/* * Copyright 2017 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "Skottie.h" #include "SkCanvas.h" #include "SkJSONCPP.h" #include "SkottieAnimator.h" #include "SkottieParser.h" #include "SkottieProperties.h" #include "SkData.h" #include "SkImage.h" #include "SkMakeUnique.h" #include "SkOSPath.h" #include "SkPaint.h" #include "SkParse.h" #include "SkPoint.h" #include "SkSGClipEffect.h" #include "SkSGColor.h" #include "SkSGDraw.h" #include "SkSGGeometryTransform.h" #include "SkSGGradient.h" #include "SkSGGroup.h" #include "SkSGImage.h" #include "SkSGInvalidationController.h" #include "SkSGMaskEffect.h" #include "SkSGMerge.h" #include "SkSGOpacityEffect.h" #include "SkSGPath.h" #include "SkSGRect.h" #include "SkSGScene.h" #include "SkSGTransform.h" #include "SkSGTrimEffect.h" #include "SkStream.h" #include "SkTArray.h" #include "SkTHash.h" #include <cmath> #include <vector> #include "stdlib.h" namespace skottie { #define LOG SkDebugf namespace { using AssetMap = SkTHashMap<SkString, const Json::Value*>; struct AttachContext { const ResourceProvider& fResources; const AssetMap& fAssets; sksg::AnimatorList& fAnimators; }; bool LogFail(const Json::Value& json, const char* msg) { const auto dump = json.toStyledString(); LOG("!! %s: %s", msg, dump.c_str()); return false; } sk_sp<sksg::Matrix> AttachMatrix(const Json::Value& t, AttachContext* ctx, sk_sp<sksg::Matrix> parentMatrix) { if (!t.isObject()) return nullptr; auto matrix = sksg::Matrix::Make(SkMatrix::I(), std::move(parentMatrix)); auto composite = sk_make_sp<CompositeTransform>(matrix); auto anchor_attached = BindProperty<VectorValue>(t["a"], &ctx->fAnimators, [composite](const VectorValue& a) { composite->setAnchorPoint(ValueTraits<VectorValue>::As<SkPoint>(a)); }); auto position_attached = BindProperty<VectorValue>(t["p"], &ctx->fAnimators, [composite](const VectorValue& p) { composite->setPosition(ValueTraits<VectorValue>::As<SkPoint>(p)); }); auto scale_attached = BindProperty<VectorValue>(t["s"], &ctx->fAnimators, [composite](const VectorValue& s) { composite->setScale(ValueTraits<VectorValue>::As<SkVector>(s)); }); auto* jrotation = &t["r"]; if (jrotation->isNull()) { // 3d rotations have separate rx,ry,rz components. While we don't fully support them, // we can still make use of rz. jrotation = &t["rz"]; } auto rotation_attached = BindProperty<ScalarValue>(*jrotation, &ctx->fAnimators, [composite](const ScalarValue& r) { composite->setRotation(r); }); auto skew_attached = BindProperty<ScalarValue>(t["sk"], &ctx->fAnimators, [composite](const ScalarValue& sk) { composite->setSkew(sk); }); auto skewaxis_attached = BindProperty<ScalarValue>(t["sa"], &ctx->fAnimators, [composite](const ScalarValue& sa) { composite->setSkewAxis(sa); }); if (!anchor_attached && !position_attached && !scale_attached && !rotation_attached && !skew_attached && !skewaxis_attached) { LogFail(t, "Could not parse transform"); return nullptr; } return matrix; } sk_sp<sksg::RenderNode> AttachOpacity(const Json::Value& jtransform, AttachContext* ctx, sk_sp<sksg::RenderNode> childNode) { if (!jtransform.isObject() || !childNode) return childNode; // This is more peeky than other attachers, because we want to avoid redundant opacity // nodes for the extremely common case of static opaciy == 100. const auto& opacity = jtransform["o"]; if (opacity.isObject() && !ParseDefault(opacity["a"], true) && ParseDefault(opacity["k"], -1) == 100) { // Ignoring static full opacity. return childNode; } auto opacityNode = sksg::OpacityEffect::Make(childNode); BindProperty<ScalarValue>(opacity, &ctx->fAnimators, [opacityNode](const ScalarValue& o) { // BM opacity is [0..100] opacityNode->setOpacity(o * 0.01f); }); return opacityNode; } sk_sp<sksg::RenderNode> AttachComposition(const Json::Value&, AttachContext* ctx); sk_sp<sksg::Path> AttachPath(const Json::Value& jpath, AttachContext* ctx) { auto path_node = sksg::Path::Make(); return BindProperty<ShapeValue>(jpath, &ctx->fAnimators, [path_node](const ShapeValue& p) { path_node->setPath(p); }) ? path_node : nullptr; } sk_sp<sksg::GeometryNode> AttachPathGeometry(const Json::Value& jpath, AttachContext* ctx) { SkASSERT(jpath.isObject()); return