/* * Copyright 2006 The Android Open Source Project * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #ifndef SkGeometry_DEFINED #define SkGeometry_DEFINED #include "SkMatrix.h" #include "SkNx.h" static inline Sk2s from_point(const SkPoint& point) { return Sk2s::Load(&point); } static inline SkPoint to_point(const Sk2s& x) { SkPoint point; x.store(&point); return point; } static Sk2s times_2(const Sk2s& value) { return value + value; } /** Given a quadratic equation Ax^2 + Bx + C = 0, return 0, 1, 2 roots for the equation. */ int SkFindUnitQuadRoots(SkScalar A, SkScalar B, SkScalar C, SkScalar roots[2]); /////////////////////////////////////////////////////////////////////////////// SkPoint SkEvalQuadAt(const SkPoint src[3], SkScalar t); SkPoint SkEvalQuadTangentAt(const SkPoint src[3], SkScalar t); /** Set pt to the point on the src quadratic specified by t. t must be 0 <= t <= 1.0 */ void SkEvalQuadAt(const SkPoint src[3], SkScalar t, SkPoint* pt, SkVector* tangent = nullptr); /** Given a src quadratic bezier, chop it at the specified t value, where 0 < t < 1, and return the two new quadratics in dst: dst[0..2] and dst[2..4] */ void SkChopQuadAt(const SkPoint src[3], SkPoint dst[5], SkScalar t); /** Given a src quadratic bezier, chop it at the specified t == 1/2, The new quads are returned in dst[0..2] and dst[2..4] */ void SkChopQuadAtHalf(const SkPoint src[3], SkPoint dst[5]); /** Given the 3 coefficients for a quadratic bezier (either X or Y values), look for extrema, and return the number of t-values that are found that represent these extrema. If the quadratic has no extrema betwee (0..1) exclusive, the function returns 0. Returned count tValues[] 0 ignored 1 0 < tValues[0] < 1 */ int SkFindQuadExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar tValues[1]); /** Given 3 points on a quadratic bezier, chop it into 1, 2 beziers such that the resulting beziers are monotonic in Y. This is called by the scan converter. Depending on what is returned, dst[] is treated as follows 0 dst[0..2] is the original quad 1 dst[0..2] and dst[2..4] are the two new quads */ int SkChopQuadAtYExtrema(const SkPoint src[3], SkPoint dst[5]); int SkChopQuadAtXExtrema(const SkPoint src[3], SkPoint dst[5]); /** Given 3 points on a quadratic bezier, if the point of maximum curvature exists on the segment, returns the t value for this point along the curve. Otherwise it will return a value of 0. */ SkScalar SkFindQuadMaxCurvature(const SkPoint src[3]); /** Given 3 points on a quadratic bezier, divide it into 2 quadratics if the point of maximum curvature exists on the quad segment. Depending on what is returned, dst[] is treated as follows 1 dst[0..2] is the original quad 2 dst[0..2] and dst[2..4] are the two new quads If dst == null, it is ignored and only the count is returned. */ int SkChopQuadAtMaxCurvature(const SkPoint src[3], SkPoint dst[5]); /** Given 3 points on a quadratic bezier, use degree elevation to convert it into the cubic fitting the same curve. The new cubic curve is returned in dst[0..3]. */ SK_API void SkConvertQuadToCubic(const SkPoint src[3], SkPoint dst[4]); /////////////////////////////////////////////////////////////////////////////// /** Set pt to the point on the src cubic specified by t. t must be 0 <= t <= 1.0 */ void SkEvalCubicAt(const SkPoint