/* * Copyright 2015 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkBmpCodec.h" #include "SkCodecPriv.h" #include "SkColorData.h" #include "SkData.h" #include "SkIcoCodec.h" #include "SkPngCodec.h" #include "SkStream.h" #include "SkTDArray.h" #include "SkTSort.h" /* * Checks the start of the stream to see if the image is an Ico or Cur */ bool SkIcoCodec::IsIco(const void* buffer, size_t bytesRead) { const char icoSig[] = { '\x00', '\x00', '\x01', '\x00' }; const char curSig[] = { '\x00', '\x00', '\x02', '\x00' }; return bytesRead >= sizeof(icoSig) && (!memcmp(buffer, icoSig, sizeof(icoSig)) || !memcmp(buffer, curSig, sizeof(curSig))); } std::unique_ptr<SkCodec> SkIcoCodec::MakeFromStream(std::unique_ptr<SkStream> stream, Result* result) { // Header size constants constexpr uint32_t kIcoDirectoryBytes = 6; constexpr uint32_t kIcoDirEntryBytes = 16; // Read the directory header std::unique_ptr<uint8_t[]> dirBuffer(new uint8_t[kIcoDirectoryBytes]); if (stream->read(dirBuffer.get(), kIcoDirectoryBytes) != kIcoDirectoryBytes) { SkCodecPrintf("Error: unable to read ico directory header.\n"); *result = kIncompleteInput; return nullptr; } // Process the directory header const uint16_t numImages = get_short(dirBuffer.get(), 4); if (0 == numImages) { SkCodecPrintf("Error: No images embedded in ico.\n"); *result = kInvalidInput; return nullptr; } // This structure is used to represent the vital information about entries // in the directory header. We will obtain this information for each // directory entry. struct Entry { uint32_t offset; uint32_t size; }; SkAutoFree dirEntryBuffer(sk_malloc_canfail(sizeof(Entry) * numImages)); if (!dirEntryBuffer) { SkCodecPrintf("Error: OOM allocating ICO directory for %i images.\n", numImages); *result = kInternalError; return nullptr; } auto* directoryEntries = reinterpret_cast<Entry*>(dirEntryBuffer.get()); // Iterate over directory entries for (uint32_t i = 0; i < numImages; i++) { uint8_t entryBuffer[kIcoDirEntryBytes]; if (stream->read(entryBuffer, kIcoDirEntryBytes) != kIcoDirEntryBytes) { SkCodecPrintf("Error: Dir entries truncated in ico.\n"); *result = kIncompleteInput; return nullptr; } // The directory entry contains information such as width, height, // bits per pixel, and number of colors in the color palette. We will // ignore these fields since they are repeated in the header of the // embedded image. In the event of an inconsistency, we would always // defer to the value in the embedded header anyway. // Specifies the size of the embedded image, including the header uint32_t size = get_int(entryBuffer, 8); // Specifies the offset of the embedded image from the start of file. // It does not indicate the start of the pixel data, but rather the // start of the embedded image header. uint32_t offset = get_int(entryBuffer, 12); // Save the vital fields directoryEntries[i].offset = offset; directoryEntries[i].size = size; } // Default Result, if no valid embedded codecs are found. *result = kInvalidInput; // It is "customary" that the embedded images will be stored in order of // increasing offset. However, the specification does not indicate that // they must be stored in this order, so we will not trust that this is the // case. Here we sort the embedded images by increasing offset. struct EntryLessThan { bool operator() (Entry a, Entry b) const { return a.offset < b.offset; } }; EntryLessThan lessThan; SkTQSort(directoryEntries, &directoryEntries[numImages - 1], lessThan); // Now will construct a candidate codec for each of the embedded images uint32_t bytesRead = kIcoDirectoryBytes + numImages * kIcoDirEntryBytes; std::unique_ptr<SkTArray<std::unique_ptr<SkCodec>, true>> codecs( new (SkTArray<std::unique_ptr<SkCodec>, true>)(numImages)); for (uint32_t i = 0; i < numImages; i++) { uint32_t offset = directoryEntries[i].offset; uint32_t size = directoryEntries[i].size; // Ensure that the offset is valid if (offset < bytesRead) { SkCodecPrintf("Warning: invalid ico offset.