/* * Copyright 2017 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "GrTextureOp.h" #include "GrAppliedClip.h" #include "GrCaps.h" #include "GrDrawOpTest.h" #include "GrGeometryProcessor.h" #include "GrMeshDrawOp.h" #include "GrOpFlushState.h" #include "GrQuad.h" #include "GrResourceProvider.h" #include "GrShaderCaps.h" #include "GrTexture.h" #include "GrTexturePriv.h" #include "GrTextureProxy.h" #include "SkGr.h" #include "SkMathPriv.h" #include "SkPoint.h" #include "SkPoint3.h" #include "glsl/GrGLSLColorSpaceXformHelper.h" #include "glsl/GrGLSLFragmentShaderBuilder.h" #include "glsl/GrGLSLGeometryProcessor.h" #include "glsl/GrGLSLVarying.h" #include "glsl/GrGLSLVertexGeoBuilder.h" namespace { /** * Geometry Processor that draws a texture modulated by a vertex color (though, this is meant to be * the same value across all vertices of a quad and uses flat interpolation when available). This is * used by TextureOp below. */ class TextureGeometryProcessor : public GrGeometryProcessor { public: struct Vertex { SkPoint fPosition; SkPoint fTextureCoords; GrColor fColor; }; struct AAVertex { SkPoint fPosition; SkPoint fTextureCoords; SkPoint3 fEdges[4]; GrColor fColor; }; struct MultiTextureVertex { SkPoint fPosition; int fTextureIdx; SkPoint fTextureCoords; GrColor fColor; }; struct AAMultiTextureVertex { SkPoint fPosition; int fTextureIdx; SkPoint fTextureCoords; SkPoint3 fEdges[4]; GrColor fColor; }; // Maximum number of textures supported by this op. Must also be checked against the caps // limit. These numbers were based on some limited experiments on a HP Z840 and Pixel XL 2016 // and could probably use more tuning. #ifdef SK_BUILD_FOR_ANDROID static constexpr int kMaxTextures = 4; #else static constexpr int kMaxTextures = 8; #endif static int SupportsMultitexture(const GrShaderCaps& caps) { return caps.integerSupport() && caps.maxFragmentSamplers() > 1; } static sk_sp<GrGeometryProcessor> Make(sk_sp<GrTextureProxy> proxies[], int proxyCnt, sk_sp<GrColorSpaceXform> csxf, bool coverageAA, const GrSamplerState::Filter filters[], const GrShaderCaps& caps) { // We use placement new to avoid always allocating space for kMaxTextures TextureSampler // instances. int samplerCnt = NumSamplersToUse(proxyCnt, caps); size_t size = sizeof(TextureGeometryProcessor) + sizeof(TextureSampler) * (samplerCnt - 1); void* mem = GrGeometryProcessor::operator new(size); return sk_sp<TextureGeometryProcessor>(new (mem) TextureGeometryProcessor( proxies, proxyCnt, samplerCnt, std::move(csxf), coverageAA, filters, caps)); } ~TextureGeometryProcessor() override { int cnt = this->numTextureSamplers(); for (int i = 1; i < cnt; ++i) { fSamplers[i].~TextureSampler(); } } const char* name() const override { return "TextureGeometryProcessor"; } void getGLSLProcessorKey(const GrShaderCaps&, GrProcessorKeyBuilder* b) const override { b->add32(GrColorSpaceXform::XformKey(fColorSpaceXform.get())); b->add32(static_cast<uint32_t>(this->usesCoverageEdgeAA())); } GrGLSLPrimitiveProcessor* createGLSLInstance(const GrShaderCaps& caps) const override { class GLSLProcessor : public GrGLSLGeometryProcessor { public: void setData(const GrGLSLProgramDataManager& pdman, const GrPrimitiveProcessor& proc, FPCoordTransformIter&& transformIter) override { const auto& textureGP = proc.cast<TextureGeometryProcessor>(); this->setTransformDataHelper(SkMatrix::I(), pdman, &transformIter); if (fColorSpaceXformHelper.isValid()) { fColorSpaceXformHelper.setData(pdman, textureGP.fColorSpaceXform.get()); } } private: void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) override { using Interpolation = GrGLSLVaryingHandler::Interpolation; const auto& textureGP = args.fGP.cast<TextureGeometryProcessor>(); fColorSpaceXformHelper.emitCode( args.fUniformHandler, textureGP.fColorSpaceXform.get()); args.fVaryingHandler->setNoPerspective(); args.fVaryingHandler->emitAttributes(textureGP); this->writeOutputPosition(args.fVertBuilder, gpArgs, textureGP.fPositions.fName); this->emitTransforms(args.fVertBuilder, args.fVaryingHandler, args.fUniformHandler, textureGP.fTextureCoords.asShaderVar(), args.fFPCoordTransformHandler); args.fVaryingHandler->addPassThroughAttribute(&textureGP.fColors, args.fOutputColor, Interpolation::kCanBeFlat); args.fFragBuilder->codeAppend("float2 texCoord;"); args.fVaryingHandler->addPassThroughAttribute(&textureGP.fTextureCoords, "texCoord"); if (textureGP.numTextureSamplers() > 1) { // If this changes to float, reconsider Interpolation::kMustBeFlat. SkASSERT(kInt_GrVertexAttribType == textureGP.fTextureIdx.fType); SkASSERT(args.fShaderCaps->integerSupport()); args.fFragBuilder->codeAppend("int texIdx;"); args.fVaryingHandler->addPassThroughAttribute(&textureGP.fTextureIdx, "texIdx", Interpolation::kMustBeFlat); args.fFragBuilder->codeAppend("switch (texIdx) {"); for (int i = 0; i < textureGP.numTextureSamplers(); ++i) { args.fFragBuilder->codeAppendf("case %d: %s = ", i, args.fOutputColor); args.fFragBuilder->appendTextureLookupAndModulate(args.fOutputColor, args.fTexSamplers[i], "texCoord", kFloat2_GrSLType, &fColorSpaceXformHelper); args.fFragBuilder->codeAppend("; break;"); } args.fFragBuilder->codeAppend("}"); } else { args.fFragBuilder->codeAppendf("%s = ", args.fOutputColor); args.fFragBuilder->appendTextureLookupAndModulate(args.fOutputColor, args.fTexSamplers[0], "texCoord", kFloat2_GrSLType, &fColorSpaceXformHelper); } args.fFragBuilder->codeAppend(";"); if (textureGP.usesCoverageEdgeAA()) { const char* aaDistName = nullptr; // When interpolation is innacurate we perform the evaluation of the edge // equations in the fragment shader rather than interpolating values computed // in the vertex shader. if (!args.fShaderCaps->interpolantsAreInaccurate()) { GrGLSLVarying aaDistVarying(kFloat4_GrSLType, GrGLSLVarying::Scope::kVertToFrag); args.fVaryingHandler->addVarying("aaDists", &aaDistVarying); args.fVertBuilder->codeAppendf( R"(%s = float4(dot(aaEdge0.xy, %s.xy) + aaEdge0.z, dot(aaEdge1.xy, %s.xy) + aaEdge1.z, dot(aaEdge2.xy, %s.xy) + aaEdge2.z, dot(aaEdge3.xy, %s.xy) + aaEdge3.z);)", aaDistVarying.vsOut(), textureGP.fPositions.fName, textureGP.fPositions.fName, textureGP.fPositions.fName, textureGP.fPositions.fName); aaDistName = aaDistVarying.fsIn(); } else { GrGLSLVarying aaEdgeVarying[4]{ {kFloat3_GrSLType, GrGLSLVarying::Scope::kVertToFrag}, {kFloat3_GrSLType, GrGLSLVarying::Scope::kVertToFrag}, {kFloat3_GrSLType, GrGLSLVarying::Scope::kVertToFrag}, {kFloat3_GrSLType, GrGLSLVarying::Scope::kVertToFrag} }; for (int i = 0; i < 4; ++i) { SkString name; name.printf("aaEdge%d", i); args.fVaryingHandler->addVarying(name.c_str(), &aaEdgeVarying[i], Interpolation::kCanBeFlat); args.fVertBuilder->codeAppendf( "%s = aaEdge%d;", aaEdgeVarying[i].vsOut(), i); } args.fFragBuilder->codeAppendf( R"(float4 aaDists = float4(dot(%s.xy, sk_FragCoord.xy) + %s.z, dot(%s.xy, sk_FragCoord.xy) + %s.z, dot(%s.xy, sk_FragCoord.xy) + %s.z, dot(%s.xy, sk_FragCoord.xy) + %s.z);)", aaEdgeVarying[0].fsIn(), aaEdgeVarying[0].fsIn(), aaEdgeVarying[1].fsIn(), aaEdgeVarying[1].fsIn(), aaEdgeVarying[2].fsIn(), aaEdgeVarying[2].fsIn(), aaEdgeVarying[3].fsIn(), aaEdgeVarying[3].fsIn()); aaDistName = "aaDists"; } args.fFragBuilder->codeAppendf( "float mindist = min(min(%s.x, %s.y), min(%s.z, %s.w));", aaDistName, aaDistName, aaDistName, aaDistName); args.fFragBuilder->codeAppendf("%s = float4(clamp(mindist, 0, 1));", args.fOutputCoverage); } else { args.fFragBuilder->codeAppendf("%s = float4(1);", args.fOutputCoverage); } } GrGLSLColorSpaceXformHelper fColorSpaceXformHelper; }; return new GLSLProcessor; } bool usesCoverageEdgeAA() const { return SkToBool(fAAEdges[0].isInitialized()); } private: // This exists to reduce the number of shaders generated. It does some rounding of sampler // counts. static int NumSamplersToUse(int numRealProxies, const GrShaderCaps& caps) { SkASSERT(numRealProxies > 0 && numRealProxies <= kMaxTextures && numRealProxies <= caps.maxFragmentSamplers()); if (1 == numRealProxies) { return 1; } if (numRealProxies <= 4) { return 4; } // Round to the next power of 2 and then clamp to kMaxTextures and the max allowed by caps. return SkTMin(SkNextPow2(numRealProxies), SkTMin(kMaxTextures, caps.maxFragmentSamplers())); } TextureGeometryProcessor(sk_sp<GrTextureProxy> proxies[], int proxyCnt, int samplerCnt, sk_sp<GrColorSpaceXform> csxf, bool coverageAA, const GrSamplerState::Filter filters[], const GrShaderCaps& caps) : INHERITED(kTextureGeometryProcessor_ClassID), fColorSpaceXform(std::move(csxf)) { SkASSERT(proxyCnt > 0 && samplerCnt >= proxyCnt); fPositions = this->addVertexAttrib("position", kFloat2_GrVertexAttribType); fSamplers[0].reset(std::move(proxies[0]), filters[0]); this->addTextureSampler(&fSamplers[0]); for (int i = 1; i < proxyCnt; ++i) { // This class has one sampler built in, the rest come from memory this processor was // placement-newed into and so haven't been constructed. new (&fSamplers[i]) TextureSampler(std::move(proxies[i]), filters[i]); this->addTextureSampler(&fSamplers[i]); } if (samplerCnt > 1) { // Here we initialize any extra samplers by repeating the last one samplerCnt - proxyCnt // times. GrTextureProxy* dupeProxy = fSamplers[proxyCnt - 1].proxy(); for (int i = proxyCnt; i < samplerCnt; ++i) { new (&fSamplers[i]) TextureSampler(sk_ref_sp(dupeProxy), filters[proxyCnt - 1]); this->addTextureSampler(&fSamplers[i]); } SkASSERT(caps.integerSupport()); fTextureIdx = this->addVertexAttrib("textureIdx", kInt_GrVertexAttribType); } fTextureCoords = this->addVertexAttrib("textureCoords", kFloat2_GrVertexAttribType); if (coverageAA) { fAAEdges[0] = this->addVertexAttrib("aaEdge0", kFloat3_GrVertexAttribType); fAAEdges[1] = this->addVertexAttrib("aaEdge1", kFloat3_GrVertexAttribType); fAAEdges[2] = this->addVertexAttrib("aaEdge2", kFloat3_GrVertexAttribType); fAAEdges[3] = this->addVertexAttrib("aaEdge3", kFloat3_GrVertexAttribType); } fColors = this->addVertexAttrib("color", kUByte4_norm_GrVertexAttribType); } Attribute fPositions; Attribute fTextureIdx; Attribute fTextureCoords; Attribute fColors; Attribute fAAEdges[4]; sk_sp<GrColorSpaceXform> fColorSpaceXform; TextureSampler fSamplers[1]; typedef GrGeometryProcessor INHERITED; }; namespace { // This is a class soley so it can be partially specialized (functions cannot be). template<GrAA, typename Vertex> class VertexAAHandler; template<typename Vertex> class VertexAAHandler<GrAA::kNo, Vertex> { public: static void AssignPositionsAndTexCoords(Vertex* vertices, const GrQuad& quad, const SkRect& texRect) { vertices[0].fPosition = quad.point(0); vertices[0].fTextureCoords = {texRect.fLeft, texRect.fTop}; vertices[1].fPosition = quad.point(1); vertices[1].fTextureCoords = {texRect.fLeft, texRect.fBottom}; vertices[2].fPosition = quad.point(2); vertices[2].fTextureCoords = {texRect.fRight, texRect.fTop}; vertices[3].fPosition = quad.point(3); vertices[3].fTextureCoords = {texRect.fRight, texRect.fBottom}; } }; template<typename Vertex> class VertexAAHandler<GrAA::kYes, Vertex> { public: static void AssignPositionsAndTexCoords(Vertex* vertices, const GrQuad& quad, const SkRect& texRect) { // We compute the four edge equations for quad, then outset them and compute a new quad // as the intersection points of the outset edges. // GrQuad is in tristip order but we want the points to be in a fan order, so swap 2 and 3. Sk4f xs(quad.point(0).fX, quad.point(1).fX, quad.point(3).fX, quad.point(2).fX); Sk4f ys(quad.point(0).fY, quad.point(1).fY, quad.point(3).fY, quad.point(2).fY); Sk4f