SlotMapping.h" #include "llvm/IR/Constants.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/Module.h" #include "llvm/Support/SourceMgr.h" #include "gtest/gtest.h" using namespace llvm; namespace { TEST(AsmParserTest, NullTerminatedInput) { LLVMContext Ctx; StringRef Source = "; Empty module \n"; SMDiagnostic Error; auto Mod = parseAssemblyString(Source, Error, Ctx); EXPECT_TRUE(Mod != nullptr); EXPECT_TRUE(Error.getMessage().empty()); } #ifdef GTEST_HAS_DEATH_TEST #ifndef NDEBUG TEST(AsmParserTest, NonNullTerminatedInput) { LLVMContext Ctx; StringRef Source = "; Empty module \n\1\2"; SMDiagnostic Error; std::unique_ptr<Module> Mod; EXPECT_DEATH(Mod = parseAssemblyString(Source.substr(0, Source.size() - 2), Error, Ctx), "Buffer is not null terminated!"); } #endif #endif TEST(AsmParserTest, SlotMappingTest) { LLVMContext Ctx; StringRef Source = "@0 = global i32 0\n !0 = !{}\n !42 = !{i32 42}"; SMDiagnostic Error; SlotMapping Mapping; auto Mod = parseAssemblyString(Source, Error, Ctx, &Mapping); EXPECT_TRUE(Mod != nullptr); EXPECT_TRUE(Error.getMessage().empty()); ASSERT_EQ(Mapping.GlobalValues.size(), 1u); EXPECT_TRUE(isa<GlobalVariable>(Mapping.GlobalValues[0])); EXPECT_EQ(Mapping.MetadataNodes.size(), 2u); EXPECT_EQ(Mapping.MetadataNodes.count(0), 1u); EXPECT_EQ(Mapping.MetadataNodes.count(42), 1u); EXPECT_EQ(Mapping.MetadataNodes.count(1), 0u); } TEST(AsmParserTest, TypeAndConstantValueParsing) { LLVMContext Ctx; SMDiagnostic Error; StringRef Source = "define void @test() {\n entry:\n ret void\n}"; auto Mod = parseAssemblyString(Source, Error, Ctx); ASSERT_TRUE(Mod != nullptr); auto &M = *Mod; const Value *V; V = parseConstantValue("double 3.5", Error, M); ASSERT_TRUE(V); EXPECT_TRUE(V->getType()->isDoubleTy()); ASSERT_TRUE(isa<ConstantFP>(V)); EXPECT_TRUE(cast<ConstantFP>(V)->isExactlyValue(3.5)); V = parseConstantValue("i32 42", Error, M); ASSERT_TRUE(V); EXPECT_TRUE(V->getType()->isIntegerTy()); ASSERT_TRUE(isa<ConstantInt>(V)); EXPECT_TRUE(cast<ConstantInt>(V)->equalsInt(42)); V = parseConstantValue("<4 x i32> <i32 0, i32 1, i32 2, i32 3>", Error, M); ASSERT_TRUE(V); EXPECT_TRUE(V->getType()->isVectorTy()); ASSERT_TRUE(isa<ConstantDataVector>(V)); V = parseConstantValue("i32 add (i32 1, i32 2)", Error, M); ASSERT_TRUE(V); ASSERT_TRUE(isa<ConstantInt>(V)); V = parseConstantValue("i8* blockaddress(@test, %entry)", Error, M); ASSERT_TRUE(V); ASSERT_TRUE(isa<BlockAddress>(V)); V = parseConstantValue("i8** undef", Error, M); ASSERT_TRUE(V); ASSERT_TRUE(isa<UndefValue>(V)); EXPECT_FALSE(parseConstantValue("duble 3.25", Error, M)); EXPECT_EQ(Error.getMessage(), "expected type"); EXPECT_FALSE(parseConstantValue("i32 3.25", Error, M)); EXPECT_EQ(Error.getMessage(), "floating point constant invalid for type"); EXPECT_FALSE(parseConstantValue("i32* @foo", Error, M)); EXPECT_EQ(Error.getMessage(), "expected a constant value"); EXPECT_FALSE(parseConstantValue("i32 3, ", Error, M)); EXPECT_EQ(Error.getMessage(), "expected