/* * Copyright 2011 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #ifndef GrGpu_DEFINED #define GrGpu_DEFINED #include "GrCaps.h" #include "GrGpuCommandBuffer.h" #include "GrProgramDesc.h" #include "GrSwizzle.h" #include "GrAllocator.h" #include "GrTextureProducer.h" #include "GrTypes.h" #include "GrXferProcessor.h" #include "SkPath.h" #include "SkTArray.h" #include <map> class GrBackendRenderTarget; class GrBackendSemaphore; class GrBuffer; class GrContext; struct GrContextOptions; class GrGLContext; class GrMesh; class GrPath; class GrPathRange; class GrPathRenderer; class GrPathRendererChain; class GrPathRendering; class GrPipeline; class GrPrimitiveProcessor; class GrRenderTarget; class GrSemaphore; class GrStencilAttachment; class GrStencilSettings; class GrSurface; class GrTexture; class SkJSONWriter; class GrGpu : public SkRefCnt { public: /** * Create an instance of GrGpu that matches the specified backend. If the requested backend is * not supported (at compile-time or run-time) this returns nullptr. The context will not be * fully constructed and should not be used by GrGpu until after this function returns. */ static sk_sp<GrGpu> Make(GrBackend, GrBackendContext, const GrContextOptions&, GrContext*); //////////////////////////////////////////////////////////////////////////// GrGpu(GrContext* context); ~GrGpu() override; GrContext* getContext() { return fContext; } const GrContext* getContext() const { return fContext; } /** * Gets the capabilities of the draw target. */ const GrCaps* caps() const { return fCaps.get(); } sk_sp<const GrCaps> refCaps() const { return fCaps; } GrPathRendering* pathRendering() { return fPathRendering.get(); } enum class DisconnectType { // No cleanup should be attempted, immediately cease making backend API calls kAbandon, // Free allocated resources (not known by GrResourceCache) before returning and // ensure no backend backend 3D API calls will be made after disconnect() returns. kCleanup, }; // Called by GrContext when the underlying backend context is already or will be destroyed // before GrContext. virtual void disconnect(DisconnectType); /** * The GrGpu object normally assumes that no outsider is setting state * within the underlying 3D API's context/device/whatever. This call informs * the GrGpu that the state was modified and it shouldn't make assumptions * about the state. */ void markContextDirty(uint32_t state = kAll_GrBackendState) { fResetBits |= state; } /** * Creates a texture object. If kRenderTarget_GrSurfaceFlag the texture can * be used as a render target by calling GrTexture::asRenderTarget(). Not all * pixel configs can be used as render targets. Support for configs as textures * or render targets can be checked using GrCaps. * * @param desc describes the texture to be created. * @param budgeted does this texture count against the resource cache budget? * @param texels array of mipmap levels containing texel data to load. * Each level begins with full-size palette data for paletted textures. * It contains width*height texels. If there is only one * element and it contains nullptr fPixels, texture data is * uninitialized. * @param mipLevelCount the number of levels in 'texels' * @return The texture object if successful, otherwise nullptr. */ sk_sp<GrTexture> createTexture(const GrSurfaceDesc&, SkBudgeted, const GrMipLevel texels[], int mipLevelCount); /** * Simplified createTexture() interface for when there is no initial texel data to upload. */ sk_sp<GrTexture> createTexture(const GrSurfaceDesc& desc, SkBudgeted); /** * Implements GrResourceProvider::wrapBackendTexture */ sk_sp<GrTexture> wrapBackendTexture(const GrBackendTexture&, GrWrapOwnership); /** * Implements GrResourceProvider::wrapRenderableBackendTexture */ sk_sp<GrTexture> wrapRenderableBackendTexture(const GrBackendTexture&, int sampleCnt, GrWrapOwnership); /** * Implements GrResourceProvider::wrapBackendRenderTarget */ sk_sp<GrRenderTarget> wrapBackendRenderTarget(const GrBackendRenderTarget&); /** * Implements