xsrot = SkNx_shuffle<1, 2, 3, 0>(xs); Sk4f ysrot = SkNx_shuffle<1, 2, 3, 0>(ys); Sk4f normXs = ysrot - ys; Sk4f normYs = xs - xsrot; Sk4f ds = xsrot * ys - ysrot * xs; Sk4f invNormLengths = (normXs * normXs + normYs * normYs).rsqrt(); float test = normXs[0] * xs[2] + normYs[0] * ys[2] + ds[0]; // Make sure the edge equations have their normals facing into the quad in device space if (test < 0) { invNormLengths = -invNormLengths; } normXs *= invNormLengths; normYs *= invNormLengths; ds *= invNormLengths; // Here is the bloat. This makes our edge equations compute coverage without requiring a // half pixel offset and is also used to compute the bloated quad that will cover all // pixels. ds += Sk4f(0.5f); for (int i = 0; i < 4; ++i) { for (int j = 0; j < 4; ++j) { vertices[j].fEdges[i].fX = normXs[i]; vertices[j].fEdges[i].fY = normYs[i]; vertices[j].fEdges[i].fZ = ds[i]; } } // Reverse the process to compute the points of the bloated quad from the edge equations. // This time the inputs don't have 1s as their third coord and we want to homogenize rather // than normalize the output since we need a GrQuad with 2D points. xsrot = SkNx_shuffle<3, 0, 1, 2>(normXs); ysrot = SkNx_shuffle<3, 0, 1, 2>(normYs); Sk4f dsrot = SkNx_shuffle<3, 0, 1, 2>(ds); xs = ysrot * ds - normYs * dsrot; ys = normXs * dsrot - xsrot * ds; ds = xsrot * normYs - ysrot * normXs; ds = ds.invert(); xs *= ds; ys *= ds; // Go back to tri strip order when writing out the bloated quad to vertex positions. vertices[0].fPosition = {xs[0], ys[0]}; vertices[1].fPosition = {xs[1], ys[1]}; vertices[3].fPosition = {xs[2], ys[2]}; vertices[2].fPosition = {xs[3], ys[3]}; AssignTexCoords(vertices, quad, texRect); } private: static void AssignTexCoords(Vertex* vertices, const GrQuad& quad, const SkRect& tex) { SkMatrix q = SkMatrix::MakeAll(quad.point(0).fX, quad.point(1).fX, quad.point(2).fX, quad.point(0).fY, quad.point(1).fY, quad.point(2).fY, 1.f, 1.f, 1.f); SkMatrix qinv; if (!q.invert(&qinv)) { return; } SkMatrix t = SkMatrix::MakeAll(tex.fLeft, tex.fLeft, tex.fRight, tex.fTop, tex.fBottom, tex.fTop, 1.f, 1.f, 1.f); SkMatrix map; map.setConcat(t, qinv); SkMatrixPriv::MapPointsWithStride(map, &vertices[0].fTextureCoords, sizeof(Vertex), &vertices[0].fPosition, sizeof(Vertex), 4); } }; template <typename Vertex, bool IsMultiTex> struct TexIdAssigner; template <typename Vertex> struct TexIdAssigner<Vertex, true> { static void Assign(Vertex* vertices, int textureIdx) { vertices[0].fTextureIdx = textureIdx; vertices[1].fTextureIdx = textureIdx; vertices[2].fTextureIdx = textureIdx; vertices[3].fTextureIdx = textureIdx; } }; template <typename Vertex> struct TexIdAssigner<Vertex, false> { static void Assign(Vertex* vertices, int textureIdx) {} }; } // anonymous namespace template <typename Vertex, bool IsMultiTex, GrAA AA> static void tessellate_quad(const GrQuad& devQuad, const SkRect& srcRect, GrColor color, GrSurfaceOrigin origin, Vertex* vertices, SkScalar iw, SkScalar ih, int textureIdx) { SkRect texRect = { iw * srcRect.fLeft, ih * srcRect.fTop, iw * srcRect.fRight, ih * srcRect.fBottom }; if (origin == kBottomLeft_GrSurfaceOrigin) { texRect.fTop = 1.f - texRect.fTop; texRect.fBottom = 1.f - texRect.fBottom; } VertexAAHandler<AA, Vertex>::AssignPositionsAndTexCoords(vertices, devQuad, texRect); vertices[0].fColor = color; vertices[1].fColor = color; vertices[2].fColor = color; vertices[3].fColor = color; TexIdAssigner<Vertex, IsMultiTex>::Assign(vertices, textureIdx); } /** * Op that implements GrTextureOp::Make. It draws textured quads. Each quad can modulate against a * the texture by color. The blend with the destination is always src-over. The edges are non-AA. */ class TextureOp final : public GrMeshDrawOp { public: static std::unique_ptr<GrDrawOp> Make(sk_sp<GrTextureProxy> proxy, GrSamplerState::Filter