/* * Copyright 2013 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkMipMap.h" #include "SkBitmap.h" #include "SkColorData.h" #include "SkHalf.h" #include "SkImageInfoPriv.h" #include "SkMathPriv.h" #include "SkNx.h" #include "SkPM4fPriv.h" #include "SkSRGB.h" #include "SkTypes.h" // // ColorTypeFilter is the "Type" we pass to some downsample template functions. // It controls how we expand a pixel into a large type, with space between each component, // so we can then perform our simple filter (either box or triangle) and store the intermediates // in the expanded type. // struct ColorTypeFilter_8888 { typedef uint32_t Type; static Sk4h Expand(uint32_t x) { return SkNx_cast<uint16_t>(Sk4b::Load(&x)); } static uint32_t Compact(const Sk4h& x) { uint32_t r; SkNx_cast<uint8_t>(x).store(&r); return r; } }; struct ColorTypeFilter_S32 { typedef uint32_t Type; static Sk4h Expand(uint32_t x) { return Sk4h(sk_linear12_from_srgb[(x ) & 0xFF], sk_linear12_from_srgb[(x >> 8) & 0xFF], sk_linear12_from_srgb[(x >> 16) & 0xFF], (x >> 24) << 4); } static uint32_t Compact(const Sk4h& x) { return sk_linear12_to_srgb[x[0]] | sk_linear12_to_srgb[x[1]] << 8 | sk_linear12_to_srgb[x[2]] << 16 | (x[3] >> 4) << 24; } }; struct ColorTypeFilter_565 { typedef uint16_t Type; static uint32_t Expand(uint16_t x) { return (x & ~SK_G16_MASK_IN_PLACE) | ((x & SK_G16_MASK_IN_PLACE) << 16); } static uint16_t Compact(uint32_t x) { return (x & ~SK_G16_MASK_IN_PLACE) | ((x >> 16) & SK_G16_MASK_IN_PLACE); } }; struct ColorTypeFilter_4444 { typedef uint16_t Type; static uint32_t Expand(uint16_t x) { return (x & 0xF0F) | ((x & ~0xF0F) << 12); } static uint16_t Compact(uint32_t x) { return (x & 0xF0F) | ((x >> 12) & ~0xF0F); } }; struct ColorTypeFilter_8 { typedef uint8_t Type; static unsigned Expand(unsigned x) { return x; } static uint8_t Compact(unsigned x) { return (uint8_t)x; } }; struct ColorTypeFilter_F16 { typedef uint64_t Type; // SkHalf x4 static Sk4f Expand(uint64_t x) { return SkHalfToFloat_finite_ftz(x); } static uint64_t Compact(const Sk4f& x) { uint64_t r; SkFloatToHalf_finite_ftz(x).store(&r); return r; } }; template <typename T> T add_121(const T& a, const T& b, const T& c) { return a + b + b + c; } template <typename T> T shift_right(const T& x, int bits) { return x >> bits; } Sk4f shift_right(const Sk4f& x, int bits) { return x * (1.0f / (1 << bits)); } template <typename T> T shift_left(const T& x, int bits) { return x << bits; } Sk4f shift_left(const Sk4f& x, int bits) { return x * (1 << bits); } // // To produce each mip level, we need to filter down by 1/2 (e.g. 100x100 -> 50,50) // If the starting dimension is odd, we floor the size of the lower level (e.g. 101 -> 50) // In those (odd) cases, we use a triangle filter, with 1-pixel overlap between samplings, // else for even cases, we just use a 2x box filter. // // This produces 4 possible isotropic filters: 2x2 2x3 3x2 3x3 where WxH indicates the number of // src pixels we need to sample in each dimension to produce 1 dst pixel. // // OpenGL expects a full mipmap stack to contain anisotropic space as well. // This means a 100x1 image would continue down to a 50x1 image, 25x1 image... // Because of this, we need 4 more