GrResourceProvider::wrapBackendTextureAsRenderTarget */ sk_sp<GrRenderTarget> wrapBackendTextureAsRenderTarget(const GrBackendTexture&, int sampleCnt); /** * Creates a buffer in GPU memory. For a client-side buffer use GrBuffer::CreateCPUBacked. * * @param size size of buffer to create. * @param intendedType hint to the graphics subsystem about what the buffer will be used for. * @param accessPattern hint to the graphics subsystem about how the data will be accessed. * @param data optional data with which to initialize the buffer. * * @return the buffer if successful, otherwise nullptr. */ GrBuffer* createBuffer(size_t size, GrBufferType intendedType, GrAccessPattern accessPattern, const void* data = nullptr); /** * Resolves MSAA. */ void resolveRenderTarget(GrRenderTarget*); /** Info struct returned by getReadPixelsInfo about performing intermediate draws before reading pixels for performance or correctness. */ struct ReadPixelTempDrawInfo { /** * If the GrGpu is requesting that the caller do a draw to an intermediate surface then * this is descriptor for the temp surface. The draw should always be a rect with dst * 0,0,w,h. */ GrSurfaceDesc fTempSurfaceDesc; /** * Indicates whether there is a performance advantage to using an exact match texture * (in terms of width and height) for the intermediate texture instead of approximate. */ SkBackingFit fTempSurfaceFit; /** * Swizzle to apply during the draw. This is used to compensate for either feature or * performance limitations in the underlying 3D API. */ GrSwizzle fSwizzle; /** * The color type that should be used to read from the temp surface after the draw. This * may be different than the original read color type in order to compensate for swizzling. * The read data will effectively be in the original color type. The original gamma * encoding is always used. */ GrColorType fReadColorType; }; /** Describes why an intermediate draw must/should be performed before readPixels. */ enum DrawPreference { /** * On input means that the caller would proceed without draw if the GrGpu doesn't request * one. On output means that the GrGpu is not requesting a draw. */ kNoDraw_DrawPreference, /** * Means that the client would prefer a draw for performance of the readback but * can satisfy a straight readPixels call on the inputs without an intermediate draw. * getReadPixelsInfo will never set the draw preference to this value but may leave * it set. */ kCallerPrefersDraw_DrawPreference, /** * On output means that GrGpu would prefer a draw for performance of the readback but * can satisfy a straight readPixels call on the inputs without an intermediate draw. The * caller of getReadPixelsInfo should never specify this on intput. */ kGpuPrefersDraw_DrawPreference, /** * On input means that the caller requires a draw to do a transformation and there is no * CPU fallback. On output means that GrGpu can only satisfy the readPixels request if the * intermediate draw is performed. */ kRequireDraw_DrawPreference }; /** * Used to negotiate whether and how an intermediate draw should or must be performed before * a readPixels call. If this returns false then GrGpu could not deduce an intermediate draw * that would allow a successful readPixels call. The passed width, height, and rowBytes, * must be non-zero and already reflect clipping to the src bounds. */ bool getReadPixelsInfo(GrSurface*, GrSurfaceOrigin, int width, int height, size_t rowBytes, GrColorType, GrSRGBConversion, DrawPreference*, ReadPixelTempDrawInfo*); /** * Info struct returned by getWritePixelsInfo about performing an intermediate draw in order * to write pixels to a GrSurface for either performance or correctness reasons. */ struct WritePixelTempDrawInfo { /** * If the GrGpu is requesting that the caller upload to an intermediate surface and draw * that to the dst then this is the descriptor for the intermediate surface. The caller * should upload the pixels such that the upper left pixel of the upload rect is at 0,0 in * the intermediate surface */ GrSurfaceDesc