/* * Copyright 2017 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkTypes.h" #ifdef SK_HAS_HEIF_LIBRARY #include "SkCodec.h" #include "SkCodecPriv.h" #include "SkColorData.h" #include "SkEndian.h" #include "SkStream.h" #include "SkHeifCodec.h" #define FOURCC(c1, c2, c3, c4) \ ((c1) << 24 | (c2) << 16 | (c3) << 8 | (c4)) bool SkHeifCodec::IsHeif(const void* buffer, size_t bytesRead) { // Parse the ftyp box up to bytesRead to determine if this is HEIF. // Any valid ftyp box should have at least 8 bytes. if (bytesRead < 8) { return false; } uint32_t* ptr = (uint32_t*)buffer; uint64_t chunkSize = SkEndian_SwapBE32(ptr[0]); uint32_t chunkType = SkEndian_SwapBE32(ptr[1]); if (chunkType != FOURCC('f', 't', 'y', 'p')) { return false; } int64_t offset = 8; if (chunkSize == 1) { // This indicates that the next 8 bytes represent the chunk size, // and chunk data comes after that. if (bytesRead < 16) { return false; } auto* chunkSizePtr = SkTAddOffset<const uint64_t>(buffer, offset); chunkSize = SkEndian_SwapBE64(*chunkSizePtr); if (chunkSize < 16) { // The smallest valid chunk is 16 bytes long in this case. return false; } offset += 8; } else if (chunkSize < 8) { // The smallest valid chunk is 8 bytes long. return false; } if (chunkSize > bytesRead) { chunkSize = bytesRead; } int64_t chunkDataSize = chunkSize - offset; // It should at least have major brand (4-byte) and minor version (4-bytes). // The rest of the chunk (if any) is a list of (4-byte) compatible brands. if (chunkDataSize < 8) { return false; } uint32_t numCompatibleBrands = (chunkDataSize - 8) / 4; for (size_t i = 0; i < numCompatibleBrands + 2; ++i) { if (i == 1) { // Skip this index, it refers to the minorVersion, // not a brand. continue; } auto* brandPtr = SkTAddOffset<const uint32_t>(buffer, offset + 4 * i); uint32_t brand = SkEndian_SwapBE32(*brandPtr); if (brand == FOURCC('m', 'i', 'f', '1') || brand == FOURCC('h', 'e', 'i', 'c') || brand == FOURCC('m', 's', 'f', '1') || brand == FOURCC('h', 'e', 'v', 'c')) { return true; } } return false; } static SkEncodedOrigin get_orientation(const HeifFrameInfo& frameInfo) { switch (frameInfo.mRotationAngle) { case 0: return kTopLeft_SkEncodedOrigin; case 90: return kRightTop_SkEncodedOrigin; case 180: return kBottomRight_SkEncodedOrigin; case 270: return kLeftBottom_SkEncodedOrigin; } return kDefault_SkEncodedOrigin; } struct SkHeifStreamWrapper : public HeifStream { SkHeifStreamWrapper(SkStream* stream) : fStream(stream) {} ~SkHeifStreamWrapper() override {} size_t read(void* buffer, size_t size) override { return fStream->read(buffer, size); } bool rewind() override { return fStream->rewind(); } bool seek(size_t position) override { return fStream->seek(position); } bool hasLength() const override { return fStream->hasLength(); } size_t getLength() const override { return fStream->getLength(); } private: std::unique_ptr<SkStream> fStream; }; std::unique_ptr<SkCodec> SkHeifCodec::MakeFromStream( std::unique_ptr<SkStream> stream, Result* result) { std::unique_ptr<HeifDecoder> heifDecoder(createHeifDecoder()); if (heifDecoder.get() == nullptr) { *result = kInternalError; return nullptr; } HeifFrameInfo frameInfo; if (!heifDecoder->init(new SkHeifStreamWrapper(stream.release()), &frameInfo)) { *result = kInvalidInput; return nullptr; } SkEncodedInfo info = SkEncodedInfo::Make( SkEncodedInfo::kYUV_Color, SkEncodedInfo::kOpaque_Alpha, 8); SkEncodedOrigin orientation = get_orientation(frameInfo); sk_sp<SkColorSpace> colorSpace = nullptr; if ((frameInfo.mIccSize > 0) && (frameInfo.mIccData != nullptr)) { colorSpace = SkColorSpace::MakeICC(frameInfo.mIccData.get(), frameInfo.mIccSize); } if (!colorSpace || colorSpace->type() != SkColorSpace::kRGB_Type) { colorSpace = SkColorSpace::MakeSRGB(); } *result = kSuccess; return std::unique_ptr<SkCodec>(new SkHeifCodec(frameInfo.mWidth, frameInfo.mHeight, info, heifDecoder.release(), std::move(colorSpace), orientation)); } SkHeifCodec::SkHeifCodec(int width, int height, const SkEncodedInfo& info, HeifDecoder* heifDecoder, sk_sp<SkColorSpace> colorSpace, SkEncodedOrigin origin) : INHERITED(width, height, info, SkColorSpaceXform::kRGBA_8888_ColorFormat, nullptr, std::move(colorSpace), origin) , fHeifDecoder(heifDecoder) , fSwizzleSrcRow(nullptr) , fColorXformSrcRow(nullptr) {} /* * Checks if the conversion between the input image and the requested output * image has been implemented * Sets the output color format */ bool SkHeifCodec::setOutputColorFormat(const SkImageInfo& dstInfo) { if (kUnknown_SkAlphaType == dstInfo.alphaType()) { return false; } if (kOpaque_SkAlphaType != dstInfo.alphaType()) { SkCodecPrintf("Warning: an opaque image should be decoded as opaque " "- it is being decoded as non-opaque, which will draw slower\n"); } switch (dstInfo.colorType()) { case kRGBA_8888_SkColorType: return fHeifDecoder->setOutputColor(kHeifColorFormat_RGBA_8888); case kBGRA_8888_SkColorType: return fHeifDecoder->setOutputColor(kHeifColorFormat_BGRA_8888); case kRGB_565_SkColorType: if (this->colorXform()) { return fHeifDecoder->setOutputColor(kHeifColorFormat_RGBA_8888); } else { return fHeifDecoder->setOutputColor(kHeifColorFormat_RGB565); } case kRGBA_F16_SkColorType: SkASSERT(this->colorXform()); if (!dstInfo.colorSpace()->gammaIsLinear()) { return false; } return fHeifDecoder->setOutputColor(kHeifColorFormat_RGBA_8888); default: return false; } } int SkHeifCodec::readRows(const SkImageInfo& dstInfo, void* dst, size_t rowBytes, int count, const Options& opts) { // When fSwizzleSrcRow is non-null, it means that we need to swizzle. In this case, // we will always decode into fSwizzlerSrcRow before swizzling into the next buffer. // We can never swizzle "in place" because the swizzler may perform sampling and/or // subsetting. // When fColorXformSrcRow is non-null, it means that we need to color xform and that // we cannot color xform "in place" (many times we can, but not when the dst is F16). // In this case, we will color xform from fColorXformSrcRow into the dst. uint8_t* decodeDst = (uint8_t*) dst; uint32_t* swizzleDst = (uint32_t*) dst; size_t decodeDstRowBytes = rowBytes; size_t swizzleDstRowBytes = rowBytes; int dstWidth = opts.fSubset ? opts.fSubset->width() : dstInfo.width(); if (fSwizzleSrcRow && fColorXformSrcRow) { decodeDst = fSwizzleSrcRow; swizzleDst = fColorXformSrcRow; decodeDstRowBytes = 0; swizzleDstRowBytes = 0; dstWidth = fSwizzler->swizzleWidth(); } else if (fColorXformSrcRow) { decodeDst = (uint8_t*) fColorXformSrcRow; swizzleDst = fColorXformSrcRow; decodeDstRowBytes = 0; swizzleDstRowBytes = 0; } else if (fSwizzleSrcRow) { decodeDst = fSwizzleSrcRow; decodeDstRowBytes = 0; dstWidth = fSwizzler->swizzleWidth(); } for (int y = 0; y < count; y++) { if (!fHeifDecoder->getScanline(decodeDst)) { return y; } if (fSwizzler) { fSwizzler->swizzle(swizzleDst, decodeDst); } if (this->colorXform()) { this->applyColorXform(dst, swizzleDst, dstWidth, kOpaque_SkAlphaType); dst = SkTAddOffset<void>(dst, rowBytes); } decodeDst = SkTAddOffset<uint8_t>(decodeDst, decodeDstRowBytes); swizzleDst = SkTAddOffset<uint32_t>(swizzleDst, swizzleDstRowBytes); } return count; } /* * Performs the heif decode */ SkCodec::Result SkHeifCodec::onGetPixels(const SkImageInfo& dstInfo, void* dst, size_t dstRowBytes, const Options& options, int* rowsDecoded) { if (options.fSubset) { // Not supporting subsets on this path for now. // TODO: if the heif has tiles, we can support subset here, but // need to retrieve tile config from metadata retriever first. return kUnimplemented; } // Check if we can decode to the requested destination and set the output color space if (!this->setOutputColorFormat(dstInfo)) { return kInvalidConversion; } if (!fHeifDecoder->decode(&fFrameInfo)) { return kInvalidInput; } fSwizzler.reset(nullptr); this->allocateStorage(dstInfo); int rows = this->readRows(dstInfo, dst, dstRowBytes, dstInfo.height(), options); if (rows < dstInfo.height()) { *rowsDecoded = rows; return kIncompleteInput; } return kSuccess; } void SkHeifCodec::allocateStorage(const SkImageInfo& dstInfo) { int dstWidth = dstInfo.width(); size_t swizzleBytes = 0; if (fSwizzler) { swizzleBytes = fFrameInfo.mBytesPerPixel * fFrameInfo.mWidth; dstWidth = fSwizzler->swizzleWidth(); SkASSERT(!this->colorXform() || SkIsAlign4(swizzleBytes)); } size_t xformBytes = 0; if (this->colorXform() && (kRGBA_F16_SkColorType == dstInfo.colorType() || kRGB_565_SkColorType == dstInfo.colorType())) { xformBytes = dstWidth * sizeof(uint32_t); } size_t totalBytes = swizzleBytes + xformBytes; fStorage.reset(totalBytes); if (totalBytes > 0) { fSwizzleSrcRow = (swizzleBytes > 0) ? fStorage.get() : nullptr; fColorXformSrcRow = (xformBytes > 0) ? SkTAddOffset<uint32_t>(fStorage.get(), swizzleBytes) : nullptr; } } void SkHeifCodec::initializeSwizzler( const SkImageInfo& dstInfo, const Options& options) { SkEncodedInfo swizzlerInfo = this->getEncodedInfo(); SkImageInfo swizzlerDstInfo = dstInfo; if (this->colorXform()) { // The color xform will be expecting RGBA 8888 input. swizzlerDstInfo = swizzlerDstInfo.makeColorType(kRGBA_8888_SkColorType); } fSwizzler.reset(SkSwizzler::CreateSwizzler(swizzlerInfo, nullptr, swizzlerDstInfo, options, nullptr, true)); SkASSERT(fSwizzler); } SkSampler* SkHeifCodec::getSampler(bool createIfNecessary) { if (!createIfNecessary || fSwizzler) { SkASSERT(!fSwizzler || (fSwizzleSrcRow && fStorage.get() == fSwizzleSrcRow)); return fSwizzler.get(); } this->initializeSwizzler(this->dstInfo(), this->options()); this->allocateStorage(this->dstInfo()); return fSwizzler.get(); } SkCodec::Result SkHeifCodec::onStartScanlineDecode( const SkImageInfo& dstInfo, const Options& options) { // Check if we can decode to the requested destination and set the output color space if (!this->setOutputColorFormat(dstInfo)) { return kInvalidConversion; } // TODO: For now, just decode the whole thing even when there is a subset. // If the heif image has tiles, we could potentially do this much faster, // but the tile configuration needs to be retrieved from the metadata. if (!fHeifDecoder->decode(&fFrameInfo)) { return kInvalidInput; } if (options.fSubset) { this->initializeSwizzler(dstInfo, options); } else { fSwizzler.reset(nullptr); } this->allocateStorage(dstInfo); return kSuccess; } int SkHeifCodec::onGetScanlines(void* dst, int count, size_t dstRowBytes) { return this->readRows(this->dstInfo(), dst, dstRowBytes, count, this->options()); } bool SkHeifCodec::onSkipScanlines(int count) { return count == (int) fHeifDecoder->skipScanlines(count); } #endif // SK_HAS_HEIF_LIBRARY