AttachPath(jpath["ks"], ctx); } sk_sp<sksg::GeometryNode> AttachRRectGeometry(const Json::Value& jrect, AttachContext* ctx) { SkASSERT(jrect.isObject()); auto rect_node = sksg::RRect::Make(); auto composite = sk_make_sp<CompositeRRect>(rect_node); auto p_attached = BindProperty<VectorValue>(jrect["p"], &ctx->fAnimators, [composite](const VectorValue& p) { composite->setPosition(ValueTraits<VectorValue>::As<SkPoint>(p)); }); auto s_attached = BindProperty<VectorValue>(jrect["s"], &ctx->fAnimators, [composite](const VectorValue& s) { composite->setSize(ValueTraits<VectorValue>::As<SkSize>(s)); }); auto r_attached = BindProperty<ScalarValue>(jrect["r"], &ctx->fAnimators, [composite](const ScalarValue& r) { composite->setRadius(SkSize::Make(r, r)); }); if (!p_attached && !s_attached && !r_attached) { return nullptr; } return rect_node; } sk_sp<sksg::GeometryNode> AttachEllipseGeometry(const Json::Value& jellipse, AttachContext* ctx) { SkASSERT(jellipse.isObject()); auto rect_node = sksg::RRect::Make(); auto composite = sk_make_sp<CompositeRRect>(rect_node); auto p_attached = BindProperty<VectorValue>(jellipse["p"], &ctx->fAnimators, [composite](const VectorValue& p) { composite->setPosition(ValueTraits<VectorValue>::As<SkPoint>(p)); }); auto s_attached = BindProperty<VectorValue>(jellipse["s"], &ctx->fAnimators, [composite](const VectorValue& s) { const auto sz = ValueTraits<VectorValue>::As<SkSize>(s); composite->setSize(sz); composite->setRadius(SkSize::Make(sz.width() / 2, sz.height() / 2)); }); if (!p_attached && !s_attached) { return nullptr; } return rect_node; } sk_sp<sksg::GeometryNode> AttachPolystarGeometry(const Json::Value& jstar, AttachContext* ctx) { SkASSERT(jstar.isObject()); static constexpr CompositePolyStar::Type gTypes[] = { CompositePolyStar::Type::kStar, // "sy": 1 CompositePolyStar::Type::kPoly, // "sy": 2 }; const auto type = ParseDefault(jstar["sy"], 0) - 1; if (type < 0 || type >= SkTo<int>(SK_ARRAY_COUNT(gTypes))) { LogFail(jstar, "Unknown polystar type"); return nullptr; } auto path_node = sksg::Path::Make(); auto composite = sk_make_sp<CompositePolyStar>(path_node, gTypes[type]); BindProperty<VectorValue>(jstar["p"], &ctx->fAnimators, [composite](const VectorValue& p) { composite->setPosition(ValueTraits<VectorValue>::As<SkPoint>(p)); }); BindProperty<ScalarValue>(jstar["pt"], &ctx->fAnimators, [composite](const ScalarValue& pt) { composite->setPointCount(pt); }); BindProperty<ScalarValue>(jstar["ir"], &ctx->fAnimators, [composite](const ScalarValue& ir) { composite->setInnerRadius(ir); }); BindProperty<ScalarValue>(jstar["or"], &ctx->fAnimators, [composite](const ScalarValue& otr) { composite->setOuterRadius(otr); }); BindProperty<ScalarValue>(jstar["is"], &ctx->fAnimators, [composite](const ScalarValue& is) { composite->setInnerRoundness(is); }); BindProperty<ScalarValue>(jstar["os"], &ctx->fAnimators, [composite](const ScalarValue& os) { composite->setOuterRoundness(os); }); BindProperty<ScalarValue>(jstar["r"], &ctx->fAnimators, [composite](const ScalarValue& r) { composite->setRotation(r); }); return path_node; } sk_sp<sksg::Color> AttachColor(const Json::Value& obj, AttachContext* ctx) { SkASSERT(obj.isObject()); auto color_node = sksg::Color::Make(SK_ColorBLACK); auto color_attached = BindProperty<VectorValue>(obj["c"], &ctx->fAnimators, [color_node](const VectorValue& c) { color_node->setColor(ValueTraits<VectorValue>::As<SkColor>(c)); }); return color_attached ? color_node : nullptr; } sk_sp<sksg::Gradient> AttachGradient(const Json::Value& obj, AttachContext* ctx) { SkASSERT(obj.isObject()); const auto& stops = obj["g"]; if (!stops.isObject()) return nullptr; const auto stopCount = ParseDefault(stops["p"], -1); if (stopCount < 0) return nullptr; sk_sp<sksg::Gradient> gradient_node; sk_sp<CompositeGradient> composite; if (ParseDefault(obj["t"], 1) == 1) { auto linear_node = sksg::LinearGradient::Make(); composite = sk_make_sp<CompositeLinearGradient>(linear_node, stopCount); gradient_node = std::move(linear_node); } else { auto radial_node = sksg::RadialGradient::Make(); composite = sk_make_sp<CompositeRadialGradient>(radial_node, stopCount); // TODO: highlight, angle gradient_node = std::move(radial_node); } BindProperty<VectorValue>(stops["k"], &ctx->fAnimators, [composite](const