end of string"); } TEST(AsmParserTest, TypeAndConstantValueWithSlotMappingParsing) { LLVMContext Ctx; SMDiagnostic Error; StringRef Source = "%st = type { i32, i32 }\n" "@v = common global [50 x %st] zeroinitializer, align 16\n" "%0 = type { i32, i32, i32, i32 }\n" "@g = common global [50 x %0] zeroinitializer, align 16\n" "define void @marker4(i64 %d) {\n" "entry:\n" " %conv = trunc i64 %d to i32\n" " store i32 %conv, i32* getelementptr inbounds " " ([50 x %st], [50 x %st]* @v, i64 0, i64 0, i32 0), align 16\n" " store i32 %conv, i32* getelementptr inbounds " " ([50 x %0], [50 x %0]* @g, i64 0, i64 0, i32 0), align 16\n" " ret void\n" "}"; SlotMapping Mapping; auto Mod = parseAssemblyString(Source, Error, Ctx, &Mapping); ASSERT_TRUE(Mod != nullptr); auto &M = *Mod; const Value *V; V = parseConstantValue("i32* getelementptr inbounds ([50 x %st], [50 x %st]* " "@v, i64 0, i64 0, i32 0)", Error, M, &Mapping); ASSERT_TRUE(V); ASSERT_TRUE(isa<ConstantExpr>(V)); V = parseConstantValue("i32* getelementptr inbounds ([50 x %0], [50 x %0]* " "@g, i64 0, i64 0, i32 0)", Error, M, &Mapping); ASSERT_TRUE(V); ASSERT_TRUE(isa<ConstantExpr>(V)); } TEST(AsmParserTest, TypeWithSlotMappingParsing) { LLVMContext Ctx; SMDiagnostic Error; StringRef Source = "%st = type { i32, i32 }\n" "@v = common global [50 x %st] zeroinitializer, align 16\n" "%0 = type { i32, i32, i32, i32 }\n" "@g = common global [50 x %0] zeroinitializer, align 16\n" "define void @marker4(i64 %d) {\n" "entry:\n" " %conv = trunc i64 %d to i32\n" " store i32 %conv, i32* getelementptr inbounds " " ([50 x %st], [50 x %st]* @v, i64 0, i64 0, i32 0), align 16\n" " store i32 %conv, i32* getelementptr inbounds " " ([50 x %0], [50 x %0]* @g, i64 0, i64 0, i32 0), align 16\n" " ret void\n" "}"; SlotMapping Mapping; auto Mod = parseAssemblyString(Source, Error, Ctx, &Mapping); ASSERT_TRUE(Mod != nullptr); auto &M = *Mod; // Check we properly parse integer types. Type *Ty; Ty = parseType("i32", Error, M, &Mapping); ASSERT_TRUE(Ty); ASSERT_TRUE(Ty->isIntegerTy()); ASSERT_TRUE(Ty->getPrimitiveSizeInBits() == 32); // Check we properly parse integer types with exotic size. Ty = parseType("i13", Error, M, &Mapping); ASSERT_TRUE(Ty); ASSERT_TRUE(Ty->isIntegerTy()); ASSERT_TRUE(Ty->getPrimitiveSizeInBits() == 13); // Check we properly parse floating point types. Ty = parseType("float", Error, M, &Mapping); ASSERT_TRUE(Ty); ASSERT_TRUE(Ty->isFloatTy()); Ty = parseType("double", Error, M, &Mapping); ASSERT_TRUE(Ty); ASSERT_TRUE(Ty->isDoubleTy()); // Check we properly parse struct types. // Named struct. Ty = parseType("%st", Error, M, &Mapping); ASSERT_TRUE(Ty); ASSERT_TRUE(Ty->isStructTy()); // Check the details of the struct. StructType *ST = cast<StructType>(Ty); ASSERT_TRUE(ST->getNumElements() == 2); for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) { Ty = ST->getElementType(i); ASSERT_TRUE(Ty->isIntegerTy()); ASSERT_TRUE(Ty->getPrimitiveSizeInBits() == 