src[4], SkScalar t, SkPoint* locOrNull, SkVector* tangentOrNull, SkVector* curvatureOrNull); /** Given a src cubic bezier, chop it at the specified t value, where 0 < t < 1, and return the two new cubics in dst: dst[0..3] and dst[3..6] */ void SkChopCubicAt(const SkPoint src[4], SkPoint dst[7], SkScalar t); /** Given a src cubic bezier, chop it at the specified t values, where 0 < t < 1, and return the new cubics in dst: dst[0..3],dst[3..6],...,dst[3*t_count..3*(t_count+1)] */ void SkChopCubicAt(const SkPoint src[4], SkPoint dst[], const SkScalar t[], int t_count); /** Given a src cubic bezier, chop it at the specified t == 1/2, The new cubics are returned in dst[0..3] and dst[3..6] */ void SkChopCubicAtHalf(const SkPoint src[4], SkPoint dst[7]); /** Given the 4 coefficients for a cubic bezier (either X or Y values), look for extrema, and return the number of t-values that are found that represent these extrema. If the cubic has no extrema betwee (0..1) exclusive, the function returns 0. Returned count tValues[] 0 ignored 1 0 < tValues[0] < 1 2 0 < tValues[0] < tValues[1] < 1 */ int SkFindCubicExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar d, SkScalar tValues[2]); /** Given 4 points on a cubic bezier, chop it into 1, 2, 3 beziers such that the resulting beziers are monotonic in Y. This is called by the scan converter. Depending on what is returned, dst[] is treated as follows 0 dst[0..3] is the original cubic 1 dst[0..3] and dst[3..6] are the two new cubics 2 dst[0..3], dst[3..6], dst[6..9] are the three new cubics If dst == null, it is ignored and only the count is returned. */ int SkChopCubicAtYExtrema(const SkPoint src[4], SkPoint dst[10]); int SkChopCubicAtXExtrema(const SkPoint src[4], SkPoint dst[10]); /** Given a cubic bezier, return 0, 1, or 2 t-values that represent the inflection points. */ int SkFindCubicInflections(const SkPoint src[4], SkScalar tValues[2]); /** Return 1 for no chop, 2 for having chopped the cubic at a single inflection point, 3 for having chopped at 2 inflection points. dst will hold the resulting 1, 2, or 3 cubics. */ int SkChopCubicAtInflections(const SkPoint src[4], SkPoint dst[10]); int SkFindCubicMaxCurvature(const SkPoint src[4], SkScalar tValues[3]); int SkChopCubicAtMaxCurvature(const SkPoint src[4], SkPoint dst[13], SkScalar tValues[3] = nullptr); bool SkChopMonoCubicAtX(SkPoint src[4], SkScalar y, SkPoint dst[7]); bool SkChopMonoCubicAtY(SkPoint src[4], SkScalar x, SkPoint dst[7]); enum class SkCubicType { kSerpentine, kLoop, kLocalCusp, // Cusp at a non-infinite parameter value with an inflection at t=infinity. kCuspAtInfinity, // Cusp with a cusp at t=infinity and a local inflection. kQuadratic, kLineOrPoint }; static inline bool SkCubicIsDegenerate(SkCubicType type) { switch (type) { case SkCubicType::kSerpentine: case SkCubicType::kLoop: case SkCubicType::kLocalCusp: case SkCubicType::kCuspAtInfinity: return false; case SkCubicType::kQuadratic: case SkCubicType::kLineOrPoint: return true; } SK_ABORT("Invalid SkCubicType"); return true; } static inline const char* SkCubicTypeName(SkCubicType type) { switch (type) { case SkCubicType::kSerpentine: return "kSerpentine"; case SkCubicType::kLoop: return "kLoop"; case SkCubicType::kLocalCusp: return "kLocalCusp"; case SkCubicType::kCuspAtInfinity: return "kCuspAtInfinity"; case SkCubicType::kQuadratic: return "kQuadratic"; case SkCubicType::kLineOrPoint: return "kLineOrPoint"; } SK_ABORT("Invalid SkCubicType"); return ""; } /** Returns the cubic classification. t[],s[] are set to the two homogeneous parameter values at which points the lines L & M intersect with K, sorted from smallest to largest and oriented so positive values of the implicit are on the "left" side. For a serpentine curve they are the inflection points. For a loop they are the double point. For a local cusp, they are both equal and denote the cusp point. For a cusp at an infinite parameter value, one will be the local inflection point and the other +inf (t,s = 1,0). If the curve is degenerate (i.e. quadratic or linear) they are both set to a parameter value of +inf (t,s = 1,0). d[] is filled with the cubic inflection function coefficients. See "Resolution Independent Curve Rendering using Programmable Graphics Hardware", 4.2 Curve Categorization: If the input points contain infinities or NaN, the return values are undefined. https://www.microsoft.com/en-us/research/wp-content/uploads/2005/01/p1000-loop.pdf */ SkCubicType SkClassifyCubic(const SkPoint p[4], double t[2] = nullptr, double s[2] = nullptr, double d[4] = nullptr); /////////////////////////////////////////////////////////////////////////////// enum SkRotationDirection { kCW_SkRotationDirection, kCCW_SkRotationDirection }; struct SkConic { SkConic() {} SkConic(const SkPoint& p0, const SkPoint& p1, const SkPoint& p2, SkScalar w) { fPts[0] = p0; fPts[1] = p1; fPts[2] = p2; fW = w; } SkConic(const SkPoint pts[3], SkScalar w) { memcpy(fPts, pts, sizeof(fPts)); fW = w; } SkPoint fPts[3]; SkScalar fW; void set(const SkPoint pts[3], SkScalar w) { memcpy(fPts, pts, 3 * sizeof(SkPoint)); fW = w; } void set(const SkPoint& p0, const SkPoint& p1, const SkPoint& p2, SkScalar w) { fPts[0] = p0; fPts[1] = p1; fPts[2] = p2; fW = w; } /** * Given a t-value [0...1] return its position and/or tangent. * If pos is not null, return its position at the t-value. * If tangent is not null, return its tangent at the t-value. NOTE the * tangent value's length is arbitrary, and only its direction should * be used. */ void evalAt(SkScalar t, SkPoint* pos, SkVector* tangent = nullptr) const; bool SK_WARN_UNUSED_RESULT chopAt(SkScalar t, SkConic dst[2]) const; void chopAt(SkScalar t1, SkScalar t2, SkConic* dst) const; void chop(SkConic dst[2]) const; SkPoint evalAt(SkScalar t) const; SkVector evalTangentAt(SkScalar t) const; void computeAsQuadError(SkVector* err) const; bool asQuadTol(SkScalar tol) const; /** * return the power-of-2 number of quads needed to approximate this conic * with a sequence of quads. Will be >= 0. */ int SK_API computeQuadPOW2(SkScalar tol) const; /** * Chop this conic into N quads, stored continguously in pts[], where * N = 1 << pow2. The amount of storage needed is (1 + 2 * N) */ int SK_API SK_WARN_UNUSED_RESULT chopIntoQuadsPOW2(SkPoint pts[], int pow2) const; bool findXExtrema(SkScalar* t) const; bool findYExtrema(SkScalar* t) const; bool chopAtXExtrema(SkConic dst[2]) const; bool chopAtYExtrema(SkConic dst[2]) const; void computeTightBounds(SkRect* bounds) const; void computeFastBounds(SkRect* bounds) const; /** Find the parameter value where the conic takes on its maximum curvature. * * @param