VectorValue& stops) { composite->setColorStops(stops); }); BindProperty<VectorValue>(obj["s"], &ctx->fAnimators, [composite](const VectorValue& s) { composite->setStartPoint(ValueTraits<VectorValue>::As<SkPoint>(s)); }); BindProperty<VectorValue>(obj["e"], &ctx->fAnimators, [composite](const VectorValue& e) { composite->setEndPoint(ValueTraits<VectorValue>::As<SkPoint>(e)); }); return gradient_node; } sk_sp<sksg::PaintNode> AttachPaint(const Json::Value& jpaint, AttachContext* ctx, sk_sp<sksg::PaintNode> paint_node) { if (paint_node) { paint_node->setAntiAlias(true); BindProperty<ScalarValue>(jpaint["o"], &ctx->fAnimators, [paint_node](const ScalarValue& o) { // BM opacity is [0..100] paint_node->setOpacity(o * 0.01f); }); } return paint_node; } sk_sp<sksg::PaintNode> AttachStroke(const Json::Value& jstroke, AttachContext* ctx, sk_sp<sksg::PaintNode> stroke_node) { SkASSERT(jstroke.isObject()); if (!stroke_node) return nullptr; stroke_node->setStyle(SkPaint::kStroke_Style); auto width_attached = BindProperty<ScalarValue>(jstroke["w"], &ctx->fAnimators, [stroke_node](const ScalarValue& w) { stroke_node->setStrokeWidth(w); }); if (!width_attached) return nullptr; stroke_node->setStrokeMiter(ParseDefault(jstroke["ml"], 4.0f)); static constexpr SkPaint::Join gJoins[] = { SkPaint::kMiter_Join, SkPaint::kRound_Join, SkPaint::kBevel_Join, }; stroke_node->setStrokeJoin(gJoins[SkTPin<int>(ParseDefault(jstroke["lj"], 1) - 1, 0, SK_ARRAY_COUNT(gJoins) - 1)]); static constexpr SkPaint::Cap gCaps[] = { SkPaint::kButt_Cap, SkPaint::kRound_Cap, SkPaint::kSquare_Cap, }; stroke_node->setStrokeCap(gCaps[SkTPin<int>(ParseDefault(jstroke["lc"], 1) - 1, 0, SK_ARRAY_COUNT(gCaps) - 1)]); return stroke_node; } sk_sp<sksg::PaintNode> AttachColorFill(const Json::Value& jfill, AttachContext* ctx) { SkASSERT(jfill.isObject()); return AttachPaint(jfill, ctx, AttachColor(jfill, ctx)); } sk_sp<sksg::PaintNode> AttachGradientFill(const Json::Value& jfill, AttachContext* ctx) { SkASSERT(jfill.isObject()); return AttachPaint(jfill, ctx, AttachGradient(jfill, ctx)); } sk_sp<sksg::PaintNode> AttachColorStroke(const Json::Value& jstroke, AttachContext* ctx) { SkASSERT(jstroke.isObject()); return AttachStroke(jstroke, ctx, AttachPaint(jstroke, ctx, AttachColor(jstroke, ctx))); } sk_sp<sksg::PaintNode> AttachGradientStroke(const Json::Value& jstroke, AttachContext* ctx) { SkASSERT(jstroke.isObject()); return AttachStroke(jstroke, ctx, AttachPaint(jstroke, ctx, AttachGradient(jstroke, ctx))); } std::vector<sk_sp<sksg::GeometryNode>> AttachMergeGeometryEffect( const Json::Value& jmerge, AttachContext* ctx, std::vector<sk_sp<sksg::GeometryNode>>&& geos) { std::vector<sk_sp<sksg::GeometryNode>> merged; static constexpr sksg::Merge::Mode gModes[] = { sksg::Merge::Mode::kMerge, // "mm": 1 sksg::Merge::Mode::kUnion, // "mm": 2 sksg::Merge::Mode::kDifference, // "mm": 3 sksg::Merge::Mode::kIntersect, // "mm": 4 sksg::Merge::Mode::kXOR , // "mm": 5 }; const auto mode = gModes[SkTPin<int>(ParseDefault(jmerge["mm"], 1) - 1, 0, SK_ARRAY_COUNT(gModes) - 1)]; merged.push_back(sksg::Merge::Make(std::move(geos), mode)); return merged; } std::vector<sk_sp<sksg::GeometryNode>> AttachTrimGeometryEffect( const Json::Value& jtrim, AttachContext* ctx, std::vector<sk_sp<sksg::GeometryNode>>&& geos) { enum class Mode { kMerged, // "m": 1 kSeparate, // "m": 2 } gModes[] = { Mode::kMerged, Mode::kSeparate }; const auto mode = gModes[SkTPin<int>(ParseDefault(jtrim["m"], 1) - 1, 0, SK_ARRAY_COUNT(gModes) - 1)]; std::vector<sk_sp<sksg::GeometryNode>> inputs; if (mode == Mode::kMerged) { inputs.push_back(sksg::Merge::Make(std::move(geos), sksg::Merge::Mode::kMerge)); } else { inputs = std::move(geos); } std::vector<sk_sp<sksg::GeometryNode>> trimmed; trimmed.reserve(inputs.size()); for (const auto& i : inputs) { const auto trim = sksg::TrimEffect::Make(i); trimmed.push_back(trim); BindProperty<ScalarValue>(jtrim["s"], &ctx->fAnimators, [trim](const ScalarValue& s) { trim->setStart(s * 0.01f); }); BindProperty<ScalarValue>(jtrim["e"], &ctx->fAnimators, [trim](const ScalarValue& e) { trim->setEnd(e * 0.01f); }); BindProperty<ScalarValue>(jtrim["o"], &ctx->fAnimators, [trim](const