/* * Copyright 2011 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "Benchmark.h" #include "SkBitmap.h" #include "SkCanvas.h" #include "SkColorPriv.h" #include "SkPaint.h" #include "SkPath.h" #include "SkRandom.h" #include "SkShader.h" #include "SkString.h" #include "SkTArray.h" enum Flags { kStroke_Flag = 1 << 0, kBig_Flag = 1 << 1 }; #define FLAGS00 Flags(0) #define FLAGS01 Flags(kStroke_Flag) #define FLAGS10 Flags(kBig_Flag) #define FLAGS11 Flags(kStroke_Flag | kBig_Flag) class PathBench : public Benchmark { SkPaint fPaint; SkString fName; Flags fFlags; public: PathBench(Flags flags) : fFlags(flags) { fPaint.setStyle(flags & kStroke_Flag ? SkPaint::kStroke_Style : SkPaint::kFill_Style); fPaint.setStrokeWidth(SkIntToScalar(5)); fPaint.setStrokeJoin(SkPaint::kBevel_Join); } virtual void appendName(SkString*) = 0; virtual void makePath(SkPath*) = 0; virtual int complexity() { return 0; } protected: const char* onGetName() override { fName.printf("path_%s_%s_", fFlags & kStroke_Flag ? "stroke" : "fill", fFlags & kBig_Flag ? "big" : "small"); this->appendName(&fName); return fName.c_str(); } void onDraw(int loops, SkCanvas* canvas) override { SkPaint paint(fPaint); this->setupPaint(&paint); SkPath path; this->makePath(&path); if (fFlags & kBig_Flag) { const SkMatrix m = SkMatrix::MakeScale(SkIntToScalar(10), SkIntToScalar(10)); path.transform(m); } for (int i = 0; i < loops; i++) { canvas->drawPath(path, paint); } } private: typedef Benchmark INHERITED; }; class TrianglePathBench : public PathBench { public: TrianglePathBench(Flags flags) : INHERITED(flags) {} void appendName(SkString* name) override { name->append("triangle"); } void makePath(SkPath* path) override { static const int gCoord[] = { 10, 10, 15, 5, 20, 20 }; path->moveTo(SkIntToScalar(gCoord[0]), SkIntToScalar(gCoord[1])); path->lineTo(SkIntToScalar(gCoord[2]), SkIntToScalar(gCoord[3])); path->lineTo(SkIntToScalar(gCoord[4]), SkIntToScalar(gCoord[5])); path->close(); } private: typedef PathBench INHERITED; }; class RectPathBench : public PathBench { public: RectPathBench(Flags flags) : INHERITED(flags) {} void appendName(SkString* name) override { name->append("rect"); } void makePath(SkPath* path) override { SkRect r = { 10, 10, 20, 20 }; path->addRect(r); } private: typedef PathBench INHERITED; }; class RotatedRectBench : public PathBench { public: RotatedRectBench(Flags flags, bool aa, int degrees) : INHERITED(flags) { fAA = aa; fDegrees = degrees; } void appendName(SkString* name) override { SkString suffix; suffix.printf("rotated_rect_%s_%d", fAA ? "aa" : "noaa", fDegrees); name->append(suffix); } void makePath(SkPath* path) override { SkRect r = { 10, 10, 20, 20 }; path->addRect(r); SkMatrix rotateMatrix; rotateMatrix.setRotate((SkScalar)fDegrees); path->transform(rotateMatrix); } virtual void setupPaint(SkPaint* paint) override { PathBench::setupPaint(paint); paint->setAntiAlias(fAA); } private: typedef PathBench INHERITED; int fDegrees; bool fAA; }; class OvalPathBench : public PathBench { public: OvalPathBench(Flags flags) : INHERITED(flags) {} void appendName(SkString* name) override { name->append("oval"); } void makePath(SkPath* path) override { SkRect r = { 10, 10, 23, 20 }; path->addOval(r); } private: typedef PathBench INHERITED; }; class CirclePathBench: public PathBench { public: CirclePathBench(Flags flags) : INHERITED(flags) {} void appendName(SkString* name) override { name->append("circle"); } void makePath(SkPath* path) override { path->addCircle(SkIntToScalar(20), SkIntToScalar(20), SkIntToScalar(10)); } private: typedef PathBench INHERITED; }; class NonAACirclePathBench: public CirclePathBench { public: NonAACirclePathBench(Flags flags) : INHERITED(flags) {} void appendName(SkString* name) override { name->append("nonaacircle"); } void setupPaint(SkPaint* paint) override { CirclePathBench::setupPaint(paint); paint->setAntiAlias(false); } private: typedef CirclePathBench INHERITED; }; // Test max speedup of Analytic AA for concave paths class AAAConcavePathBench : public PathBench { public: AAAConcavePathBench(Flags flags) : INHERITED(flags) {} void appendName(SkString* name) override { name->append("concave_aaa"); } void makePath(SkPath* path) override { path->moveTo(10, 10); path->lineTo(15, 10); path->lineTo(15, 5); path->lineTo(40, 40); path->close(); } private: typedef PathBench INHERITED; }; // Test max speedup of Analytic AA for convex paths class AAAConvexPathBench : public PathBench { public: AAAConvexPathBench(Flags flags) : INHERITED(flags) {} void appendName(SkString* name) override { name->append("convex_aaa"); } void makePath(SkPath* path) override { path->moveTo(10, 10); path->lineTo(15, 10); path->lineTo(40, 50); path->close(); } private: typedef PathBench INHERITED; }; class SawToothPathBench : public PathBench { public: SawToothPathBench(Flags flags) : INHERITED(flags) {} void appendName(SkString* name) override { name->append("sawtooth"); } void makePath(SkPath* path) override { SkScalar x = SkIntToScalar(20); SkScalar y = SkIntToScalar(20); const SkScalar x0 = x; const SkScalar dx = SK_Scalar1 * 5; const SkScalar dy = SK_Scalar1 * 10; path->moveTo(x, y); for (int i = 0; i < 32; i++) { x += dx; path->lineTo(x, y - dy); x += dx; path->lineTo(x, y + dy); } path->lineTo(x, y + 2 * dy); path->lineTo(x0, y + 2 * dy); path->close(); } int complexity() override { return 1; } private: typedef PathBench INHERITED; }; class LongCurvedPathBench : public PathBench { public: LongCurvedPathBench(Flags flags) : INHERITED(flags) {} void appendName(SkString* name) override { name->append("long_curved"); } void makePath(SkPath* path) override { SkRandom rand (12); int i; for (i = 0; i < 100; i++) { path->quadTo(rand.nextUScalar1() * 640, rand.nextUScalar1() * 480, rand.nextUScalar1() * 640, rand.nextUScalar1() * 480); } path->close(); } int complexity() override { return 2; } private: typedef PathBench INHERITED; }; class LongLinePathBench : public PathBench { public: LongLinePathBench(Flags flags) : INHERITED(flags) {} void appendName(SkString* name) override { name->append("long_line"); } void makePath(SkPath* path) override { SkRandom rand; path->moveTo(rand.nextUScalar1() * 640, rand.nextUScalar1() * 480); for (size_t i = 1; i < 100; i++) { path->lineTo(rand.nextUScalar1() * 640, rand.nextUScalar1() * 480); } } int complexity() override { return 2; } private: typedef PathBench INHERITED; }; class RandomPathBench : public Benchmark { public: bool isSuitableFor(Backend backend) override { return backend == kNonRendering_Backend; } protected: void createData(int minVerbs, int maxVerbs, bool allowMoves = true, SkRect* bounds = nullptr) { SkRect tempBounds; if (nullptr == bounds) { tempBounds.setXYWH(0, 0, SK_Scalar1, SK_Scalar1); bounds = &tempBounds; } fVerbCnts.reset(kNumVerbCnts); for (int i = 0; i < kNumVerbCnts; ++i) { fVerbCnts[i] = fRandom.nextRangeU(minVerbs, maxVerbs + 1); } fVerbs.reset(kNumVerbs); for (int i = 0; i < kNumVerbs; ++i) { do { fVerbs[i] = static_cast<SkPath::Verb>(fRandom.nextULessThan(SkPath::kDone_Verb)); } while (!allowMoves && SkPath::kMove_Verb == fVerbs[i]); } fPoints.reset(kNumPoints); for (int i = 0; i < kNumPoints; ++i) { fPoints[i].set(fRandom.nextRangeScalar(bounds->fLeft, bounds->fRight), fRandom.nextRangeScalar(bounds->fTop, bounds->fBottom)); } this->restartMakingPaths(); } void restartMakingPaths() { fCurrPath = 0; fCurrVerb = 0; fCurrPoint = 0; } void makePath(SkPath* path) { int vCount = fVerbCnts[(fCurrPath++) & (kNumVerbCnts - 1)]; for (int v = 0; v < vCount; ++v) { int verb = fVerbs[(fCurrVerb++) & (kNumVerbs - 1)]; switch (verb) { case SkPath::kMove_Verb: path->moveTo(fPoints[(fCurrPoint++) & (kNumPoints - 1)]); break; case SkPath::kLine_Verb: path->lineTo(fPoints[(fCurrPoint++) & (kNumPoints - 1)]); break; case SkPath::kQuad_Verb: path->quadTo(fPoints[(fCurrPoint + 0) & (kNumPoints - 1)], fPoints[(fCurrPoint + 1) & (kNumPoints - 1)]); fCurrPoint += 2; break; case SkPath::kConic_Verb: path->conicTo(fPoints[(fCurrPoint + 0) & (kNumPoints - 1)], fPoints[(fCurrPoint + 1) & (kNumPoints - 1)], SK_ScalarHalf); fCurrPoint += 2; break; case SkPath::kCubic_Verb: path->cubicTo(fPoints[(fCurrPoint + 0) & (kNumPoints - 1)], fPoints[(fCurrPoint + 1) & (kNumPoints - 1)], fPoints[(fCurrPoint + 2) & (kNumPoints - 1)]); fCurrPoint += 3; break; case SkPath::kClose_Verb: path->close(); break; default: SkDEBUGFAIL("Unexpected path verb"); break; } } } void finishedMakingPaths() { fVerbCnts.reset(0); fVerbs.reset(0); fPoints.reset(0); } private: enum { // these should all be pow 2 kNumVerbCnts = 1 << 5, kNumVerbs = 1 << 5, kNumPoints = 1 << 5, }; SkAutoTArray<int> fVerbCnts; SkAutoTArray<SkPath::Verb> fVerbs; SkAutoTArray<SkPoint> fPoints; int fCurrPath; int fCurrVerb; int fCurrPoint; SkRandom fRandom; typedef Benchmark INHERITED; }; class PathCreateBench : public RandomPathBench { public: PathCreateBench() { } protected: const char* onGetName() override { return "path_create"; } void onDelayedSetup() override { this->createData(10, 100); } void onDraw(int loops, SkCanvas*) override { for (int i = 0; i < loops; ++i) { if (i % 1000 == 0) { fPath.reset(); // PathRef memory can grow without bound otherwise. } this->makePath(&fPath); } this->restartMakingPaths(); } private: SkPath fPath; typedef RandomPathBench INHERITED; }; class PathCopyBench : public RandomPathBench { public: PathCopyBench() { } protected: const char* onGetName() override { return "path_copy"; } void onDelayedSetup() override { this->createData(10, 100); fPaths.reset(kPathCnt); fCopies.reset(kPathCnt); for (int i = 0; i < kPathCnt; ++i) { this->makePath(&fPaths[i]); } this->finishedMakingPaths(); } void onDraw(int loops, SkCanvas*) override { for (int i = 0; i < loops; ++i) { int idx = i & (kPathCnt - 1); fCopies[idx] = fPaths[idx]; } } private: enum { // must be a pow 2 kPathCnt = 1 << 5, }; SkAutoTArray<SkPath> fPaths; SkAutoTArray<SkPath> fCopies; typedef RandomPathBench INHERITED; }; class PathTransformBench : public RandomPathBench { public: PathTransformBench(bool inPlace) : fInPlace(inPlace) {} protected: const char* onGetName() override { return fInPlace ? "path_transform_in_place" : "path_transform_copy"; } void onDelayedSetup() override { fMatrix.setScale(5 * SK_Scalar1, 6 * SK_Scalar1); this->createData(10, 100); fPaths.reset(kPathCnt); for (int i = 0; i < kPathCnt; ++i) { this->makePath(&fPaths[i]); } this->finishedMakingPaths(); if (!fInPlace) { fTransformed.reset(kPathCnt); } } void onDraw(int loops, SkCanvas*) override { if (fInPlace) { for (int i = 0; i < loops; ++i) { fPaths[i & (kPathCnt - 1)].transform(fMatrix); } } else { for (int i = 0; i < loops; ++i) { int idx = i & (kPathCnt - 1); fPaths[idx].transform(fMatrix, &fTransformed[idx]); } } } private: enum { // must be a pow 2 kPathCnt = 1 << 5, }; SkAutoTArray<SkPath> fPaths; SkAutoTArray<SkPath> fTransformed; SkMatrix fMatrix; bool fInPlace; typedef RandomPathBench INHERITED; }; class PathEqualityBench : public RandomPathBench { public: PathEqualityBench() { } protected: const char* onGetName() override { return "path_equality_50%"; } void onDelayedSetup() override { fParity = 0; this->createData(10, 100); fPaths.reset(kPathCnt); fCopies.reset(kPathCnt); for (int i = 0; i < kPathCnt; ++i) { this->makePath(&fPaths[i]); fCopies[i] = fPaths[i]; } this->finishedMakingPaths(); } void onDraw(int loops, SkCanvas*) override { for (int i = 0; i < loops; ++i) { int idx = i & (kPathCnt - 1); fParity ^= (fPaths[idx] == fCopies[idx & ~0x1]); } } private: bool fParity; // attempt to keep compiler from optimizing out the == enum { // must be a pow 2 kPathCnt = 1 << 5, }; SkAutoTArray<SkPath> fPaths; SkAutoTArray<SkPath> fCopies; typedef RandomPathBench INHERITED; }; class SkBench_AddPathTest : public RandomPathBench { public: enum AddType { kAdd_AddType, kAddTrans_AddType, kAddMatrix_AddType, kReverseAdd_AddType, kReversePathTo_AddType, }; SkBench_AddPathTest(AddType type) : fType(type) { fMatrix.setRotate(60 * SK_Scalar1); } protected: const char* onGetName() override { switch (fType) { case kAdd_AddType: return "path_add_path"; case kAddTrans_AddType: return "path_add_path_trans"; case kAddMatrix_AddType: return "path_add_path_matrix"; case kReverseAdd_AddType: return "path_reverse_add_path"; case kReversePathTo_AddType: return "path_reverse_path_to"; default: SkDEBUGFAIL("Bad add type"); return ""; } } void onDelayedSetup() override { // reversePathTo assumes a single contour path. bool allowMoves = kReversePathTo_AddType != fType; this->createData(10, 100, allowMoves); fPaths0.reset(kPathCnt); fPaths1.reset(kPathCnt); for (int i = 0; i < kPathCnt; ++i) { this->makePath(&fPaths0[i]); this->makePath(&fPaths1[i]); } this->finishedMakingPaths(); } void onDraw(int loops, SkCanvas*) override { switch (fType) { case kAdd_AddType: for (int i = 0; i < loops; ++i) { int idx = i & (kPathCnt - 1); SkPath result = fPaths0[idx]; result.addPath(fPaths1[idx]); } break; case kAddTrans_AddType: for (int i = 0; i < loops; ++i) { int idx = i & (kPathCnt - 1); SkPath result = fPaths0[idx]; result.addPath(fPaths1[idx], 2 * SK_Scalar1, 5 * SK_Scalar1); } break; case kAddMatrix_AddType: for (int i = 0; i < loops; ++i) { int idx = i & (kPathCnt - 1); SkPath result = fPaths0[idx]; result.addPath(fPaths1[idx], fMatrix); } break; case kReverseAdd_AddType: for (int i = 0; i < loops; ++i) { int idx = i & (kPathCnt - 1); SkPath result = fPaths0[idx]; result.reverseAddPath(fPaths1[idx]); } break; case kReversePathTo_AddType: for (int i = 0; i < loops; ++i) { int idx = i & (kPathCnt - 1); SkPath result = fPaths0[idx]; result.reversePathTo(fPaths1[idx]); } break; } } private: AddType fType; // or reverseAddPath enum { // must be a pow 2 kPathCnt = 1 << 5, }; SkAutoTArray<SkPath> fPaths0; SkAutoTArray<SkPath> fPaths1; SkMatrix fMatrix; typedef RandomPathBench INHERITED; }; class CirclesBench : public Benchmark { protected: SkString fName; Flags