\n"); continue; } // If we cannot skip, assume we have reached the end of the stream and // stop trying to make codecs if (stream->skip(offset - bytesRead) != offset - bytesRead) { SkCodecPrintf("Warning: could not skip to ico offset.\n"); break; } bytesRead = offset; // Create a new stream for the embedded codec SkAutoFree buffer(sk_malloc_canfail(size)); if (!buffer) { SkCodecPrintf("Warning: OOM trying to create embedded stream.\n"); break; } if (stream->read(buffer.get(), size) != size) { SkCodecPrintf("Warning: could not create embedded stream.\n"); *result = kIncompleteInput; break; } sk_sp<SkData> data(SkData::MakeFromMalloc(buffer.release(), size)); auto embeddedStream = SkMemoryStream::Make(data); bytesRead += size; // Check if the embedded codec is bmp or png and create the codec std::unique_ptr<SkCodec> codec; Result dummyResult; if (SkPngCodec::IsPng((const char*) data->bytes(), data->size())) { codec = SkPngCodec::MakeFromStream(std::move(embeddedStream), &dummyResult); } else { codec = SkBmpCodec::MakeFromIco(std::move(embeddedStream), &dummyResult); } // Save a valid codec if (nullptr != codec) { codecs->push_back().reset(codec.release()); } } // Recognize if there are no valid codecs if (0 == codecs->count()) { SkCodecPrintf("Error: could not find any valid embedded ico codecs.\n"); return nullptr; } // Use the largest codec as a "suggestion" for image info size_t maxSize = 0; int maxIndex = 0; for (int i = 0; i < codecs->count(); i++) { SkImageInfo info = codecs->operator[](i)->getInfo(); size_t size = info.computeMinByteSize(); if (size > maxSize) { maxSize = size; maxIndex = i; } } int width = codecs->operator[](maxIndex)->getInfo().width(); int height = codecs->operator[](maxIndex)->getInfo().height(); SkEncodedInfo info = codecs->operator[](maxIndex)->getEncodedInfo(); SkColorSpace* colorSpace = codecs->operator[](maxIndex)->getInfo().colorSpace(); *result = kSuccess; // The original stream is no longer needed, because the embedded codecs own their // own streams. return std::unique_ptr<SkCodec>(new SkIcoCodec(width, height, info, codecs.release(), sk_ref_sp(colorSpace))); } /* * Creates an instance of the decoder * Called only by NewFromStream */ SkIcoCodec::SkIcoCodec(int width, int height, const SkEncodedInfo& info, SkTArray<std::unique_ptr<SkCodec>, true>* codecs, sk_sp<SkColorSpace> colorSpace) // The source SkColorSpaceXform::ColorFormat will not be used. The embedded // codec's will be used instead. : INHERITED(width, height, info, SkColorSpaceXform::ColorFormat(), nullptr, std::move(colorSpace)) , fEmbeddedCodecs(codecs) , fCurrCodec(nullptr) {} /* * Chooses the best dimensions given the desired scale */ SkISize SkIcoCodec::onGetScaledDimensions(float desiredScale) const { // We set the dimensions to the largest candidate image by default. // Regardless of the scale request, this is the largest image that we // will decode. int origWidth = this->getInfo().width(); int origHeight = this->getInfo().height(); float desiredSize = desiredScale * origWidth * origHeight; // At least one image will have smaller error than this initial value float minError = ((float) (origWidth * origHeight)) - desiredSize + 1.0f; int32_t minIndex = -1; for (int32_t i = 0; i < fEmbeddedCodecs->count(); i++) { int width = fEmbeddedCodecs->operator[](i)->getInfo().width(); int height = fEmbeddedCodecs->operator[](i)->getInfo().height(); float error = SkTAbs(((float) (width * height)) - desiredSize); if (error < minError) { minError = error; minIndex = i; } } SkASSERT(minIndex >= 0); return fEmbeddedCodecs->operator[](minIndex)->getInfo().dimensions(); } int SkIcoCodec::chooseCodec(const SkISize& requestedSize, int startIndex) { SkASSERT(startIndex >= 0); // FIXME: Cache the index from onGetScaledDimensions? for (int i = startIndex; i < fEmbeddedCodecs->count(); i++) { if (fEmbeddedCodecs->operator[](i)->getInfo().dimensions() == requestedSize) { return i; } } return -1; } bool SkIcoCodec::onDimensionsSupported(const SkISize& dim) { return this->chooseCodec(dim, 0) >= 0; } /* * Initiates the Ico decode */ SkCodec::Result SkIcoCodec::onGetPixels(const SkImageInfo& dstInfo, void* dst, size_t dstRowBytes, const Options& opts, int* rowsDecoded) { if (opts.fSubset) { // Subsets are not supported. return kUnimplemented; } int index = 0; SkCodec::Result result = kInvalidScale; while (true) { index = this->chooseCodec(dstInfo.dimensions(), index); if (index < 0) { break; } SkCodec* embeddedCodec = fEmbeddedCodecs->operator[](index).get(); result = embeddedCodec->getPixels(dstInfo, dst, dstRowBytes, &opts); switch (result) { case kSuccess: case kIncompleteInput: // The embedded codec will handle filling incomplete images, so we will indicate // that all of the rows are initialized. *rowsDecoded = dstInfo.height(); return result; default: // Continue trying to find a valid embedded codec on a failed decode. break; } index++; } SkCodecPrintf("Error: No matching candidate image in ico.\n"); return result; } SkCodec::Result SkIcoCodec::onStartScanlineDecode(const SkImageInfo& dstInfo, const SkCodec::Options& options) { int index = 0; SkCodec::Result result = kInvalidScale; while (true) { index = this->chooseCodec(dstInfo.dimensions(), index); if (index < 0) { break; } SkCodec* embeddedCodec = fEmbeddedCodecs->operator[](index).get(); result = embeddedCodec->startScanlineDecode(dstInfo, &options); if (kSuccess == result) { fCurrCodec = embeddedCodec; return result; } index++; } SkCodecPrintf("Error: No matching candidate image in ico.\n"); return result; } int SkIcoCodec::onGetScanlines(void* dst, int count, size_t rowBytes) { SkASSERT(fCurrCodec); return fCurrCodec->getScanlines(dst, count, rowBytes); } bool SkIcoCodec::onSkipScanlines(int count) { SkASSERT(fCurrCodec); return fCurrCodec->skipScanlines(count); } SkCodec::Result SkIcoCodec::onStartIncrementalDecode(const SkImageInfo& dstInfo, void* pixels, size_t rowBytes, const SkCodec::Options& options) { int index = 0; while (true) { index = this->chooseCodec(dstInfo.dimensions(), index); if (index < 0) { break; } SkCodec* embeddedCodec = fEmbeddedCodecs->operator[](index).get(); switch (embeddedCodec->startIncrementalDecode(dstInfo, pixels, rowBytes, &options)) { case kSuccess: fCurrCodec = embeddedCodec; return kSuccess; case kUnimplemented: // FIXME: embeddedCodec is a BMP. If scanline decoding would work, // return kUnimplemented so that SkSampledCodec will fall through // to use the scanline decoder. // Note that calling startScanlineDecode will require an extra // rewind. The embedded codec has an SkMemoryStream, which is // cheap to rewind, though it will do extra work re-reading the // header. // Also note that we pass nullptr for Options. This is because // Options that are valid for incremental decoding may not be // valid for scanline decoding. // Once BMP supports incremental decoding this workaround can go // away. if (embeddedCodec->startScanlineDecode(dstInfo) == kSuccess) { return kUnimplemented; } // Move on to the next embedded codec. break; default: break; } index++; } SkCodecPrintf("Error: No matching candidate image in ico.\n"); return kInvalidScale; } SkCodec::Result SkIcoCodec::onIncrementalDecode(int* rowsDecoded) { SkASSERT(fCurrCodec); return fCurrCodec->incrementalDecode(rowsDecoded); } SkCodec::SkScanlineOrder SkIcoCodec::onGetScanlineOrder() const { // FIXME: This function will possibly return the wrong value if it is called // before startScanlineDecode()/startIncrementalDecode(). if (fCurrCodec) { return fCurrCodec->getScanlineOrder(); } return INHERITED::onGetScanlineOrder(); } SkSampler* SkIcoCodec::getSampler(bool createIfNecessary) { if (fCurrCodec) { return fCurrCodec->getSampler(createIfNecessary); } return nullptr; }