32); } // Anonymous struct. Ty = parseType("%0", Error, M, &Mapping); ASSERT_TRUE(Ty); ASSERT_TRUE(Ty->isStructTy()); // Check the details of the struct. ST = cast<StructType>(Ty); ASSERT_TRUE(ST->getNumElements() == 4); for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) { Ty = ST->getElementType(i); ASSERT_TRUE(Ty->isIntegerTy()); ASSERT_TRUE(Ty->getPrimitiveSizeInBits() == 32); } // Check we properly parse vector types. Ty = parseType("<5 x i32>", Error, M, &Mapping); ASSERT_TRUE(Ty); ASSERT_TRUE(Ty->isVectorTy()); // Check the details of the vector. VectorType *VT = cast<VectorType>(Ty); ASSERT_TRUE(VT->getNumElements() == 5); ASSERT_TRUE(VT->getBitWidth() == 160); Ty = VT->getElementType(); ASSERT_TRUE(Ty->isIntegerTy()); ASSERT_TRUE(Ty->getPrimitiveSizeInBits() == 32); // Opaque struct. Ty = parseType("%opaque", Error, M, &Mapping); ASSERT_TRUE(Ty); ASSERT_TRUE(Ty->isStructTy()); ST = cast<StructType>(Ty); ASSERT_TRUE(ST->isOpaque()); // Check we properly parse pointer types. // One indirection. Ty = parseType("i32*", Error, M, &Mapping); ASSERT_TRUE(Ty); ASSERT_TRUE(Ty->isPointerTy()); PointerType *PT = cast<PointerType>(Ty); Ty = PT->getElementType(); ASSERT_TRUE(Ty->isIntegerTy()); ASSERT_TRUE(Ty->getPrimitiveSizeInBits() == 32); // Two indirections. Ty = parseType("i32**", Error, M, &Mapping); ASSERT_TRUE(Ty); ASSERT_TRUE(Ty->isPointerTy()); PT = cast<PointerType>(Ty); Ty = PT->getElementType(); ASSERT_TRUE(Ty->isPointerTy()); PT = cast<PointerType>(Ty); Ty = PT->getElementType(); ASSERT_TRUE(Ty->isIntegerTy()); ASSERT_TRUE(Ty->getPrimitiveSizeInBits() == 32); // Check that we reject types with garbage. Ty = parseType("i32 garbage", Error, M, &Mapping); ASSERT_TRUE(!Ty); } TEST(AsmParserTest, TypeAtBeginningWithSlotMappingParsing) { LLVMContext Ctx; SMDiagnostic Error; StringRef Source = "%st = type { i32, i32 }\n" "@v = common global [50 x %st] zeroinitializer, align 16\n" "%0 = type { i32, i32, i32, i32 }\n" "@g = common global [50 x %0] zeroinitializer, align 16\n" "define void @marker4(i64 %d) {\n" "entry:\n" " %conv = trunc i64 %d to i32\n" " store i32 %conv, i32* getelementptr inbounds " " ([50 x %st], [50 x %st]* @v, i64 0, i64 0, i32 0), align 16\n" " store i32 %conv, i32* getelementptr inbounds " " ([50 x %0], [50 x %0]* @g, i64 0, i64 0, i32 0), align 16\n" " ret void\n" "}"; SlotMapping Mapping; auto Mod = parseAssemblyString(Source, Error, Ctx, &Mapping); ASSERT_TRUE(Mod != nullptr); auto &M = *Mod; unsigned Read; // Check we properly parse integer types. Type *Ty; Ty = parseTypeAtBeginning("i32", Read, Error, M, &Mapping); ASSERT_TRUE(Ty); ASSERT_TRUE(Ty->isIntegerTy()); ASSERT_TRUE(Ty->getPrimitiveSizeInBits() == 32); ASSERT_TRUE(Read == 3); // Check we properly parse integer types with exotic size. Ty = parseTypeAtBeginning("i13", Read, Error, M, &Mapping); ASSERT_TRUE(Ty); ASSERT_TRUE(Ty->isIntegerTy()); ASSERT_TRUE(Ty->getPrimitiveSizeInBits() == 