anisotropic filters: 1x2, 1x3, 2x1, 3x1. template <typename F> void downsample_1_2(void* dst, const void* src, size_t srcRB, int count) { SkASSERT(count > 0); auto p0 = static_cast<const typename F::Type*>(src); auto p1 = (const typename F::Type*)((const char*)p0 + srcRB); auto d = static_cast<typename F::Type*>(dst); for (int i = 0; i < count; ++i) { auto c00 = F::Expand(p0[0]); auto c10 = F::Expand(p1[0]); auto c = c00 + c10; d[i] = F::Compact(shift_right(c, 1)); p0 += 2; p1 += 2; } } template <typename F> void downsample_1_3(void* dst, const void* src, size_t srcRB, int count) { SkASSERT(count > 0); auto p0 = static_cast<const typename F::Type*>(src); auto p1 = (const typename F::Type*)((const char*)p0 + srcRB); auto p2 = (const typename F::Type*)((const char*)p1 + srcRB); auto d = static_cast<typename F::Type*>(dst); for (int i = 0; i < count; ++i) { auto c00 = F::Expand(p0[0]); auto c10 = F::Expand(p1[0]); auto c20 = F::Expand(p2[0]); auto c = add_121(c00, c10, c20); d[i] = F::Compact(shift_right(c, 2)); p0 += 2; p1 += 2; p2 += 2; } } template <typename F> void downsample_2_1(void* dst, const void* src, size_t srcRB, int count) { SkASSERT(count > 0); auto p0 = static_cast<const typename F::Type*>(src); auto d = static_cast<typename F::Type*>(dst); for (int i = 0; i < count; ++i) { auto c00 = F::Expand(p0[0]); auto c01 = F::Expand(p0[1]); auto c = c00 + c01; d[i] = F::Compact(shift_right(c, 1)); p0 += 2; } } template <typename F> void downsample_2_2(void* dst, const void* src, size_t srcRB, int count) { SkASSERT(count > 0); auto p0 = static_cast<const typename F::Type*>(src); auto p1 = (const typename F::Type*)((const char*)p0 + srcRB); auto d = static_cast<typename F::Type*>(dst); for (int i = 0; i < count; ++i) { auto c00 = F::Expand(p0[0]); auto c01 = F::Expand(p0[1]); auto c10 = F::Expand(p1[0]); auto c11 = F::Expand(p1[1]); auto c = c00 + c10 + c01 + c11; d[i] = F::Compact(shift_right(c, 2)); p0 += 2; p1 += 2; } } template <typename F> void downsample_2_3(void* dst, const void* src, size_t srcRB, int count) { SkASSERT(count > 0); auto p0 = static_cast<const typename F::Type*>(src); auto p1 = (const typename F::Type*)((const char*)p0 + srcRB); auto p2 = (const typename F::Type*)((const char*)p1 + srcRB); auto d = static_cast<typename F::Type*>(dst); for (int i = 0; i < count; ++i) { auto c00 = F::Expand(p0[0]); auto c01 = F::Expand(p0[1]); auto c10 = F::Expand(p1[0]); auto c11 = F::Expand(p1[1]); auto c20 = F::Expand(p2[0]); auto c21 = F::Expand(p2[1]); auto c = add_121(c00, c10, c20) + add_121(c01, c11, c21); d[i] = F::Compact(shift_right(c, 3)); p0 += 2; p1 += 2; p2 += 2; } } template <typename F> void downsample_3_1(void* dst, const void* src, size_t srcRB, int count) { SkASSERT(count > 0); auto p0 = static_cast<const typename F::Type*>(src); auto d = static_cast<typename F::Type*>(dst); auto c02 = F::Expand(p0[0]); for (int i = 0; i < count; ++i) { auto c00 = c02; auto c01 = F::Expand(p0[1]); c02 = F::Expand(p0[2]); auto c = add_121(c00, c01, c02); d[i] = F::Compact(shift_right(c, 2)); p0 += 2; } } template <typename F> void downsample_3_2(void* dst, const void* src, size_t srcRB, int count) { SkASSERT(count > 0); auto p0 = static_cast<const typename