fTempSurfaceDesc; /** * Swizzle to apply during the draw. This is used to compensate for either feature or * performance limitations in the underlying 3D API. */ GrSwizzle fSwizzle; /** * The color type that should be specified when uploading the *original* data to the temp * surface before the draw. This may be different than the original src color type in * order to compensate for swizzling that will occur when drawing. The original gamma * encoding is always used. */ GrColorType fWriteColorType; }; /** * Used to negotiate whether and how an intermediate surface should be used to write pixels to * a GrSurface. If this returns false then GrGpu could not deduce an intermediate draw * that would allow a successful transfer of the src pixels to the dst. The passed width, * height, and rowBytes, must be non-zero and already reflect clipping to the dst bounds. */ bool getWritePixelsInfo(GrSurface*, GrSurfaceOrigin, int width, int height, GrColorType, GrSRGBConversion, DrawPreference*, WritePixelTempDrawInfo*); /** * Reads a rectangle of pixels from a render target. No sRGB/linear conversions are performed. * * @param surface The surface to read from * @param left left edge of the rectangle to read (inclusive) * @param top top edge of the rectangle to read (inclusive) * @param width width of rectangle to read in pixels. * @param height height of rectangle to read in pixels. * @param dstColorType the color type of the destination buffer. * @param buffer memory to read the rectangle into. * @param rowBytes the number of bytes between consecutive rows. Zero * means rows are tightly packed. * @param invertY buffer should be populated bottom-to-top as opposed * to top-to-bottom (skia's usual order) * * @return true if the read succeeded, false if not. The read can fail * because of a unsupported pixel config or because no render * target is currently set. */ bool readPixels(GrSurface* surface, GrSurfaceOrigin, int left, int top, int width, int height, GrColorType dstColorType, void* buffer, size_t rowBytes); /** * Updates the pixels in a rectangle of a surface. No sRGB/linear conversions are performed. * * @param surface The surface to write to. * @param left left edge of the rectangle to write (inclusive) * @param top top edge of the rectangle to write (inclusive) * @param width width of rectangle to write in pixels. * @param height height of rectangle to write in pixels. * @param srcColorType the color type of the source buffer. * @param texels array of mipmap levels containing texture data * @param mipLevelCount number of levels in 'texels' */ bool writePixels(GrSurface* surface, GrSurfaceOrigin origin, int left, int top, int width, int height, GrColorType srcColorType, const GrMipLevel texels[], int mipLevelCount); /** * This function is a shim which creates a SkTArray<GrMipLevel> of size 1. * It then calls writePixels with that SkTArray. */ bool writePixels(GrSurface*, GrSurfaceOrigin, int left, int top, int width, int height, GrColorType, const void* buffer, size_t rowBytes); /** * This version of writePixels doesn't take an origin. TODO: Remove origin handling from * GrGpu::writePixels entirely. */ bool writePixels(GrSurface* surface, int left, int top, int width, int height, GrColorType srcColorType, const void* buffer, size_t rowBytes) { return this->writePixels(surface, kTopLeft_GrSurfaceOrigin, left, top, width, height, srcColorType, buffer, rowBytes); } /** * Updates the pixels in a rectangle of a texture using a buffer * * There are a couple of assumptions here. First, we only update the top miplevel. * And second, that any y flip needed has already been done in the buffer. * * @param texture The texture to write to. * @param left left edge of the rectangle to write (inclusive) * @param top top edge of the rectangle to write (inclusive) * @param width width of rectangle to write in pixels. * @param height height of rectangle to write in pixels. * @param bufferColorType the color type of the transfer buffer's pixel data * @param transferBuffer GrBuffer