13); ASSERT_TRUE(Read == 3); // Check we properly parse floating point types. Ty = parseTypeAtBeginning("float", Read, Error, M, &Mapping); ASSERT_TRUE(Ty); ASSERT_TRUE(Ty->isFloatTy()); ASSERT_TRUE(Read == 5); Ty = parseTypeAtBeginning("double", Read, Error, M, &Mapping); ASSERT_TRUE(Ty); ASSERT_TRUE(Ty->isDoubleTy()); ASSERT_TRUE(Read == 6); // Check we properly parse struct types. // Named struct. Ty = parseTypeAtBeginning("%st", Read, Error, M, &Mapping); ASSERT_TRUE(Ty); ASSERT_TRUE(Ty->isStructTy()); ASSERT_TRUE(Read == 3); // Check the details of the struct. StructType *ST = cast<StructType>(Ty); ASSERT_TRUE(ST->getNumElements() == 2); for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) { Ty = ST->getElementType(i); ASSERT_TRUE(Ty->isIntegerTy()); ASSERT_TRUE(Ty->getPrimitiveSizeInBits() == 32); } // Anonymous struct. Ty = parseTypeAtBeginning("%0", Read, Error, M, &Mapping); ASSERT_TRUE(Ty); ASSERT_TRUE(Ty->isStructTy()); ASSERT_TRUE(Read == 2); // Check the details of the struct. ST = cast<StructType>(Ty); ASSERT_TRUE(ST->getNumElements() == 4); for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) { Ty = ST->getElementType(i); ASSERT_TRUE(Ty->isIntegerTy()); ASSERT_TRUE(Ty->getPrimitiveSizeInBits() == 32); } // Check we properly parse vector types. Ty = parseTypeAtBeginning("<5 x i32>", Read, Error, M, &Mapping); ASSERT_TRUE(Ty); ASSERT_TRUE(Ty->isVectorTy()); ASSERT_TRUE(Read == 9); // Check the details of the vector. VectorType *VT = cast<VectorType>(Ty); ASSERT_TRUE(VT->getNumElements() == 5); ASSERT_TRUE(VT->getBitWidth() == 160); Ty = VT->getElementType(); ASSERT_TRUE(Ty->isIntegerTy()); ASSERT_TRUE(Ty->getPrimitiveSizeInBits() == 32); // Opaque struct. Ty = parseTypeAtBeginning("%opaque", Read, Error, M, &Mapping); ASSERT_TRUE(Ty); ASSERT_TRUE(Ty->isStructTy()); ASSERT_TRUE(Read == 7); ST = cast<StructType>(Ty); ASSERT_TRUE(ST->isOpaque()); // Check we properly parse pointer types. // One indirection. Ty = parseTypeAtBeginning("i32*", Read, Error, M, &Mapping); ASSERT_TRUE(Ty); ASSERT_TRUE(Ty->isPointerTy()); ASSERT_TRUE(Read == 4); PointerType *PT = cast<PointerType>(Ty); Ty = PT->getElementType(); ASSERT_TRUE(Ty->isIntegerTy()); ASSERT_TRUE(Ty->getPrimitiveSizeInBits() == 32); // Two indirections. Ty = parseTypeAtBeginning("i32**", Read, Error, M, &Mapping); ASSERT_TRUE(Ty); ASSERT_TRUE(Ty->isPointerTy()); ASSERT_TRUE(Read == 5); PT = cast<PointerType>(Ty); Ty = PT->getElementType(); ASSERT_TRUE(Ty->isPointerTy()); PT = cast<PointerType>(Ty); Ty = PT->getElementType(); ASSERT_TRUE(Ty->isIntegerTy()); ASSERT_TRUE(Ty->getPrimitiveSizeInBits() == 32); // Check that we reject types with garbage. Ty = parseTypeAtBeginning("i32 garbage", Read, Error, M, &Mapping); ASSERT_TRUE(Ty); ASSERT_TRUE(Ty->isIntegerTy()); ASSERT_TRUE(Ty->getPrimitiveSizeInBits() == 32); // We go to the next token, i.e., we read "i32" + ' '. ASSERT_TRUE(Read == 4); } } // end anonymous namespace