filter, GrColor color, const SkRect& srcRect, const SkRect& dstRect, GrAAType aaType, const SkMatrix& viewMatrix, sk_sp<GrColorSpaceXform> csxf, bool allowSRBInputs) { return std::unique_ptr<GrDrawOp>(new TextureOp(std::move(proxy), filter, color, srcRect, dstRect, aaType, viewMatrix, std::move(csxf), allowSRBInputs)); } ~TextureOp() override { if (fFinalized) { auto proxies = this->proxies(); for (int i = 0; i < fProxyCnt; ++i) { proxies[i]->completedRead(); } if (fProxyCnt > 1) { delete[] reinterpret_cast<const char*>(proxies); } } else { SkASSERT(1 == fProxyCnt); fProxy0->unref(); } } const char* name() const override { return "TextureOp"; } void visitProxies(const VisitProxyFunc& func) const override { auto proxies = this->proxies(); for (int i = 0; i < fProxyCnt; ++i) { func(proxies[i]); } } SkString dumpInfo() const override { SkString str; str.appendf("AllowSRGBInputs: %d\n", fAllowSRGBInputs); str.appendf("# draws: %d\n", fDraws.count()); auto proxies = this->proxies(); for (int i = 0; i < fProxyCnt; ++i) { str.appendf("Proxy ID %d: %d, Filter: %d\n", i, proxies[i]->uniqueID().asUInt(), static_cast<int>(this->filters()[i])); } for (int i = 0; i < fDraws.count(); ++i) { const Draw& draw = fDraws[i]; str.appendf( "%d: Color: 0x%08x, ProxyIdx: %d, TexRect [L: %.2f, T: %.2f, R: %.2f, B: %.2f] " "Quad [(%.2f, %.2f), (%.2f, %.2f), (%.2f, %.2f), (%.2f, %.2f)]\n", i, draw.fColor, draw.fTextureIdx, draw.fSrcRect.fLeft, draw.fSrcRect.fTop, draw.fSrcRect.fRight, draw.fSrcRect.fBottom, draw.fQuad.points()[0].fX, draw.fQuad.points()[0].fY, draw.fQuad.points()[1].fX, draw.fQuad.points()[1].fY, draw.fQuad.points()[2].fX, draw.fQuad.points()[2].fY, draw.fQuad.points()[3].fX, draw.fQuad.points()[3].fY); } str += INHERITED::dumpInfo(); return str; } RequiresDstTexture finalize(const GrCaps& caps, const GrAppliedClip* clip, GrPixelConfigIsClamped dstIsClamped) override { SkASSERT(!fFinalized); SkASSERT(1 == fProxyCnt); fFinalized = true; fProxy0->addPendingRead(); fProxy0->unref(); return RequiresDstTexture::kNo; } FixedFunctionFlags fixedFunctionFlags() const override { return this->aaType() == GrAAType::kMSAA ? FixedFunctionFlags::kUsesHWAA : FixedFunctionFlags::kNone; } DEFINE_OP_CLASS_ID private: // This is used in a heursitic for choosing a code path. We don't care what happens with // really large rects, infs, nans, etc. #if defined(__clang__) && (__clang_major__ * 1000 + __clang_minor__) >= 3007 __attribute__((no_sanitize("float-cast-overflow"))) #endif size_t RectSizeAsSizeT(const SkRect& rect) {; return static_cast<size_t>(SkTMax(rect.width(), 1.f) * SkTMax(rect.height(), 1.f)); } static constexpr int kMaxTextures = TextureGeometryProcessor::kMaxTextures; TextureOp(sk_sp<GrTextureProxy> proxy, GrSamplerState::Filter filter, GrColor color, const SkRect& srcRect, const SkRect& dstRect, GrAAType aaType, const SkMatrix& viewMatrix, sk_sp<GrColorSpaceXform> csxf, bool allowSRGBInputs) : INHERITED(ClassID()) , fColorSpaceXform(std::move(csxf)) , fProxy0(proxy.release()) , fFilter0(filter) , fProxyCnt(1) , fAAType(static_cast<unsigned>(aaType)) , fFinalized(0) , fAllowSRGBInputs(allowSRGBInputs ? 1 : 0) { SkASSERT(aaType != GrAAType::kMixedSamples); Draw& draw = fDraws.push_back(); draw.fSrcRect = srcRect; draw.fTextureIdx = 0; draw.fColor = color; draw.fQuad.setFromMappedRect(dstRect, viewMatrix); SkRect bounds; bounds.setBounds(draw.fQuad.points(), 4); this->setBounds(bounds, HasAABloat::kNo, IsZeroArea::kNo); fMaxApproxDstPixelArea = RectSizeAsSizeT(bounds); } void onPrepareDraws(Target* target) override { sk_sp<GrTextureProxy> proxiesSPs[kMaxTextures]; auto proxies = this->proxies(); auto filters = this->filters(); for (int i = 0; i < fProxyCnt; ++i) { if (!proxies[i]->instantiate(target->resourceProvider())) { return; } proxiesSPs[i] = sk_ref_sp(proxies[i]); } bool