F::Type*>(src); auto p1 = (const typename F::Type*)((const char*)p0 + srcRB); auto d = static_cast<typename F::Type*>(dst); // Given pixels: // a0 b0 c0 d0 e0 ... // a1 b1 c1 d1 e1 ... // We want: // (a0 + 2*b0 + c0 + a1 + 2*b1 + c1) / 8 // (c0 + 2*d0 + e0 + c1 + 2*d1 + e1) / 8 // ... auto c0 = F::Expand(p0[0]); auto c1 = F::Expand(p1[0]); auto c = c0 + c1; for (int i = 0; i < count; ++i) { auto a = c; auto b0 = F::Expand(p0[1]); auto b1 = F::Expand(p1[1]); auto b = b0 + b0 + b1 + b1; c0 = F::Expand(p0[2]); c1 = F::Expand(p1[2]); c = c0 + c1; auto sum = a + b + c; d[i] = F::Compact(shift_right(sum, 3)); p0 += 2; p1 += 2; } } template <typename F> void downsample_3_3(void* dst, const void* src, size_t srcRB, int count) { SkASSERT(count > 0); auto p0 = static_cast<const typename F::Type*>(src); auto p1 = (const typename F::Type*)((const char*)p0 + srcRB); auto p2 = (const typename F::Type*)((const char*)p1 + srcRB); auto d = static_cast<typename F::Type*>(dst); // Given pixels: // a0 b0 c0 d0 e0 ... // a1 b1 c1 d1 e1 ... // a2 b2 c2 d2 e2 ... // We want: // (a0 + 2*b0 + c0 + 2*a1 + 4*b1 + 2*c1 + a2 + 2*b2 + c2) / 16 // (c0 + 2*d0 + e0 + 2*c1 + 4*d1 + 2*e1 + c2 + 2*d2 + e2) / 16 // ... auto c0 = F::Expand(p0[0]); auto c1 = F::Expand(p1[0]); auto c2 = F::Expand(p2[0]); auto c = add_121(c0, c1, c2); for (int i = 0; i < count; ++i) { auto a = c; auto b0 = F::Expand(p0[1]); auto b1 = F::Expand(p1[1]); auto b2 = F::Expand(p2[1]); auto b = shift_left(add_121(b0, b1, b2), 1); c0 = F::Expand(p0[2]); c1 = F::Expand(p1[2]); c2 = F::Expand(p2[2]); c = add_121(c0, c1, c2); auto sum = a + b + c; d[i] = F::Compact(shift_right(sum, 4)); p0 += 2; p1 += 2; p2 += 2; } } /////////////////////////////////////////////////////////////////////////////////////////////////// // Some sRGB specific performance optimizations. void downsample_2_2_srgb(void* dst, const void* src, size_t srcRB, int count) { const uint8_t* p0 = ((const uint8_t*) src); const uint8_t* p1 = ((const uint8_t*) src) + srcRB; uint8_t* d = (uint8_t*) dst; // Given pixels: // a0 b0 c0 d0 ... // a1 b1 c1 d1 ... // We want: // (a0 + b0 + a1 + b1) / 4 // (c0 + d0 + c1 + d1) / 4 // ... while (count >= 2) { Sk8h a0c0 = Sk8h(sk_linear12_from_srgb[p0[ 0]], sk_linear12_from_srgb[p0[ 1]], sk_linear12_from_srgb[p0[ 2]], p0[ 3] << 4 , sk_linear12_from_srgb[p0[ 8]], sk_linear12_from_srgb[p0[ 9]], sk_linear12_from_srgb[p0[10]], p0[11] << 4 ); Sk8h b0d0 = Sk8h(sk_linear12_from_srgb[p0[ 4]], sk_linear12_from_srgb[p0[ 5]], sk_linear12_from_srgb[p0[ 6]], p0[ 7] << 4 , sk_linear12_from_srgb[p0[12]], sk_linear12_from_srgb[p0[13]], sk_linear12_from_srgb[p0[14]], p0[15] << 4 ); Sk8h a1c1 = Sk8h(sk_linear12_from_srgb[p1[ 0]], sk_linear12_from_srgb[p1[ 1]], sk_linear12_from_srgb[p1[ 2]], p1[ 3] << 4 , sk_linear12_from_srgb[p1[ 8]], sk_linear12_from_srgb[p1[ 9]], sk_linear12_from_srgb[p1[10]], p1[11] << 4 ); Sk8h b1d1 = Sk8h(sk_linear12_from_srgb[p1[ 4]], sk_linear12_from_srgb[p1[ 5]], sk_linear12_from_srgb[p1[ 6]], p1[ 7] << 4 , sk_linear12_from_srgb[p1[12]], sk_linear12_from_srgb[p1[13]], sk_linear12_from_srgb[p1[14]], p1[15] << 4 ); Sk8h avg = (a0c0 + b0d0 + a1c1 + b1d1) >> 2; d[0] = sk_linear12_to_srgb[avg[0]]; d[1] = sk_linear12_to_srgb[avg[1]]; d[2] = sk_linear12_to_srgb[avg[2]]; d[3] = avg[3] >> 