fFlags; public: CirclesBench(Flags flags) : fFlags(flags) { fName.printf("circles_%s", fFlags & kStroke_Flag ? "stroke" : "fill"); } protected: const char* onGetName() override { return fName.c_str(); } void onDraw(int loops, SkCanvas* canvas) override { SkPaint paint; paint.setColor(SK_ColorBLACK); paint.setAntiAlias(true); if (fFlags & kStroke_Flag) { paint.setStyle(SkPaint::kStroke_Style); } SkRandom rand; SkRect r; for (int i = 0; i < loops; ++i) { SkScalar radius = rand.nextUScalar1() * 3; r.fLeft = rand.nextUScalar1() * 300; r.fTop = rand.nextUScalar1() * 300; r.fRight = r.fLeft + 2 * radius; r.fBottom = r.fTop + 2 * radius; if (fFlags & kStroke_Flag) { paint.setStrokeWidth(rand.nextUScalar1() * 5.0f); } SkPath temp; // mimic how Chrome does circles temp.arcTo(r, 0, 0, false); temp.addOval(r, SkPath::kCCW_Direction); temp.arcTo(r, 360, 0, true); temp.close(); canvas->drawPath(temp, paint); } } private: typedef Benchmark INHERITED; }; // Chrome creates its own round rects with each corner possibly being different. // In its "zero radius" incarnation it creates degenerate round rects. // Note: PathTest::test_arb_round_rect_is_convex and // test_arb_zero_rad_round_rect_is_rect perform almost exactly // the same test (but with no drawing) class ArbRoundRectBench : public Benchmark { protected: SkString fName; public: ArbRoundRectBench(bool zeroRad) : fZeroRad(zeroRad) { if (zeroRad) { fName.printf("zeroradroundrect"); } else { fName.printf("arbroundrect"); } } protected: const char* onGetName() override { return fName.c_str(); } static void add_corner_arc(SkPath* path, const SkRect& rect, SkScalar xIn, SkScalar yIn, int startAngle) { SkScalar rx = SkMinScalar(rect.width(), xIn); SkScalar ry = SkMinScalar(rect.height(), yIn); SkRect arcRect; arcRect.set(-rx, -ry, rx, ry); switch (startAngle) { case 0: arcRect.offset(rect.fRight - arcRect.fRight, rect.fBottom - arcRect.fBottom); break; case 90: arcRect.offset(rect.fLeft - arcRect.fLeft, rect.fBottom - arcRect.fBottom); break; case 180: arcRect.offset(rect.fLeft - arcRect.fLeft, rect.fTop - arcRect.fTop); break; case 270: arcRect.offset(rect.fRight - arcRect.fRight, rect.fTop - arcRect.fTop); break; default: break; } path->arcTo(arcRect, SkIntToScalar(startAngle), SkIntToScalar(90), false); } static void make_arb_round_rect(SkPath* path, const SkRect& r, SkScalar xCorner, SkScalar yCorner) { // we are lazy here and use the same x & y for each corner add_corner_arc(path, r, xCorner, yCorner, 270); add_corner_arc(path, r, xCorner, yCorner, 0); add_corner_arc(path, r, xCorner, yCorner, 90); add_corner_arc(path, r, xCorner, yCorner, 180); path->close(); SkASSERT(path->isConvex()); } void onDraw(int loops, SkCanvas* canvas) override { SkRandom rand; SkRect r; for (int i = 0; i < loops; ++i) { SkPaint paint; paint.setColor(0xff000000 | rand.nextU()); paint.setAntiAlias(true); SkScalar size = rand.nextUScalar1() * 30; if (size < SK_Scalar1) { continue; } r.fLeft = rand.nextUScalar1() * 300; r.fTop = rand.nextUScalar1() * 300; r.fRight = r.fLeft + 2 * size; r.fBottom = r.fTop + 2 * size; SkPath temp; if (fZeroRad) { make_arb_round_rect(&temp, r, 0, 0); SkASSERT(temp.isRect(nullptr)); } else { make_arb_round_rect(&temp, r, r.width() / 10, r.height() / 15); } canvas->drawPath(temp, paint); } } private: bool fZeroRad; // should 0 radius rounds rects be tested? typedef Benchmark INHERITED; }; class ConservativelyContainsBench : public Benchmark { public: enum Type { kRect_Type, kRoundRect_Type, kOval_Type, }; ConservativelyContainsBench(Type type) { fParity = false; fName = "conservatively_contains_"; switch (type) { case kRect_Type: fName.append("rect"); fPath.addRect(kBaseRect); break; case kRoundRect_Type: fName.append("round_rect"); fPath.addRoundRect(kBaseRect, kRRRadii[0], kRRRadii[1]); break; case kOval_Type: fName.append("oval"); fPath.addOval(kBaseRect); break; } } bool isSuitableFor(Backend backend) override { return backend == kNonRendering_Backend; } private: const char* onGetName() override { return fName.c_str(); } void onDraw(int loops, SkCanvas*) override { for (int i = 0; i < loops; ++i) { const SkRect& rect = fQueryRects[i % kQueryRectCnt]; fParity = fParity != fPath.conservativelyContainsRect(rect); } } void onDelayedSetup() override { fQueryRects.setCount(kQueryRectCnt); SkRandom rand; for (int i = 0; i < kQueryRectCnt; ++i) { SkSize size; SkPoint xy; size.fWidth = rand.nextRangeScalar(kQueryMin.fWidth, kQueryMax.fWidth); size.fHeight = rand.nextRangeScalar(kQueryMin.fHeight, kQueryMax.fHeight); xy.fX = rand.nextRangeScalar(kBounds.fLeft, kBounds.fRight - size.fWidth); xy.fY = rand.nextRangeScalar(kBounds.fTop, kBounds.fBottom - size.fHeight); fQueryRects[i] = SkRect::MakeXYWH(xy.fX, xy.fY, size.fWidth, size.fHeight); } } enum { kQueryRectCnt = 400, }; static const SkRect kBounds; // bounds for all random query rects static const SkSize kQueryMin; // minimum query rect size, should be <= kQueryMax static const SkSize kQueryMax; // max query rect size, should < kBounds static const SkRect kBaseRect; // rect that is used to construct the path static const SkScalar kRRRadii[2]; // x and y radii for round rect SkString fName; SkPath fPath; bool fParity; SkTDArray<SkRect> fQueryRects; typedef Benchmark INHERITED; }; /////////////////////////////////////////////////////////////////////////////// #include "SkGeometry.h" class ConicBench_Chop : public Benchmark { protected: SkConic fRQ, fDst[2]; SkString fName; public: ConicBench_Chop() : fName("conic-chop") { fRQ.fPts[0].set(0, 0); fRQ.fPts[1].set(100, 0); fRQ.fPts[2].set(100, 100); fRQ.fW = SkScalarCos(SK_ScalarPI/4); } bool isSuitableFor(Backend backend) override { return backend == kNonRendering_Backend; } private: const char* onGetName() override { return fName.c_str(); } void onDraw(int loops, SkCanvas*) override { for (int i = 0; i < loops; ++i) { fRQ.chop(fDst); } } typedef Benchmark INHERITED; }; DEF_BENCH( return new ConicBench_Chop; ) class ConicBench_EvalPos : public ConicBench_Chop { const bool fUseV2; public: ConicBench_EvalPos(bool useV2) : fUseV2(useV2) { fName.printf("conic-eval-pos%d", useV2); } void onDraw(int loops, SkCanvas*) override { if (fUseV2) { for (int i = 0; i < loops; ++i) { for (int j = 0; j < 1000; ++j) { fDst[0].fPts[0] = fRQ.evalAt(0.4f); } } } else { for (int i = 0; i < loops; ++i) { for (int j = 0; j < 1000; ++j) { fRQ.evalAt(0.4f, &fDst[0].fPts[0], nullptr); } } } } }; DEF_BENCH( return new ConicBench_EvalPos(false); ) DEF_BENCH( return new ConicBench_EvalPos(true); ) class ConicBench_EvalTan : public ConicBench_Chop { const bool fUseV2; public: ConicBench_EvalTan(bool useV2) : fUseV2(useV2) { fName.printf("conic-eval-tan%d", useV2); } void onDraw(int loops, SkCanvas*) override { if (fUseV2) { for (int i = 0; i < loops; ++i) { for (int j = 0; j < 1000; ++j) { fDst[0].fPts[0] = fRQ.evalTangentAt(0.4f); } } } else { for (int i = 0; i < loops; ++i) { for (int j = 0; j < 