coverageAA = GrAAType::kCoverage == this->aaType(); sk_sp<GrGeometryProcessor> gp = TextureGeometryProcessor::Make(proxiesSPs, fProxyCnt, std::move(fColorSpaceXform), coverageAA, filters, *target->caps().shaderCaps()); GrPipeline::InitArgs args; args.fProxy = target->proxy(); args.fCaps = &target->caps(); args.fResourceProvider = target->resourceProvider(); args.fFlags = 0; if (fAllowSRGBInputs) { args.fFlags |= GrPipeline::kAllowSRGBInputs_Flag; } if (GrAAType::kMSAA == this->aaType()) { args.fFlags |= GrPipeline::kHWAntialias_Flag; } const GrPipeline* pipeline = target->allocPipeline(args, GrProcessorSet::MakeEmptySet(), target->detachAppliedClip()); int vstart; const GrBuffer* vbuffer; void* vdata = target->makeVertexSpace(gp->getVertexStride(), 4 * fDraws.count(), &vbuffer, &vstart); if (!vdata) { SkDebugf("Could not allocate vertices\n"); return; } if (1 == fProxyCnt) { GrSurfaceOrigin origin = proxies[0]->origin(); GrTexture* texture = proxies[0]->priv().peekTexture(); float iw = 1.f / texture->width(); float ih = 1.f / texture->height(); if (coverageAA) { SkASSERT(gp->getVertexStride() == sizeof(TextureGeometryProcessor::AAVertex)); auto vertices = static_cast<TextureGeometryProcessor::AAVertex*>(vdata); for (int i = 0; i < fDraws.count(); ++i) { tessellate_quad<TextureGeometryProcessor::AAVertex, false, GrAA::kYes>( fDraws[i].fQuad, fDraws[i].fSrcRect, fDraws[i].fColor, origin, vertices + 4 * i, iw, ih, 0); } } else { SkASSERT(gp->getVertexStride() == sizeof(TextureGeometryProcessor::Vertex)); auto vertices = static_cast<TextureGeometryProcessor::Vertex*>(vdata); for (int i = 0; i < fDraws.count(); ++i) { tessellate_quad<TextureGeometryProcessor::Vertex, false, GrAA::kNo>( fDraws[i].fQuad, fDraws[i].fSrcRect, fDraws[i].fColor, origin, vertices + 4 * i, iw, ih, 0); } } } else { GrTexture* textures[kMaxTextures]; float iw[kMaxTextures]; float ih[kMaxTextures]; for (int t = 0; t < fProxyCnt; ++t) { textures[t] = proxies[t]->priv().peekTexture(); iw[t] = 1.f / textures[t]->width(); ih[t] = 1.f / textures[t]->height(); } if (coverageAA) { SkASSERT(gp->getVertexStride() == sizeof(TextureGeometryProcessor::AAMultiTextureVertex)); auto vertices = static_cast<TextureGeometryProcessor::AAMultiTextureVertex*>(vdata); for (int i = 0; i < fDraws.count(); ++i) { auto tidx = fDraws[i].fTextureIdx; GrSurfaceOrigin origin = proxies[tidx]->origin(); tessellate_quad<TextureGeometryProcessor::AAMultiTextureVertex, true, GrAA::kYes>(fDraws[i].fQuad, fDraws[i].fSrcRect, fDraws[i].fColor, origin, vertices + 4 * i, iw[tidx], ih[tidx], tidx); } } else { SkASSERT(gp->getVertexStride() == sizeof(TextureGeometryProcessor::MultiTextureVertex)); auto vertices = static_cast<TextureGeometryProcessor::MultiTextureVertex*>(vdata); for (int i = 0; i < fDraws.count(); ++i) { auto tidx = fDraws[i].fTextureIdx; GrSurfaceOrigin origin = proxies[tidx]->origin(); tessellate_quad<TextureGeometryProcessor::MultiTextureVertex, true, GrAA::kNo>( fDraws[i].fQuad, fDraws[i].fSrcRect, fDraws[i].fColor, origin, vertices + 4 * i, iw[tidx], ih[tidx], tidx); } } } GrPrimitiveType primitiveType = fDraws.count() > 1 ? GrPrimitiveType::kTriangles : GrPrimitiveType::kTriangleStrip; GrMesh mesh(primitiveType); if (fDraws.count() > 1) { sk_sp<const GrBuffer> ibuffer = target->resourceProvider()->refQuadIndexBuffer(); if (!ibuffer) { SkDebugf("Could not allocate quad indices\n"); return; } mesh.setIndexedPatterned(ibuffer.get(), 6, 4, fDraws.count(), GrResourceProvider::QuadCountOfQuadBuffer()); } else { mesh.setNonIndexedNonInstanced(4); } mesh.setVertexData(vbuffer, vstart); target->draw(gp.get(), pipeline, mesh); } bool onCombineIfPossible(GrOp* t, const GrCaps& caps) override { const auto* that = t->cast<TextureOp>(); const auto& shaderCaps = *caps.shaderCaps(); if (!GrColorSpaceXform::Equals(fColorSpaceXform.get(), that->fColorSpaceXform.get())) { return false; } if (this->aaType() != that->aaType()) { return false; } // Because of an issue where GrColorSpaceXform adds the same function every time it is used // in a texture lookup, we only allow multiple textures when there is no transform. if (TextureGeometryProcessor::SupportsMultitexture(shaderCaps) && !fColorSpaceXform && fMaxApproxDstPixelArea <= shaderCaps.disableImageMultitexturingDstRectAreaThreshold() && that->fMaxApproxDstPixelArea <= shaderCaps.disableImageMultitexturingDstRectAreaThreshold()) { int map[kMaxTextures]; int numNewProxies = this->mergeProxies(that, map, shaderCaps); if (numNewProxies < 0) { return false; } if (1 == fProxyCnt && numNewProxies) { void* mem = new char[(sizeof(GrSamplerState::Filter) + sizeof(GrTextureProxy*)) * kMaxTextures]; auto proxies = reinterpret_cast<GrTextureProxy**>(mem); auto filters = reinterpret_cast<GrSamplerState::Filter*>(proxies + kMaxTextures); proxies[0] = fProxy0; filters[0] = fFilter0; fProxyArray = proxies; } fProxyCnt += numNewProxies; auto thisProxies = fProxyArray; auto thatProxies = that->proxies(); auto thatFilters = that->filters(); auto thisFilters = reinterpret_cast<GrSamplerState::Filter*>(thisProxies + kMaxTextures); for (int i = 0; i < that->fProxyCnt; ++i) { if (map[i] < 0) { thatProxies[i]->addPendingRead(); thisProxies[-map[i]] = thatProxies[i]; thisFilters[-map[i]] = thatFilters[i]; map[i] = -map[i]; } } int firstNewDraw = fDraws.count(); fDraws.push_back_n(that->fDraws.count(), that->fDraws.begin()); for (int i = firstNewDraw; i < fDraws.count(); ++i) { fDraws[i].fTextureIdx = map[fDraws[i].fTextureIdx]; } } else { // We can get here when one of the ops is already multitextured but the other cannot // be because of the dst rect size. if (fProxyCnt > 1 || that->fProxyCnt > 1) { return false; } if (fProxy0->uniqueID() != that->fProxy0->uniqueID() || fFilter0 != that->fFilter0) { return false; } fDraws.push_back_n(that->fDraws.count(), that->fDraws.begin()); } this->joinBounds(*that); fMaxApproxDstPixelArea = SkTMax(that->fMaxApproxDstPixelArea, fMaxApproxDstPixelArea); return true; } /** * Determines a mapping of indices from that's proxy array to this's proxy array. A negative map * value means that's proxy should be added to this's proxy array at the absolute value of * the map entry. If it is determined that the ops shouldn't combine their proxies then a * negative value is returned. Otherwise, return value indicates the number of proxies that have * to be added to this op or, equivalently, the number of negative entries in map. */ int mergeProxies(const TextureOp* that, int map[kMaxTextures], const GrShaderCaps& caps) const { std::fill_n(map, kMaxTextures, -kMaxTextures); int sharedProxyCnt = 0; auto thisProxies = this->proxies(); auto thisFilters = this->filters(); auto thatProxies = that->proxies(); auto thatFilters = that->filters(); for (int i = 0; i < fProxyCnt; ++i) { for (int j = 0; j < that->fProxyCnt; ++j) { if (thisProxies[i]->uniqueID() == thatProxies[j]->uniqueID()) { if (thisFilters[i] != thatFilters[j]) { // In GL we don't currently support using the same texture with different // samplers. If we added support for sampler objects and a cap bit to know // it's ok to use different filter modes then we could support this. // Otherwise, we could also only allow a single filter mode for each op // instance. return -1; } map[j] = i; ++sharedProxyCnt; break; } } } int actualMaxTextures = SkTMin(caps.maxFragmentSamplers(), kMaxTextures); int newProxyCnt = that->fProxyCnt - sharedProxyCnt; if (newProxyCnt + fProxyCnt > actualMaxTextures) { return -1; } GrPixelConfig config = thisProxies[0]->config(); int nextSlot = fProxyCnt; for (int j = 0; j < that->fProxyCnt; ++j) { // We want to avoid making