4; d[4] = sk_linear12_to_srgb[avg[4]]; d[5] = sk_linear12_to_srgb[avg[5]]; d[6] = sk_linear12_to_srgb[avg[6]]; d[7] = avg[7] >> 4; p0 += 16; p1 += 16; d += 8; count -= 2; } if (count) { downsample_2_2<ColorTypeFilter_S32>(d, p0, srcRB, count); } } void downsample_2_3_srgb(void* dst, const void* src, size_t srcRB, int count) { const uint8_t* p0 = ((const uint8_t*) src); const uint8_t* p1 = p0 + srcRB; const uint8_t* p2 = p1 + srcRB; uint8_t* d = (uint8_t*) dst; // Given pixels: // a0 b0 c0 d0 ... // a1 b1 c1 d1 ... // a2 b2 c2 d2 ... // We want: // (a0 + b0 + 2*a1 + 2*b1 + a2 + b2) / 8 // (c0 + d0 + 2*c1 + 2*d1 + c2 + d2) / 8 // ... while (count >= 2) { Sk8h a0c0 = Sk8h(sk_linear12_from_srgb[p0[ 0]], sk_linear12_from_srgb[p0[ 1]], sk_linear12_from_srgb[p0[ 2]], p0[ 3] << 4 , sk_linear12_from_srgb[p0[ 8]], sk_linear12_from_srgb[p0[ 9]], sk_linear12_from_srgb[p0[10]], p0[11] << 4 ); Sk8h b0d0 = Sk8h(sk_linear12_from_srgb[p0[ 4]], sk_linear12_from_srgb[p0[ 5]], sk_linear12_from_srgb[p0[ 6]], p0[ 7] << 4 , sk_linear12_from_srgb[p0[12]], sk_linear12_from_srgb[p0[13]], sk_linear12_from_srgb[p0[14]], p0[15] << 4 ); Sk8h a1c1 = Sk8h(sk_linear12_from_srgb[p1[ 0]], sk_linear12_from_srgb[p1[ 1]], sk_linear12_from_srgb[p1[ 2]], p1[ 3] << 4 , sk_linear12_from_srgb[p1[ 8]], sk_linear12_from_srgb[p1[ 9]], sk_linear12_from_srgb[p1[10]], p1[11] << 4 ); Sk8h b1d1 = Sk8h(sk_linear12_from_srgb[p1[ 4]], sk_linear12_from_srgb[p1[ 5]], sk_linear12_from_srgb[p1[ 6]], p1[ 7] << 4 , sk_linear12_from_srgb[p1[12]], sk_linear12_from_srgb[p1[13]], sk_linear12_from_srgb[p1[14]], p1[15] << 4 ); Sk8h a2c2 = Sk8h(sk_linear12_from_srgb[p2[ 0]], sk_linear12_from_srgb[p2[ 1]], sk_linear12_from_srgb[p2[ 2]], p2[ 3] << 4 , sk_linear12_from_srgb[p2[ 8]], sk_linear12_from_srgb[p2[ 9]], sk_linear12_from_srgb[p2[10]], p2[11] << 4 ); Sk8h b2d2 = Sk8h(sk_linear12_from_srgb[p2[ 4]], sk_linear12_from_srgb[p2[ 5]], sk_linear12_from_srgb[p2[ 6]], p2[ 7] << 4 , sk_linear12_from_srgb[p2[12]], sk_linear12_from_srgb[p2[13]], sk_linear12_from_srgb[p2[14]], p2[15] << 4 ); Sk8h avg = (a0c0 + b0d0 + a1c1 + a1c1 + b1d1 + b1d1 + a2c2 + b2d2) >> 3; d[0] = sk_linear12_to_srgb[avg[0]]; d[1] = sk_linear12_to_srgb[avg[1]]; d[2] = sk_linear12_to_srgb[avg[2]]; d[3] = avg[3] >> 4; d[4] = sk_linear12_to_srgb[avg[4]]; d[5] = sk_linear12_to_srgb[avg[5]]; d[6] = sk_linear12_to_srgb[avg[6]]; d[7] = avg[7] >> 4; p0 += 16; p1 += 16; p2 += 16; d += 8; count -= 2; } if (count) { downsample_2_3<ColorTypeFilter_S32>(d, p0, srcRB, count); } } /////////////////////////////////////////////////////////////////////////////////////////////////// size_t SkMipMap::AllocLevelsSize(int levelCount, size_t pixelSize) { if (levelCount < 0) { return 0; } int64_t size = sk_64_mul(levelCount + 1, sizeof(Level)) + pixelSize; if (!sk_64_isS32(size)) { return 0; } return sk_64_asS32(size); } SkMipMap* SkMipMap::Build(const SkPixmap& src, SkDestinationSurfaceColorMode colorMode, SkDiscardableFactoryProc fact) { typedef void FilterProc(void*, const void* srcPtr, size_t srcRB, int count); FilterProc* proc_1_2 = nullptr; FilterProc* proc_1_3 = nullptr; FilterProc* proc_2_1 = nullptr; FilterProc* proc_2_2 = nullptr; FilterProc* proc_2_3 = nullptr; FilterProc* proc_3_1 = nullptr; FilterProc* proc_3_2 = nullptr; FilterProc* proc_3_3 = nullptr; const SkColorType ct = src.colorType(); const SkAlphaType at = src.alphaType(); const bool srgbGamma = (SkDestinationSurfaceColorMode::kGammaAndColorSpaceAware == colorMode) && src.info().gammaCloseToSRGB(); switch (ct) { case kRGBA_8888_SkColorType: case kBGRA_8888_SkColorType: if (srgbGamma) { proc_1_2 = downsample_1_2<ColorTypeFilter_S32>; proc_1_3 = downsample_1_3<ColorTypeFilter_S32>; proc_2_1 = downsample_2_1<ColorTypeFilter_S32>; proc_2_2 = downsample_2_2_srgb; proc_2_3 = downsample_2_3_srgb; proc_3_1 = downsample_3_1<ColorTypeFilter_S32>; proc_3_2 = downsample_3_2<ColorTypeFilter_S32>; proc_3_3 = downsample_3_3<ColorTypeFilter_S32>; } else { proc_1_2 = downsample_1_2<ColorTypeFilter_8888>; proc_1_3 = downsample_1_3<ColorTypeFilter_8888>; proc_2_1 = downsample_2_1<ColorTypeFilter_8888>; proc_2_2 = downsample_2_2<ColorTypeFilter_8888>; proc_2_3 = downsample_2_3<ColorTypeFilter_8888>; proc_3_1 = downsample_3_1<ColorTypeFilter_8888>; proc_3_2 = downsample_3_2<ColorTypeFilter_8888>; proc_3_3 = downsample_3_3<ColorTypeFilter_8888>; } break; case kRGB_565_SkColorType: proc_1_2 = downsample_1_2<ColorTypeFilter_565>; proc_1_3 = downsample_1_3<ColorTypeFilter_565>; proc_2_1 = downsample_2_1<ColorTypeFilter_565>; proc_2_2 = downsample_2_2<ColorTypeFilter_565>; proc_2_3 = downsample_2_3<ColorTypeFilter_565>; proc_3_1 = downsample_3_1<ColorTypeFilter_565>; proc_3_2 = downsample_3_2<ColorTypeFilter_565>; proc_3_3 = downsample_3_3<ColorTypeFilter_565>; break; case kARGB_4444_SkColorType: proc_1_2 = downsample_1_2<ColorTypeFilter_4444>; proc_1_3 = downsample_1_3<ColorTypeFilter_4444>; proc_2_1 = downsample_2_1<ColorTypeFilter_4444>; proc_2_2 = downsample_2_2<ColorTypeFilter_4444>; proc_2_3 = downsample_2_3<ColorTypeFilter_4444>; proc_3_1 = downsample_3_1<ColorTypeFilter_4444>; proc_3_2 = downsample_3_2<ColorTypeFilter_4444>; proc_3_3 = downsample_3_3<ColorTypeFilter_4444>; break; case kAlpha_8_SkColorType: case kGray_8_SkColorType: proc_1_2 = downsample_1_2<ColorTypeFilter_8>; proc_1_3 = downsample_1_3<ColorTypeFilter_8>; proc_2_1 = downsample_2_1<ColorTypeFilter_8>; proc_2_2 = downsample_2_2<ColorTypeFilter_8>; proc_2_3 = downsample_2_3<ColorTypeFilter_8>; proc_3_1 = downsample_3_1<ColorTypeFilter_8>; proc_3_2 = downsample_3_2<ColorTypeFilter_8>; proc_3_3 = downsample_3_3<ColorTypeFilter_8>; break; case kRGBA_F16_SkColorType: proc_1_2 = downsample_1_2<ColorTypeFilter_F16>; proc_1_3 = downsample_1_3<ColorTypeFilter_F16>; proc_2_1 = downsample_2_1<ColorTypeFilter_F16>; proc_2_2 = downsample_2_2<ColorTypeFilter_F16>; proc_2_3 = downsample_2_3<ColorTypeFilter_F16>; proc_3_1 = downsample_3_1<ColorTypeFilter_F16>; proc_3_2 = downsample_3_2<ColorTypeFilter_F16>; proc_3_3 = downsample_3_3<ColorTypeFilter_F16>; break; default: // TODO: We could build miplevels for kIndex8 if the levels were in 8888. // Means using more ram, but the quality would be fine. return nullptr; } if (src.width() <= 1 && src.height() <= 1) { return nullptr; } // whip through our loop to compute the exact size needed size_t size = 0; int countLevels = ComputeLevelCount(src.width(), src.height()); for (int currentMipLevel = countLevels; currentMipLevel >= 0; currentMipLevel--) { SkISize mipSize = ComputeLevelSize(src.width(), src.height(), currentMipLevel); size += SkColorTypeMinRowBytes(ct, mipSize.fWidth) * mipSize.fHeight; } size_t storageSize = SkMipMap::AllocLevelsSize(countLevels, size); if (0 == storageSize) { return nullptr; } SkMipMap* mipmap; if (fact) { SkDiscardableMemory* dm = fact(storageSize); if (nullptr == dm) { return nullptr; } mipmap = new SkMipMap(storageSize, dm); } else { mipmap = new SkMipMap(sk_malloc_throw(storageSize), storageSize); } // init mipmap->fCS = sk_ref_sp(src.info().colorSpace()); mipmap->fCount = countLevels; mipmap->fLevels = (Level*)mipmap->writable_data(); SkASSERT(mipmap->fLevels); Level* levels = mipmap->fLevels; uint8_t* baseAddr = (uint8_t*)&levels[countLevels]; uint8_t* addr = baseAddr; int width = src.width(); int height = src.height(); uint32_t rowBytes; SkPixmap srcPM(src); for (int i = 0; i < countLevels; ++i) { FilterProc* proc; if (height & 1) { if (height == 1) { // src-height is 1 if (width & 1) { // src-width is 3 proc = proc_3_1; } else { // src-width is 2 proc = proc_2_1; } } else { // src-height is 3 if (width & 1) { if (width == 1) { // src-width is 1 proc = proc_1_3; } else { // src-width is 3 proc = proc_3_3; } } else { // src-width is 2 proc = proc_2_3; } } } else { // src-height is 2 if (width & 1) { if (width == 1) { // src-width is 1 proc = proc_1_2; } else { // src-width is 3 proc = proc_3_2; } } else { // src-width is 2 proc = proc_2_2; } } width = SkTMax(1, width >> 1); height = SkTMax(1, height >> 1); rowBytes = SkToU32(SkColorTypeMinRowBytes(ct, width)); // We make the Info w/o any colorspace, since that storage is not under our control, and // will not be deleted in a controlled fashion. When the caller is given the pixmap for // a given level, we augment this pixmap with fCS (which we do manage). new (&levels[i].fPixmap) SkPixmap(SkImageInfo::Make(width, height, ct, at), addr, rowBytes); levels[i].fScale = SkSize::Make(SkIntToScalar(width) / src.width(), SkIntToScalar(height) / src.height()); const SkPixmap& dstPM = levels[i].fPixmap; const void* srcBasePtr = srcPM.addr(); void* dstBasePtr = dstPM.writable_addr(); const size_t srcRB = srcPM.rowBytes(); for (int y = 0; y < height; y++) { proc(dstBasePtr, srcBasePtr, srcRB, width); srcBasePtr = (char*)srcBasePtr + srcRB * 2; // jump two rows dstBasePtr = (char*)dstBasePtr + dstPM.rowBytes(); } srcPM = dstPM; addr += height * rowBytes; } SkASSERT(addr == baseAddr + size); SkASSERT(mipmap->fLevels); return mipmap; } int SkMipMap::ComputeLevelCount(int baseWidth, int baseHeight) { if (baseWidth < 1 || baseHeight < 1) { return 0; } // OpenGL's spec requires that each mipmap level have height/width equal to // max(1, floor(original_height / 2^i) // (or original_width) where i is the mipmap level. // Continue scaling down until both axes are size 1. const int largestAxis = SkTMax(baseWidth, baseHeight); if (largestAxis < 2) { // SkMipMap::Build requires a minimum size of 2. return 0; } const int leadingZeros = SkCLZ(static_cast<uint32_t>(largestAxis)); // If the value 00011010 has 3 leading 0s then it