ScalarValue& o) { trim->setOffset(o / 360); }); } return trimmed; } using GeometryAttacherT = sk_sp<sksg::GeometryNode> (*)(const Json::Value&, AttachContext*); static constexpr GeometryAttacherT gGeometryAttachers[] = { AttachPathGeometry, AttachRRectGeometry, AttachEllipseGeometry, AttachPolystarGeometry, }; using PaintAttacherT = sk_sp<sksg::PaintNode> (*)(const Json::Value&, AttachContext*); static constexpr PaintAttacherT gPaintAttachers[] = { AttachColorFill, AttachColorStroke, AttachGradientFill, AttachGradientStroke, }; using GeometryEffectAttacherT = std::vector<sk_sp<sksg::GeometryNode>> (*)(const Json::Value&, AttachContext*, std::vector<sk_sp<sksg::GeometryNode>>&&); static constexpr GeometryEffectAttacherT gGeometryEffectAttachers[] = { AttachMergeGeometryEffect, AttachTrimGeometryEffect, }; enum class ShapeType { kGeometry, kGeometryEffect, kPaint, kGroup, kTransform, }; struct ShapeInfo { const char* fTypeString; ShapeType fShapeType; uint32_t fAttacherIndex; // index into respective attacher tables }; const ShapeInfo* FindShapeInfo(const Json::Value& shape) { static constexpr ShapeInfo gShapeInfo[] = { { "el", ShapeType::kGeometry , 2 }, // ellipse -> AttachEllipseGeometry { "fl", ShapeType::kPaint , 0 }, // fill -> AttachColorFill { "gf", ShapeType::kPaint , 2 }, // gfill -> AttachGradientFill { "gr", ShapeType::kGroup , 0 }, // group -> Inline handler { "gs", ShapeType::kPaint , 3 }, // gstroke -> AttachGradientStroke { "mm", ShapeType::kGeometryEffect, 0 }, // merge -> AttachMergeGeometryEffect { "rc", ShapeType::kGeometry , 1 }, // rrect -> AttachRRectGeometry { "sh", ShapeType::kGeometry , 0 }, // shape -> AttachPathGeometry { "sr", ShapeType::kGeometry , 3 }, // polystar -> AttachPolyStarGeometry { "st", ShapeType::kPaint , 1 }, // stroke -> AttachColorStroke { "tm", ShapeType::kGeometryEffect, 1 }, // trim -> AttachTrimGeometryEffect { "tr", ShapeType::kTransform , 0 }, // transform -> Inline handler }; if (!shape.isObject()) return nullptr; const auto& type = shape["ty"]; if (!type.isString()) return nullptr; const auto* info = bsearch(type.asCString(), gShapeInfo, SK_ARRAY_COUNT(gShapeInfo), sizeof(ShapeInfo), [](const void* key, const void* info) { return strcmp(static_cast<const char*>(key), static_cast<const ShapeInfo*>(info)->fTypeString); }); return static_cast<const ShapeInfo*>(info); } struct GeometryEffectRec { const Json::Value& fJson; GeometryEffectAttacherT fAttach; }; struct AttachShapeContext { AttachShapeContext(AttachContext* ctx, std::vector<sk_sp<sksg::GeometryNode>>* geos, std::vector<GeometryEffectRec>* effects, size_t committedAnimators) : fCtx(ctx) , fGeometryStack(geos) , fGeometryEffectStack(effects) , fCommittedAnimators(committedAnimators) {} AttachContext* fCtx; std::vector<sk_sp<sksg::GeometryNode>>* fGeometryStack; std::vector<GeometryEffectRec>* fGeometryEffectStack; size_t fCommittedAnimators; }; sk_sp<sksg::RenderNode> AttachShape(const Json::Value& jshape, AttachShapeContext* shapeCtx) { if (!jshape.isArray()) return nullptr; SkDEBUGCODE(const auto initialGeometryEffects = shapeCtx->fGeometryEffectStack->size();) sk_sp<sksg::Group> shape_group = sksg::Group::Make(); sk_sp<sksg::RenderNode> shape_wrapper = shape_group; sk_sp<sksg::Matrix> shape_matrix; struct ShapeRec { const Json::Value& fJson; const ShapeInfo& fInfo; }; // First pass (bottom->top): // // * pick up the group transform and opacity // * push local geometry effects onto the stack // * store recs for next pass // std::vector<ShapeRec> recs; for (Json::ArrayIndex i = 0; i < jshape.size(); ++i) { const auto& s = jshape[jshape.size() - 1 - i]; const auto* info = FindShapeInfo(s); if (!info) { LogFail(s.isObject() ? s["ty"] : s, "Unknown shape"); continue; } recs.push_back({ s, *info }); switch (info->fShapeType) { case ShapeType::kTransform: if ((shape_matrix = AttachMatrix(s, shapeCtx->fCtx, nullptr))) { shape_wrapper = sksg::Transform::Make(std::move(shape_wrapper), shape_matrix); } shape_wrapper = AttachOpacity(s, shapeCtx->fCtx, std::move(shape_wrapper)); break; case ShapeType::kGeometryEffect: SkASSERT(info->fAttacherIndex < SK_ARRAY_COUNT(gGeometryEffectAttachers)); shapeCtx->fGeometryEffectStack->push_back( { s, gGeometryEffectAttachers[info->fAttacherIndex] }); break; default: break; } } // Second pass (top -> bottom, after 2x reverse): // // * track local geometry // * emit local paints // std::vector<sk_sp<sksg::GeometryNode>> geos; std::vector<sk_sp<sksg::RenderNode >> draws; for (auto rec = recs.rbegin(); rec != recs.rend(); ++rec) { switch (rec->fInfo.fShapeType) { case ShapeType::kGeometry: { SkASSERT(rec->fInfo.fAttacherIndex < SK_ARRAY_COUNT(gGeometryAttachers)); if (auto geo = gGeometryAttachers[rec->fInfo.fAttacherIndex](rec->fJson, shapeCtx->fCtx)) { geos.push_back(std::move(geo)); } } break; case ShapeType::kGeometryEffect: { // Apply the current effect and pop from the stack. SkASSERT(rec->fInfo.fAttacherIndex < SK_ARRAY_COUNT(gGeometryEffectAttachers)); if (!geos.empty()) { geos = gGeometryEffectAttachers[rec->fInfo.fAttacherIndex](rec->fJson, shapeCtx->fCtx, std::move(geos)); } SkASSERT(shapeCtx->fGeometryEffectStack->back().fJson == rec->fJson); SkASSERT(shapeCtx->fGeometryEffectStack->back().fAttach == gGeometryEffectAttachers[rec->fInfo.fAttacherIndex]); shapeCtx->fGeometryEffectStack->pop_back(); } break; case ShapeType::kGroup: { AttachShapeContext groupShapeCtx(shapeCtx->fCtx, &geos, shapeCtx->fGeometryEffectStack, shapeCtx->fCommittedAnimators); if (auto subgroup = AttachShape(rec->fJson["it"], &groupShapeCtx)) { draws.push_back(std::move(subgroup)); SkASSERT(groupShapeCtx.fCommittedAnimators >= shapeCtx->fCommittedAnimators); shapeCtx->fCommittedAnimators = groupShapeCtx.fCommittedAnimators; } } break; case ShapeType::kPaint: { SkASSERT(rec->fInfo.fAttacherIndex < SK_ARRAY_COUNT(gPaintAttachers)); auto paint = gPaintAttachers[rec->fInfo.fAttacherIndex](rec->fJson, shapeCtx->fCtx); if (!paint || geos.empty()) break; auto drawGeos = geos; // Apply all pending effects from the stack. for (auto it = shapeCtx->fGeometryEffectStack->rbegin(); it != shapeCtx->fGeometryEffectStack->rend(); ++it) { drawGeos = it->fAttach(it->fJson, shapeCtx->fCtx, std::move(drawGeos)); } // If we still have multiple geos, reduce using 'merge'. auto geo = drawGeos.size() > 1 ? sksg::Merge::Make(std::move(drawGeos), sksg::Merge::Mode::kMerge) : drawGeos[0]; SkASSERT(geo); draws.push_back(sksg::Draw::Make(std::move(geo), std::move(paint))); shapeCtx->fCommittedAnimators = shapeCtx->fCtx->fAnimators.size(); } break; default: break; } } // By now we should have popped all local geometry effects. SkASSERT(shapeCtx->fGeometryEffectStack->size() == initialGeometryEffects); // Push transformed local geometries to parent list, for subsequent paints. for (const auto& geo : geos) { shapeCtx->fGeometryStack->push_back(shape_matrix ? sksg::GeometryTransform::Make(std::move(geo), shape_matrix) : std::move(geo)); } // Emit local draws reversed (bottom->top, per spec). for (auto it = draws.rbegin(); it != draws.rend(); ++it) { shape_group->addChild(std::move(*it)); } return draws.empty() ? nullptr : shape_wrapper; } sk_sp<sksg::RenderNode> AttachCompLayer(const Json::Value& jlayer, AttachContext* ctx, float* time_bias, float* time_scale) { SkASSERT(jlayer.isObject()); SkString refId; if (!Parse(jlayer["refId"], &refId) || refId.isEmpty()) { LOG("!! Comp layer missing refId\n"); return nullptr; } const auto* comp = ctx->fAssets.find(refId); if (!comp) { LOG("!! Pre-comp not found: '%s'\n", refId.c_str()); return nullptr; } const auto start_time = ParseDefault(jlayer["st"], 0.0f), stretch_time = ParseDefault(jlayer["sr"], 1.0f); *time_bias = -start_time; *time_scale = 1 / stretch_time; if (SkScalarIsNaN(*time_scale)) { *time_scale = 1; } // TODO: cycle detection return AttachComposition(**comp, ctx); } sk_sp<sksg::RenderNode> AttachSolidLayer(const Json::Value& jlayer, AttachContext*, float*, float*) { SkASSERT(jlayer.isObject()); const auto size = SkSize::Make(ParseDefault(jlayer["sw"], 0.0f), ParseDefault(jlayer["sh"], 0.0f)); const auto hex = ParseDefault(jlayer["sc"], SkString()); uint32_t c; if (size.isEmpty() || !hex.startsWith("#") || !SkParse::FindHex(hex.c_str() + 1, &c)) { LogFail(jlayer, "Could not parse solid layer"); return nullptr; } const SkColor color = 0xff000000 | c; return sksg::Draw::Make(sksg::Rect::Make(SkRect::MakeSize(size)), sksg::Color::Make(color)); } sk_sp<sksg::RenderNode> AttachImageAsset(const