many shaders because of different permutations of shader // based swizzle and sampler types. The approach taken here is to require the configs to // be the same and to only allow already instantiated proxies that have the most // common sampler type. Otherwise we don't merge. if (thatProxies[j]->config() != config) { return -1; } if (GrTexture* tex = thatProxies[j]->priv().peekTexture()) { if (tex->texturePriv().samplerType() != kTexture2DSampler_GrSLType) { return -1; } } if (map[j] < 0) { map[j] = -(nextSlot++); } } return newProxyCnt; } GrAAType aaType() const { return static_cast<GrAAType>(fAAType); } GrTextureProxy* const* proxies() const { return fProxyCnt > 1 ? fProxyArray : &fProxy0; } const GrSamplerState::Filter* filters() const { if (fProxyCnt > 1) { return reinterpret_cast<const GrSamplerState::Filter*>(fProxyArray + kMaxTextures); } return &fFilter0; } struct Draw { SkRect fSrcRect; int fTextureIdx; GrQuad fQuad; GrColor fColor; }; SkSTArray<1, Draw, true> fDraws; sk_sp<GrColorSpaceXform> fColorSpaceXform; // Initially we store a single proxy ptr and a single filter. If we grow to have more than // one proxy we instead store pointers to dynamically allocated arrays of size kMaxTextures // followed by kMaxTextures filters. union { GrTextureProxy* fProxy0; GrTextureProxy** fProxyArray; }; size_t fMaxApproxDstPixelArea; GrSamplerState::Filter fFilter0; uint8_t fProxyCnt; unsigned fAAType : 2; // Used to track whether fProxy is ref'ed or has a pending IO after finalize() is called. unsigned fFinalized : 1; unsigned fAllowSRGBInputs : 1; typedef GrMeshDrawOp INHERITED; }; constexpr int TextureGeometryProcessor::kMaxTextures; constexpr int TextureOp::kMaxTextures; } // anonymous namespace namespace GrTextureOp { std::unique_ptr<GrDrawOp> Make(sk_sp<GrTextureProxy> proxy, GrSamplerState::Filter filter, GrColor color, const SkRect& srcRect, const SkRect& dstRect, GrAAType aaType, const SkMatrix& viewMatrix, sk_sp<GrColorSpaceXform> csxf, bool allowSRGBInputs) { SkASSERT(!viewMatrix.hasPerspective()); return TextureOp::Make(std::move(proxy), filter, color, srcRect, dstRect, aaType, viewMatrix, std::move(csxf), allowSRGBInputs); } } // namespace GrTextureOp #if GR_TEST_UTILS #include "GrContext.h" #include "GrContextPriv.h" #include "GrProxyProvider.h" GR_DRAW_OP_TEST_DEFINE(TextureOp) { GrSurfaceDesc desc; desc.fConfig = kRGBA_8888_GrPixelConfig; desc.fHeight = random->nextULessThan(90) + 10; desc.fWidth = random->nextULessThan(90) + 10; desc.fOrigin = random->nextBool() ? kTopLeft_GrSurfaceOrigin : kBottomLeft_GrSurfaceOrigin; SkBackingFit fit = random->nextBool() ? SkBackingFit::kApprox : SkBackingFit::kExact; GrProxyProvider* proxyProvider = context->contextPriv().proxyProvider(); sk_sp<GrTextureProxy> proxy = proxyProvider->createProxy(desc, fit, SkBudgeted::kNo); SkRect rect = GrTest::TestRect(random); SkRect srcRect; srcRect.fLeft = random->nextRangeScalar(0.f, proxy->width() / 2.f); srcRect.fRight = random->nextRangeScalar(0.f, proxy->width()) + proxy->width() / 2.f; srcRect.fTop = random->nextRangeScalar(0.f, proxy->height() / 2.f); srcRect.fBottom = random->nextRangeScalar(0.f, proxy->height()) + proxy->height() / 2.f; SkMatrix viewMatrix = GrTest::TestMatrixPreservesRightAngles(random); GrColor color = SkColorToPremulGrColor(random->nextU()); GrSamplerState::Filter filter = (GrSamplerState::Filter)random->nextULessThan( static_cast<uint32_t>(GrSamplerState::Filter::kMipMap) + 1); auto csxf = GrTest::TestColorXform(random); bool allowSRGBInputs = random->nextBool(); GrAAType aaType = GrAAType::kNone; if (random->nextBool()) { aaType = (fsaaType == GrFSAAType::kUnifiedMSAA) ? GrAAType::kMSAA : GrAAType::kCoverage; } return GrTextureOp::Make(std::move(proxy), filter, color, srcRect, rect, aaType, viewMatrix, std::move(csxf), allowSRGBInputs); } #endif