1000; ++j) { fRQ.evalAt(0.4f, nullptr, &fDst[0].fPts[0]); } } } } }; DEF_BENCH( return new ConicBench_EvalTan(false); ) DEF_BENCH( return new ConicBench_EvalTan(true); ) /////////////////////////////////////////////////////////////////////////////// static void rand_conic(SkConic* conic, SkRandom& rand) { for (int i = 0; i < 3; ++i) { conic->fPts[i].set(rand.nextUScalar1() * 100, rand.nextUScalar1() * 100); } if (rand.nextUScalar1() > 0.5f) { conic->fW = rand.nextUScalar1(); } else { conic->fW = 1 + rand.nextUScalar1() * 4; } } class ConicBench : public Benchmark { public: ConicBench() { SkRandom rand; for (int i = 0; i < CONICS; ++i) { rand_conic(&fConics[i], rand); } } bool isSuitableFor(Backend backend) override { return backend == kNonRendering_Backend; } protected: enum { CONICS = 100 }; SkConic fConics[CONICS]; private: typedef Benchmark INHERITED; }; class ConicBench_ComputeError : public ConicBench { public: ConicBench_ComputeError() {} protected: const char* onGetName() override { return "conic-compute-error"; } void onDraw(int loops, SkCanvas*) override { SkVector err; for (int i = 0; i < loops; ++i) { for (int j = 0; j < CONICS; ++j) { fConics[j].computeAsQuadError(&err); } } } private: typedef ConicBench INHERITED; }; class ConicBench_asQuadTol : public ConicBench { public: ConicBench_asQuadTol() {} protected: const char* onGetName() override { return "conic-asQuadTol"; } void onDraw(int loops, SkCanvas*) override { for (int i = 0; i < loops; ++i) { for (int j = 0; j < CONICS; ++j) { fConics[j].asQuadTol(SK_ScalarHalf); } } } private: typedef ConicBench INHERITED; }; class ConicBench_quadPow2 : public ConicBench { public: ConicBench_quadPow2() {} protected: const char* onGetName() override { return "conic-quadPow2"; } void onDraw(int loops, SkCanvas*) override { for (int i = 0; i < loops; ++i) { for (int j = 0; j < CONICS; ++j) { fConics[j].computeQuadPOW2(SK_ScalarHalf); } } } private: typedef ConicBench INHERITED; }; /////////////////////////////////////////////////////////////////////////////// class TightBoundsBench : public Benchmark { SkPath fPath; SkString fName; SkRect (*fProc)(const SkPath&); public: TightBoundsBench(SkRect (*proc)(const SkPath&), const char suffix[]) : fProc(proc) { fName.printf("tight_bounds_%s", suffix); const int N = 100; SkRandom rand; for (int i = 0; i < N; ++i) { fPath.moveTo(rand.nextF()*100, rand.nextF()*100); fPath.lineTo(rand.nextF()*100, rand.nextF()*100); fPath.quadTo(rand.nextF()*100, rand.nextF()*100, rand.nextF()*100, rand.nextF()*100); fPath.conicTo(rand.nextF()*100, rand.nextF()*100, rand.nextF()*100, rand.nextF()*100, rand.nextF()*10); fPath.cubicTo(rand.nextF()*100, rand.nextF()*100, rand.nextF()*100, rand.nextF()*100, rand.nextF()*100, rand.nextF()*100); } } protected: bool isSuitableFor(Backend backend) override { return backend == kNonRendering_Backend; } const char* onGetName() override { return fName.c_str(); } void onDraw(int loops, SkCanvas* canvas) override { for (int i = 0; i < loops*100; ++i) { fProc(fPath); } } private: typedef Benchmark INHERITED; }; const SkRect ConservativelyContainsBench::kBounds = SkRect::MakeWH(SkIntToScalar(100), SkIntToScalar(100)); const SkSize ConservativelyContainsBench::kQueryMin = {SkIntToScalar(1), SkIntToScalar(1)}; const SkSize ConservativelyContainsBench::kQueryMax = {SkIntToScalar(40), SkIntToScalar(40)}; const SkRect ConservativelyContainsBench::kBaseRect = SkRect::MakeXYWH(SkIntToScalar(25), SkIntToScalar(25), SkIntToScalar(50), SkIntToScalar(50)); const