Json::Value& jimage, AttachContext* ctx) { SkASSERT(jimage.isObject()); const auto name = ParseDefault(jimage["p"], SkString()), path = ParseDefault(jimage["u"], SkString()); if (name.isEmpty()) return nullptr; // TODO: plumb resource paths explicitly to ResourceProvider? const auto resName = path.isEmpty() ? name : SkOSPath::Join(path.c_str(), name.c_str()); const auto resStream = ctx->fResources.openStream(resName.c_str()); if (!resStream || !resStream->hasLength()) { LOG("!! Could not load image resource: %s\n", resName.c_str()); return nullptr; } // TODO: non-intrisic image sizing return sksg::Image::Make( SkImage::MakeFromEncoded(SkData::MakeFromStream(resStream.get(), resStream->getLength()))); } sk_sp<sksg::RenderNode> AttachImageLayer(const Json::Value& layer, AttachContext* ctx, float*, float*) { SkASSERT(layer.isObject()); SkString refId; if (!Parse(layer["refId"], &refId) || refId.isEmpty()) { LOG("!! Image layer missing refId\n"); return nullptr; } const auto* jimage = ctx->fAssets.find(refId); if (!jimage) { LOG("!! Image asset not found: '%s'\n", refId.c_str()); return nullptr; } return AttachImageAsset(**jimage, ctx); } sk_sp<sksg::RenderNode> AttachNullLayer(const Json::Value& layer, AttachContext*, float*, float*) { SkASSERT(layer.isObject()); // Null layers are used solely to drive dependent transforms, // but we use free-floating sksg::Matrices for that purpose. return nullptr; } sk_sp<sksg::RenderNode> AttachShapeLayer(const Json::Value& layer, AttachContext* ctx, float*, float*) { SkASSERT(layer.isObject()); std::vector<sk_sp<sksg::GeometryNode>> geometryStack; std::vector<GeometryEffectRec> geometryEffectStack; AttachShapeContext shapeCtx(ctx, &geometryStack, &geometryEffectStack, ctx->fAnimators.size()); auto shapeNode = AttachShape(layer["shapes"], &shapeCtx); // Trim uncommitted animators: AttachShape consumes effects on the fly, and greedily attaches // geometries => at the end, we can end up with unused geometries, which are nevertheless alive // due to attached animators. To avoid this, we track committed animators and discard the // orphans here. SkASSERT(shapeCtx.fCommittedAnimators <= ctx->fAnimators.size()); ctx->fAnimators.resize(shapeCtx.fCommittedAnimators); return shapeNode; } sk_sp<sksg::RenderNode> AttachTextLayer(const Json::Value& layer, AttachContext*, float*, float*) { SkASSERT(layer.isObject()); LOG("?? Text layer stub\n"); return nullptr; } struct AttachLayerContext { AttachLayerContext(const Json::Value& jlayers, AttachContext* ctx) : fLayerList(jlayers), fCtx(ctx) {} const Json::Value& fLayerList; AttachContext* fCtx; SkTHashMap<int, sk_sp<sksg::Matrix>> fLayerMatrixMap; sk_sp<sksg::RenderNode> fCurrentMatte; sk_sp<sksg::Matrix> AttachParentLayerMatrix(const Json::Value& jlayer) { SkASSERT(jlayer.isObject()); SkASSERT(fLayerList.isArray()); const auto parent_index = ParseDefault(jlayer["parent"], -1); if (parent_index < 0) return nullptr; if (auto* m = fLayerMatrixMap.find(parent_index)) return *m; for (const auto& l : fLayerList) { if (!l.isObject()) { continue; } if (ParseDefault(l["ind"], -1) == parent_index) { return this->AttachLayerMatrix(l); } } return nullptr; } sk_sp<sksg::Matrix> AttachLayerMatrix(const Json::Value& jlayer) { SkASSERT(jlayer.isObject()); const auto layer_index = ParseDefault(jlayer["ind"], -1); if (layer_index < 0) return nullptr; if (auto* m = fLayerMatrixMap.find(layer_index)) return *m; // Add a stub entry to break recursion cycles. fLayerMatrixMap.set(layer_index, nullptr); auto parent_matrix = this->AttachParentLayerMatrix(jlayer); return *fLayerMatrixMap.set(layer_index, AttachMatrix(jlayer["ks"], fCtx, this->AttachParentLayerMatrix(jlayer))); } }; SkBlendMode MaskBlendMode(char mode) { switch (mode) { case 'a': return SkBlendMode::kSrcOver; // Additive case 's': return SkBlendMode::kExclusion; // Subtract case 'i': return SkBlendMode::kDstIn; // Intersect case 'l': return SkBlendMode::kLighten; // Lighten case 'd': return SkBlendMode::kDarken; // Darken case 'f': return SkBlendMode::kDifference; // Difference default: break; } return SkBlendMode::kSrcOver; } sk_sp<sksg::RenderNode> AttachMask(const Json::Value& jmask, AttachContext* ctx, sk_sp<sksg::RenderNode> childNode) { if (!jmask.isArray()) return childNode; auto mask_group = sksg::Group::Make(); for (const auto& m : jmask) { if (!m.isObject()) continue; const auto inverted = ParseDefault(m["inv"], false); // TODO if (inverted) { LogFail(m, "Unsupported inverse mask"); continue; } auto mask_path = AttachPath(m["pt"], ctx); if (!mask_path) { LogFail(m, "Could not parse mask path"); continue; } SkString mode; if (!Parse(m["mode"], &mode) || mode.size() != 1 || !strcmp(mode.c_str(), "n")) { // "None" masks have no effect. continue; } auto mask_paint = sksg::Color::Make(SK_ColorBLACK); mask_paint->setAntiAlias(true); mask_paint->setBlendMode(MaskBlendMode(mode.c_str()[0])); BindProperty<ScalarValue>(m["o"], &ctx->fAnimators, [mask_paint](const ScalarValue& o) { mask_paint->setOpacity(o * 0.01f); }); mask_group->addChild(sksg::Draw::Make(std::move(mask_path), std::move(mask_paint))); } return mask_group->empty() ? childNode : sksg::MaskEffect::Make(std::move(childNode), std::move(mask_group)); } sk_sp<sksg::RenderNode> AttachLayer(const Json::Value& jlayer, AttachLayerContext* layerCtx) { if (!jlayer.isObject()) return nullptr; using LayerAttacher = sk_sp<sksg::RenderNode> (*)(const Json::Value&, AttachContext*, float* time_bias, float* time_scale); static constexpr LayerAttacher gLayerAttachers[] = { AttachCompLayer, // 'ty': 0 AttachSolidLayer, // 'ty': 1 AttachImageLayer, // 'ty': 2 AttachNullLayer, // 'ty': 3 AttachShapeLayer, // 'ty': 4 AttachTextLayer, // 'ty': 5 }; int type = ParseDefault(jlayer["ty"], -1); if (type < 0 || type >= SkTo<int>(SK_ARRAY_COUNT(gLayerAttachers))) { return nullptr; } sksg::AnimatorList layer_animators; AttachContext local_ctx = { layerCtx->fCtx->fResources, layerCtx->fCtx->fAssets, layer_animators}; // Layer attachers may adjust these. float time_bias = 0, time_scale = 1; // Layer content. auto layer = gLayerAttachers[type](jlayer, &local_ctx, &time_bias, &time_scale); // Clip layers with explicit dimensions. float w, h; if (Parse(jlayer["w"], &w) && Parse(jlayer["h"], &h)) { layer = sksg::ClipEffect::Make(std::move(layer), sksg::Rect::Make(SkRect::MakeWH(w, h)), true); } // Optional layer mask. layer = AttachMask(jlayer["masksProperties"], &local_ctx, std::move(layer)); // Optional layer transform. if (auto layerMatrix = layerCtx->AttachLayerMatrix(jlayer)) { layer = sksg::Transform::Make(std::move(layer), std::move(layerMatrix)); } // Optional layer opacity. layer = AttachOpacity(jlayer["ks"], &local_ctx, std::move(layer)); class LayerController final : public sksg::GroupAnimator { public: LayerController(sksg::AnimatorList&& layer_animators, sk_sp<sksg::OpacityEffect> controlNode, float in, float out, float time_bias, float time_scale) : INHERITED(std::move(layer_animators)) , fControlNode(std::move(controlNode)) , fIn(in) , fOut(out) , fTimeBias(time_bias) , fTimeScale(time_scale) {} void onTick(float t) override { const auto active = (t >= fIn && t <= fOut); // Keep the layer fully transparent except for its [in..out] lifespan. // (note: opacity == 0 disables rendering, while opacity == 1 is a noop) fControlNode->setOpacity(active ? 1 : 0); // Dispatch ticks only while active. if (active) this->INHERITED::onTick((t + fTimeBias) * fTimeScale); } private: const sk_sp<sksg::OpacityEffect> fControlNode; const float fIn, fOut, fTimeBias, fTimeScale; using INHERITED = sksg::GroupAnimator; }; auto controller_node = sksg::OpacityEffect::Make(std::move(layer)); const auto in = ParseDefault(jlayer["ip"], 0.0f), out = ParseDefault(jlayer["op"], in); if (!jlayer["tm"].isNull()) { LogFail(jlayer["tm"], "Unsupported time remapping"); } if (in >= out || !controller_node) return nullptr; layerCtx->fCtx->fAnimators.push_back( skstd::make_unique<LayerController>(std::move(layer_animators), controller_node, in, out, time_bias, time_scale)); if (ParseDefault(jlayer["td"], false)) { // This layer is a matte. We apply it as a mask to the next layer. layerCtx->fCurrentMatte = std::move(controller_node); return nullptr; } if (layerCtx->fCurrentMatte) { // There is a pending matte. Apply and reset. return sksg::MaskEffect::Make(std::move(controller_node), std::move(layerCtx->fCurrentMatte)); } return