// // Copyright 2013 Francisco Jerez // // Permission is hereby granted, free of charge, to any person obtaining a // copy of this software and associated documentation files (the "Software"), // to deal in the Software without restriction, including without limitation // the rights to use, copy, modify, merge, publish, distribute, sublicense, // and/or sell copies of the Software, and to permit persons to whom the // Software is furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL // THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR // OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, // ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR // OTHER DEALINGS IN THE SOFTWARE. // #ifndef CLOVER_UTIL_FACTOR_HPP #define CLOVER_UTIL_FACTOR_HPP #include "util/range.hpp" namespace clover { namespace factor { /// /// Calculate all prime integer factors of \p x. /// /// If \p limit is non-zero, terminate early as soon as enough /// factors have been collected to reach the product \p limit. /// template<typename T> std::vector<T> find_integer_prime_factors(T x, T limit = 0) { const T max_d = (limit > 0 && limit < x ? limit : x); const T min_x = x / max_d; std::vector<T> factors; for (T d = 2; d <= max_d && x > min_x; d++) { if (x % d == 0) { for (; x % d == 0; x /= d); factors.push_back(d); } } return factors; } namespace detail { /// /// Walk the power set of prime factors of the n-dimensional /// integer array \p grid subject to the constraints given by /// \p limits. /// template<typename T> std::pair<T, std::vector<T>> next_grid_factor(const std::pair<T, std::vector<T>> &limits, const std::vector<T> &grid, const std::vector<std::vector<T>> &factors, std::pair<T, std::vector<T>> block, unsigned d = 0, unsigned i = 0) { if (d >= factors.size()) { // We're done. return {}; } else if (i >= factors[d].size()) { // We're done with this grid dimension, try the next. return next_grid_factor(limits, grid, factors, std::move(block), d + 1, 0); } else { T f = factors[d][i]; // Try the next power of this factor. block.first *= f; block.second[d] *= f; if (block.first <= limits.first && block.second[d] <= limits.second[d] && grid[d] % block.second[d] == 0) { // We've found a valid grid divisor. return block; } else { // Overflow, back off to the zeroth power, while (block.second[d] % f == 0) { block.second[d] /= f; block.first /= f; } // ...and carry to the next factor. return next_grid_factor(limits, grid, factors, std::move(block), d, i + 1); } } } } /// /// Find the divisor of the integer array \p grid that gives the /// highest possible product not greater than \p product_limit /// subject to the constraints given by \p coord_limit. /// template<typename T> std::vector<T> find_grid_optimal_factor(T product_limit, const std::vector<T> &coord_limit, const std::vector<T> &grid) { const std::vector<std::vector<T>> factors = map(find_integer_prime_factors<T>, grid, coord_limit); const auto limits = std::make_pair(product_limit, coord_limit); auto best = std::make_pair(T(1), std::vector<T>(grid.size(), T(1))); for (auto block = best; block.first != 0 && best.first != product_limit; block = detail::next_grid_factor(limits, grid, factors, block)) { if (block.first > best.first) best = block; } return best.second; } } } #endif