has 5 significant bits // (the bits which are not leading zeros) const int significantBits = (sizeof(uint32_t) * 8) - leadingZeros; // This is making the assumption that the size of a byte is 8 bits // and that sizeof(uint32_t)'s implementation-defined behavior is 4. int mipLevelCount = significantBits; // SkMipMap does not include the base mip level. // For example, it contains levels 1-x instead of 0-x. // This is because the image used to create SkMipMap is the base level. // So subtract 1 from the mip level count. if (mipLevelCount > 0) { --mipLevelCount; } return mipLevelCount; } SkISize SkMipMap::ComputeLevelSize(int baseWidth, int baseHeight, int level) { if (baseWidth < 1 || baseHeight < 1) { return SkISize::Make(0, 0); } int maxLevelCount = ComputeLevelCount(baseWidth, baseHeight); if (level >= maxLevelCount || level < 0) { return SkISize::Make(0, 0); } // OpenGL's spec requires that each mipmap level have height/width equal to // max(1, floor(original_height / 2^i) // (or original_width) where i is the mipmap level. // SkMipMap does not include the base mip level. // For example, it contains levels 1-x instead of 0-x. // This is because the image used to create SkMipMap is the base level. // So subtract 1 from the mip level to get the index stored by SkMipMap. int width = SkTMax(1, baseWidth >> (level + 1)); int height = SkTMax(1, baseHeight >> (level + 1)); return SkISize::Make(width, height); } /////////////////////////////////////////////////////////////////////////////// bool SkMipMap::extractLevel(const SkSize& scaleSize, Level* levelPtr) const { if (nullptr == fLevels) { return false; } SkASSERT(scaleSize.width() >= 0 && scaleSize.height() >= 0); #ifndef SK_SUPPORT_LEGACY_ANISOTROPIC_MIPMAP_SCALE // Use the smallest scale to match the GPU impl. const SkScalar scale = SkTMin(scaleSize.width(), scaleSize.height()); #else // Ideally we'd pick the smaller scale, to match Ganesh. But ignoring one of the // scales can produce some atrocious results, so for now we use the geometric mean. // (https://bugs.chromium.org/p/skia/issues/detail?id=4863) const SkScalar scale = SkScalarSqrt(scaleSize.width() * scaleSize.height()); #endif if (scale >= SK_Scalar1 || scale <= 0 || !SkScalarIsFinite(scale)) { return false; } SkScalar L = -SkScalarLog2(scale); if (!SkScalarIsFinite(L)) { return false; } SkASSERT(L >= 0); int level = SkScalarFloorToInt(L); SkASSERT(level >= 0); if (level <= 0) { return false; } if (level > fCount) { level = fCount; } if (levelPtr) { *levelPtr = fLevels[level - 1]; // need to augment with our colorspace levelPtr->fPixmap.setColorSpace(fCS); } return true; } // Helper which extracts a pixmap from the src bitmap // SkMipMap* SkMipMap::Build(const SkBitmap& src, SkDestinationSurfaceColorMode colorMode, SkDiscardableFactoryProc fact) { SkPixmap srcPixmap; if (!src.peekPixels(&srcPixmap)) { return nullptr; } return Build(srcPixmap, colorMode, fact); } int SkMipMap::countLevels() const { return fCount; } bool SkMipMap::getLevel(int index, Level* levelPtr) const { if (nullptr == fLevels) { return false; } if (index < 0) { return false; } if (index > fCount - 1) { return false; } if (levelPtr) { *levelPtr = fLevels[index]; } return true; }