controller_node; } sk_sp<sksg::RenderNode> AttachComposition(const Json::Value& comp, AttachContext* ctx) { if (!comp.isObject()) return nullptr; const auto& jlayers = comp["layers"]; if (!jlayers.isArray()) return nullptr; SkSTArray<16, sk_sp<sksg::RenderNode>, true> layers; AttachLayerContext layerCtx(jlayers, ctx); for (const auto& l : jlayers) { if (auto layer_fragment = AttachLayer(l, &layerCtx)) { layers.push_back(std::move(layer_fragment)); } } if (layers.empty()) { return nullptr; } // Layers are painted in bottom->top order. auto comp_group = sksg::Group::Make(); for (int i = layers.count() - 1; i >= 0; --i) { comp_group->addChild(std::move(layers[i])); } LOG("** Attached composition '%s': %d layers.\n", ParseDefault(comp["id"], SkString()).c_str(), layers.count()); return comp_group; } } // namespace std::unique_ptr<Animation> Animation::Make(SkStream* stream, const ResourceProvider& res) { if (!stream->hasLength()) { // TODO: handle explicit buffering? LOG("!! cannot parse streaming content\n"); return nullptr; } Json::Value json; { auto data = SkData::MakeFromStream(stream, stream->getLength()); if (!data) { LOG("!! could not read stream\n"); return nullptr; } Json::Reader reader; auto dataStart = static_cast<const char*>(data->data()); if (!reader.parse(dataStart, dataStart + data->size(), json, false) || !json.isObject()) { LOG("!! failed to parse json: %s\n", reader.getFormattedErrorMessages().c_str()); return nullptr; } } const auto version = ParseDefault(json["v"], SkString()); const auto size = SkSize::Make(ParseDefault(json["w"], 0.0f), ParseDefault(json["h"], 0.0f)); const auto fps = ParseDefault(json["fr"], -1.0f); if (size.isEmpty() || version.isEmpty() || fps < 0) { LOG("!! invalid animation params (version: %s, size: [%f %f], frame rate: %f)", version.c_str(), size.width(), size.height(), fps); return nullptr; } return std::unique_ptr<Animation>(new Animation(res, std::move(version), size, fps, json)); } std::unique_ptr<Animation> Animation::MakeFromFile(const char path[], const ResourceProvider* res) { class DirectoryResourceProvider final : public ResourceProvider { public: explicit DirectoryResourceProvider(SkString dir) : fDir(std::move(dir)) {} std::unique_ptr<SkStream> openStream(const char resource[]) const override { const auto resPath = SkOSPath::Join(fDir.c_str(), resource); return SkStream::MakeFromFile(resPath.c_str()); } private: const SkString fDir; }; const auto jsonStream = SkStream::MakeFromFile(path); if (!jsonStream) return nullptr; std::unique_ptr<ResourceProvider> defaultProvider; if (!res) { defaultProvider = skstd::make_unique<DirectoryResourceProvider>(SkOSPath::Dirname(path)); } return Make(jsonStream.get(), res ? *res : *defaultProvider); } Animation::Animation(const ResourceProvider& resources, SkString version, const SkSize& size, SkScalar fps, const Json::Value& json) : fVersion(std::move(version)) , fSize(size) , fFrameRate(fps) , fInPoint(ParseDefault(json["ip"], 0.0f)) , fOutPoint(SkTMax(ParseDefault(json["op"], SK_ScalarMax), fInPoint)) { AssetMap assets; for (const auto& asset : json["assets"]) { if (!asset.isObject()) { continue; } assets.set(ParseDefault(asset["id"], SkString()), &asset); } sksg::AnimatorList animators; AttachContext ctx = { resources, assets, animators }; auto root = AttachComposition(json, &ctx); LOG("** Attached %d animators\n", animators.size()); fScene = sksg::Scene::Make(std::move(root), std::move(animators)); // In case the client calls render before the first tick. this->animationTick(0); } Animation::~Animation() = default; void Animation::setShowInval(bool show) { if (fScene) { fScene->setShowInval(show); } } void Animation::render(SkCanvas* canvas, const SkRect* dstR) const { if (!fScene) return; SkAutoCanvasRestore restore(canvas, true); const SkRect srcR = SkRect::MakeSize(this->size()); if (dstR) { canvas->concat(SkMatrix::MakeRectToRect(srcR, *dstR, SkMatrix::kCenter_ScaleToFit)); } canvas->clipRect(srcR); fScene->render(canvas); } void Animation::animationTick(SkMSec ms) { if (!fScene) return; // 't' in the BM model really means 'frame #' auto t = static_cast<float>(ms) * fFrameRate / 1000; t = fInPoint + std::fmod(t, fOutPoint - fInPoint); fScene->animate(t); } } // namespace skottie