t output scalar for max curvature. Will be unchanged if * max curvature outside 0..1 range. * * @return true if max curvature found inside 0..1 range, false otherwise */ // bool findMaxCurvature(SkScalar* t) const; // unimplemented static SkScalar TransformW(const SkPoint[3], SkScalar w, const SkMatrix&); enum { kMaxConicsForArc = 5 }; static int BuildUnitArc(const SkVector& start, const SkVector& stop, SkRotationDirection, const SkMatrix*, SkConic conics[kMaxConicsForArc]); }; // inline helpers are contained in a namespace to avoid external leakage to fragile SkNx members namespace { /** * use for : eval(t) == A * t^2 + B * t + C */ struct SkQuadCoeff { SkQuadCoeff() {} SkQuadCoeff(const Sk2s& A, const Sk2s& B, const Sk2s& C) : fA(A) , fB(B) , fC(C) { } SkQuadCoeff(const SkPoint src[3]) { fC = from_point(src[0]); Sk2s P1 = from_point(src[1]); Sk2s P2 = from_point(src[2]); fB = times_2(P1 - fC); fA = P2 - times_2(P1) + fC; } Sk2s eval(SkScalar t) { Sk2s tt(t); return eval(tt); } Sk2s eval(const Sk2s& tt) { return (fA * tt + fB) * tt + fC; } Sk2s fA; Sk2s fB; Sk2s fC; }; struct SkConicCoeff { SkConicCoeff(const SkConic& conic) { Sk2s p0 = from_point(conic.fPts[0]); Sk2s p1 = from_point(conic.fPts[1]); Sk2s p2 = from_point(conic.fPts[2]); Sk2s ww(conic.fW); Sk2s p1w = p1 * ww; fNumer.fC = p0; fNumer.fA = p2 - times_2(p1w) + p0; fNumer.fB = times_2(p1w - p0); fDenom.fC = Sk2s(1); fDenom.fB = times_2(ww - fDenom.fC); fDenom.fA = Sk2s(0) - fDenom.fB; } Sk2s eval(SkScalar t) { Sk2s tt(t); Sk2s numer = fNumer.eval(tt); Sk2s denom = fDenom.eval(tt); return numer / denom; } SkQuadCoeff fNumer; SkQuadCoeff fDenom; }; struct SkCubicCoeff { SkCubicCoeff(const SkPoint src[4]) { Sk2s P0 = from_point(src[0]); Sk2s P1 = from_point(src[1]); Sk2s P2 = from_point(src[2]); Sk2s P3 = from_point(src[3]); Sk2s three(3); fA = P3 + three * (P1 - P2) - P0; fB = three * (P2 - times_2(P1) + P0); fC = three * (P1 - P0); fD = P0; } Sk2s eval(SkScalar t) { Sk2s tt(t); return eval(tt); } Sk2s eval(const Sk2s& t) { return ((fA * t + fB) * t + fC) * t + fD; } Sk2s fA; Sk2s fB; Sk2s fC; Sk2s fD; }; } #include "SkTemplates.h" /** * Help class to allocate storage for approximating a conic with N quads. */ class SkAutoConicToQuads { public: SkAutoConicToQuads() : fQuadCount(0) {} /** * Given a conic and a tolerance, return the array of points for the * approximating quad(s). Call countQuads() to know the number of quads * represented in these points. * * The quads are allocated to share end-points. e.g. if there are 4 quads, * there will be 9 points allocated as follows * quad[0] == pts[0..2] * quad[1] == pts[2..4] * quad[2] == pts[4..6] * quad[3] == pts[6..8] */ const SkPoint* computeQuads(const SkConic& conic, SkScalar tol) { int pow2 = conic.computeQuadPOW2(tol); fQuadCount = 1 << pow2; SkPoint* pts = fStorage.reset(1 + 2 * fQuadCount); fQuadCount = conic.chopIntoQuadsPOW2(pts, pow2); return pts; } const SkPoint* computeQuads(const SkPoint pts[3], SkScalar weight, SkScalar tol) { SkConic conic; conic.set(pts, weight); return computeQuads(conic, tol); } int countQuads() const { return fQuadCount; } private: enum { kQuadCount = 8, // should handle most conics kPointCount = 1 + 2 * kQuadCount, }; SkAutoSTMalloc<kPointCount, SkPoint> fStorage; int fQuadCount; // #quads for current usage }; #endif