SkScalar ConservativelyContainsBench::kRRRadii[2] = {SkIntToScalar(5), SkIntToScalar(10)}; DEF_BENCH( return new TrianglePathBench(FLAGS00); ) DEF_BENCH( return new TrianglePathBench(FLAGS01); ) DEF_BENCH( return new TrianglePathBench(FLAGS10); ) DEF_BENCH( return new TrianglePathBench(FLAGS11); ) DEF_BENCH( return new RectPathBench(FLAGS00); ) DEF_BENCH( return new RectPathBench(FLAGS01); ) DEF_BENCH( return new RectPathBench(FLAGS10); ) DEF_BENCH( return new RectPathBench(FLAGS11); ) DEF_BENCH( return new RotatedRectBench(FLAGS00, false, 45)); DEF_BENCH( return new RotatedRectBench(FLAGS10, false, 45)); DEF_BENCH( return new RotatedRectBench(FLAGS00, true, 45)); DEF_BENCH( return new RotatedRectBench(FLAGS10, true, 45)); DEF_BENCH( return new OvalPathBench(FLAGS00); ) DEF_BENCH( return new OvalPathBench(FLAGS01); ) DEF_BENCH( return new OvalPathBench(FLAGS10); ) DEF_BENCH( return new OvalPathBench(FLAGS11); ) DEF_BENCH( return new CirclePathBench(FLAGS00); ) DEF_BENCH( return new CirclePathBench(FLAGS01); ) DEF_BENCH( return new CirclePathBench(FLAGS10); ) DEF_BENCH( return new CirclePathBench(FLAGS11); ) DEF_BENCH( return new NonAACirclePathBench(FLAGS00); ) DEF_BENCH( return new NonAACirclePathBench(FLAGS10); ) DEF_BENCH( return new AAAConcavePathBench(FLAGS00); ) DEF_BENCH( return new AAAConcavePathBench(FLAGS10); ) DEF_BENCH( return new AAAConvexPathBench(FLAGS00); ) DEF_BENCH( return new AAAConvexPathBench(FLAGS10); ) DEF_BENCH( return new SawToothPathBench(FLAGS00); ) DEF_BENCH( return new SawToothPathBench(FLAGS01); ) DEF_BENCH( return new LongCurvedPathBench(FLAGS00); ) DEF_BENCH( return new LongCurvedPathBench(FLAGS01); ) DEF_BENCH( return new LongLinePathBench(FLAGS00); ) DEF_BENCH( return new LongLinePathBench(FLAGS01); ) DEF_BENCH( return new PathCreateBench(); ) DEF_BENCH( return new PathCopyBench(); ) DEF_BENCH( return new PathTransformBench(true); ) DEF_BENCH( return new PathTransformBench(false); ) DEF_BENCH( return new PathEqualityBench(); ) DEF_BENCH( return new SkBench_AddPathTest(SkBench_AddPathTest::kAdd_AddType); ) DEF_BENCH( return new SkBench_AddPathTest(SkBench_AddPathTest::kAddTrans_AddType); ) DEF_BENCH( return new SkBench_AddPathTest(SkBench_AddPathTest::kAddMatrix_AddType); ) DEF_BENCH( return new SkBench_AddPathTest(SkBench_AddPathTest::kReverseAdd_AddType); ) DEF_BENCH( return new SkBench_AddPathTest(SkBench_AddPathTest::kReversePathTo_AddType); ) DEF_BENCH( return new CirclesBench(FLAGS00); ) DEF_BENCH( return new CirclesBench(FLAGS01); ) DEF_BENCH( return new ArbRoundRectBench(false); ) DEF_BENCH( return new ArbRoundRectBench(true); ) DEF_BENCH( return new ConservativelyContainsBench(ConservativelyContainsBench::kRect_Type); ) DEF_BENCH( return new ConservativelyContainsBench(ConservativelyContainsBench::kRoundRect_Type); ) DEF_BENCH( return new ConservativelyContainsBench(ConservativelyContainsBench::kOval_Type); ) #include "SkPathOps.h" #include "SkPathPriv.h" DEF_BENCH( return new TightBoundsBench([](const SkPath& path){ return path.computeTightBounds();}, "priv"); ) DEF_BENCH( return new TightBoundsBench([](const SkPath& path) { SkRect bounds; TightBounds(path, &bounds); return bounds; }, "pathops"); ) // These seem to be optimized away, which is troublesome for timing. /* DEF_BENCH( return new ConicBench_Chop5() ) DEF_BENCH( return new ConicBench_ComputeError() ) DEF_BENCH( return new ConicBench_asQuadTol() ) DEF_BENCH( return new ConicBench_quadPow2() ) */