to read pixels from (type must be "kXferCpuToGpu") * @param offset offset from the start of the buffer * @param rowBytes number of bytes between consecutive rows in the buffer. Zero * means rows are tightly packed. */ bool transferPixels(GrTexture* texture, int left, int top, int width, int height, GrColorType bufferColorType, GrBuffer* transferBuffer, size_t offset, size_t rowBytes); // After the client interacts directly with the 3D context state the GrGpu // must resync its internal state and assumptions about 3D context state. // Each time this occurs the GrGpu bumps a timestamp. // state of the 3D context // At 10 resets / frame and 60fps a 64bit timestamp will overflow in about // a billion years. typedef uint64_t ResetTimestamp; // This timestamp is always older than the current timestamp static const ResetTimestamp kExpiredTimestamp = 0; // Returns a timestamp based on the number of times the context was reset. // This timestamp can be used to lazily detect when cached 3D context state // is dirty. ResetTimestamp getResetTimestamp() const { return fResetTimestamp; } // Called to perform a surface to surface copy. Fallbacks to issuing a draw from the src to dst // take place at the GrOpList level and this function implement faster copy paths. The rect // and point are pre-clipped. The src rect and implied dst rect are guaranteed to be within the // src/dst bounds and non-empty. bool copySurface(GrSurface* dst, GrSurfaceOrigin dstOrigin, GrSurface* src, GrSurfaceOrigin srcOrigin, const SkIRect& srcRect, const SkIPoint& dstPoint); // Creates a GrGpuRTCommandBuffer which GrOpLists send draw commands to instead of directly // to the Gpu object. virtual GrGpuRTCommandBuffer* createCommandBuffer( GrRenderTarget*, GrSurfaceOrigin, const GrGpuRTCommandBuffer::LoadAndStoreInfo&, const GrGpuRTCommandBuffer::StencilLoadAndStoreInfo&) = 0; // Creates a GrGpuTextureCommandBuffer which GrOpLists send texture commands to instead of // directly to the Gpu object. virtual GrGpuTextureCommandBuffer* createCommandBuffer(GrTexture*, GrSurfaceOrigin) = 0; // Called by GrDrawingManager when flushing. // Provides a hook for post-flush actions (e.g. Vulkan command buffer submits). This will also // insert any numSemaphore semaphores on the gpu and set the backendSemaphores to match the // inserted semaphores. GrSemaphoresSubmitted finishFlush(int numSemaphores, GrBackendSemaphore backendSemaphores[]); virtual GrFence SK_WARN_UNUSED_RESULT insertFence() = 0; virtual bool waitFence(GrFence, uint64_t timeout = 1000) = 0; virtual void deleteFence(GrFence) const = 0; virtual sk_sp<GrSemaphore> SK_WARN_UNUSED_RESULT makeSemaphore(bool isOwned = true) = 0; virtual sk_sp<GrSemaphore> wrapBackendSemaphore(const GrBackendSemaphore& semaphore, GrResourceProvider::SemaphoreWrapType wrapType, GrWrapOwnership ownership) = 0; virtual void insertSemaphore(sk_sp<GrSemaphore> semaphore, bool flush = false) = 0; virtual void waitSemaphore(sk_sp<GrSemaphore> semaphore) = 0; /** * Put this texture in a safe and known state for use across multiple GrContexts. Depending on * the backend, this may return a GrSemaphore. If so, other contexts should wait on that * semaphore before using this texture. */ virtual sk_sp<GrSemaphore> prepareTextureForCrossContextUsage(GrTexture*) = 0; /////////////////////////////////////////////////////////////////////////// // Debugging and Stats class Stats { public: #if GR_GPU_STATS Stats() { this->reset(); } void reset() { fRenderTargetBinds = 0; fShaderCompilations = 0; fTextureCreates = 0; fTextureUploads = 0; fTransfersToTexture = 0; fStencilAttachmentCreates = 0; fNumDraws = 0; fNumFailedDraws = 0; } int renderTargetBinds() const { return fRenderTargetBinds; } void incRenderTargetBinds() { fRenderTargetBinds++; } int shaderCompilations() const { return fShaderCompilations; } void incShaderCompilations() { fShaderCompilations++; } int textureCreates() const { return fTextureCreates; } void incTextureCreates() { fTextureCreates++; } int textureUploads() const { return fTextureUploads; } void incTextureUploads() { fTextureUploads++; } int transfersToTexture() const { return fTransfersToTexture; } void incTransfersToTexture() { fTransfersToTexture++; } void incStencilAttachmentCreates() { fStencilAttachmentCreates++; } void incNumDraws() { fNumDraws++; } void incNumFailedDraws() { ++fNumFailedDraws; } void dump(SkString*); void dumpKeyValuePairs(SkTArray<SkString>* keys, SkTArray<double>* values); int numDraws() const { return fNumDraws; } int numFailedDraws() const { return fNumFailedDraws; } private: int fRenderTargetBinds; int fShaderCompilations; int fTextureCreates; int fTextureUploads; int fTransfersToTexture; int fStencilAttachmentCreates; int fNumDraws; int fNumFailedDraws; #else void dump(SkString*) {} void dumpKeyValuePairs(SkTArray<SkString>*, SkTArray<double>*) {} void incRenderTargetBinds() {} void incShaderCompilations() {} void incTextureCreates() {} void incTextureUploads() {} void incTransfersToTexture() {} void incStencilAttachmentCreates() {} void incNumDraws() {} void incNumFailedDraws() {} #endif }; Stats* stats() { return &fStats; } void dumpJSON(SkJSONWriter*) const; /** Creates a texture directly in the backend API without wrapping it in a GrTexture. This is only to be used for testing (particularly for testing the methods that import an externally created texture into Skia. Must be matched with a call to deleteTestingOnlyTexture(). */ GrBackendTexture createTestingOnlyBackendTexture(void* pixels, int w, int h, SkColorType, bool isRenderTarget, GrMipMapped); /** Older version based on GrPixelConfig. Currently the preferred one above devolves to this. */ virtual GrBackendTexture createTestingOnlyBackendTexture( void* pixels, int w, int h, GrPixelConfig config, bool isRenderTarget, GrMipMapped mipMapped) = 0; /** Check a handle represents an actual texture in the backend API that has not been freed. */ virtual bool isTestingOnlyBackendTexture(const GrBackendTexture&) const = 0; /** If ownership of the backend texture has been transferred pass true for abandonTexture. This will do any necessary cleanup of the handle without freeing the texture in the backend API. */ virtual void deleteTestingOnlyBackendTexture(GrBackendTexture*, bool abandonTexture = false) = 0; // width and height may be larger than rt (if underlying API allows it). // Returns nullptr if compatible sb could not be created, otherwise the caller owns the ref on // the GrStencilAttachment. virtual GrStencilAttachment* createStencilAttachmentForRenderTarget(const GrRenderTarget*, int width, int height) = 0; // clears target's entire stencil buffer to 0 virtual void clearStencil(GrRenderTarget* target, int clearValue) = 0; // Determines whether a texture will need to be rescaled in order to be used with the // GrSamplerState. This variation is called when the caller will create a new texture using the // resource provider from a non-texture src (cpu-backed image, ...). bool isACopyNeededForTextureParams(int width, int height, const GrSamplerState&, GrTextureProducer::CopyParams*, SkScalar scaleAdjust[2]) const; // Like the above but this variation should be called when the caller is not creating the // original texture but rather was handed the original texture. It adds additional checks // relevant to original textures that were created external to Skia via // GrResourceProvider::wrap methods. bool isACopyNeededForTextureParams(GrTextureProxy* proxy, const GrSamplerState& params, GrTextureProducer::CopyParams* copyParams, SkScalar scaleAdjust[2]) const { if (this->isACopyNeededForTextureParams(proxy->width(), proxy->height(), params, copyParams, scaleAdjust)) { return true; } return this->onIsACopyNeededForTextureParams(proxy, params, copyParams, scaleAdjust); } // This is only to be used in GL-specific tests. virtual const GrGLContext* glContextForTesting() const { return nullptr; } // This is only to be used by testing code virtual void resetShaderCacheForTesting() const {} void handleDirtyContext() { if (fResetBits) { this->resetContext(); } } protected: static void ElevateDrawPreference(GrGpu::DrawPreference* preference, GrGpu::DrawPreference elevation) { GR_STATIC_ASSERT(GrGpu::kCallerPrefersDraw_DrawPreference > GrGpu::kNoDraw_DrawPreference); GR_STATIC_ASSERT(GrGpu::kGpuPrefersDraw_DrawPreference > GrGpu::kCallerPrefersDraw_DrawPreference); GR_STATIC_ASSERT(GrGpu::kRequireDraw_DrawPreference > GrGpu::kGpuPrefersDraw_DrawPreference); *preference = SkTMax(*preference, elevation); } // Handles cases where a surface will be updated without a call to flushRenderTarget. void didWriteToSurface(GrSurface* surface, GrSurfaceOrigin origin, const SkIRect* bounds, uint32_t mipLevels = 1) const; Stats fStats; std::unique_ptr<GrPathRendering> fPathRendering; // Subclass must initialize this in its constructor. sk_sp<const GrCaps> fCaps; typedef SkTArray<SkPoint, true> SamplePattern; private: // called when the 3D context state is unknown. Subclass should emit any // assumed 3D context state and dirty any state cache. virtual void onResetContext(uint32_t resetBits) = 0; // Called before certain draws in order to guarantee coherent results from dst reads. virtual void xferBarrier(GrRenderTarget*, GrXferBarrierType) = 0; // overridden by backend-specific derived class to create objects. // Texture size and sample size will have already been validated in base class before // onCreateTexture is called. virtual sk_sp<GrTexture> onCreateTexture(const GrSurfaceDesc&, SkBudgeted, const GrMipLevel texels[], int mipLevelCount) = 0; virtual sk_sp<GrTexture> onWrapBackendTexture(const GrBackendTexture&, GrWrapOwnership) = 0; virtual sk_sp<GrTexture> onWrapRenderableBackendTexture(const GrBackendTexture&, int sampleCnt, GrWrapOwnership) = 0; virtual sk_sp<GrRenderTarget> onWrapBackendRenderTarget(const GrBackendRenderTarget&) = 0; virtual sk_sp<GrRenderTarget> onWrapBackendTextureAsRenderTarget(const GrBackendTexture&, int sampleCnt) = 0; virtual GrBuffer* onCreateBuffer(size_t size, GrBufferType intendedType, GrAccessPattern, const void* data) = 0; virtual bool onIsACopyNeededForTextureParams(GrTextureProxy* proxy, const GrSamplerState&, GrTextureProducer::CopyParams*, SkScalar scaleAdjust[2]) const { return false; } virtual bool onGetReadPixelsInfo(GrSurface*, GrSurfaceOrigin, int width, int height, size_t rowBytes, GrColorType, DrawPreference*, ReadPixelTempDrawInfo*) = 0; virtual bool onGetWritePixelsInfo(GrSurface*, GrSurfaceOrigin, int width, int height, GrColorType, DrawPreference*, WritePixelTempDrawInfo*) = 0; // overridden by backend-specific derived class to perform the surface read virtual bool onReadPixels(GrSurface*, GrSurfaceOrigin, int left, int top, int width, int height, GrColorType, void* buffer, size_t rowBytes) = 0; // overridden by backend-specific derived class to perform the surface write virtual bool onWritePixels(GrSurface*, GrSurfaceOrigin, int left, int top, int width, int height, GrColorType, const GrMipLevel texels[], int mipLevelCount) = 0; // overridden by backend-specific derived class to perform the texture transfer virtual bool onTransferPixels(GrTexture*, int left, int top, int width, int height, GrColorType colorType, GrBuffer* transferBuffer, size_t offset, size_t rowBytes) = 0; // overridden by backend-specific derived class to perform the resolve virtual void onResolveRenderTarget(GrRenderTarget* target) = 0; // overridden by backend specific derived class to perform the copy surface virtual bool onCopySurface(GrSurface* dst, GrSurfaceOrigin dstOrigin, GrSurface* src, GrSurfaceOrigin srcOrigin, const SkIRect& srcRect, const SkIPoint& dstPoint) = 0; virtual void onFinishFlush(bool insertedSemaphores) = 0; virtual void onDumpJSON(SkJSONWriter*) const {} void resetContext() { this->onResetContext(fResetBits); fResetBits = 0; ++fResetTimestamp; } ResetTimestamp fResetTimestamp; uint32_t fResetBits; // The context owns us, not vice-versa, so this ptr is not ref'ed by Gpu. GrContext* fContext; friend class GrPathRendering; typedef SkRefCnt INHERITED; }; #endif