/* * Copyright 2016 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #ifndef SkAutoMalloc_DEFINED #define SkAutoMalloc_DEFINED #include "SkTypes.h" #include "SkMalloc.h" #include <memory> /** * Manage an allocated block of heap memory. This object is the sole manager of * the lifetime of the block, so the caller must not call sk_free() or delete * on the block, unless release() was called. */ class SkAutoMalloc : SkNoncopyable { public: explicit SkAutoMalloc(size_t size = 0) : fPtr(size ? sk_malloc_throw(size) : nullptr), fSize(size) {} /** * Passed to reset to specify what happens if the requested size is smaller * than the current size (and the current block was dynamically allocated). */ enum OnShrink { /** * If the requested size is smaller than the current size, and the * current block is dynamically allocated, free the old block and * malloc a new block of the smaller size. */ kAlloc_OnShrink, /** * If the requested size is smaller than the current size, and the * current block is dynamically allocated, just return the old * block. */ kReuse_OnShrink }; /** * Reallocates the block to a new size. The ptr may or may not change. */ void* reset(size_t size = 0, OnShrink shrink = kAlloc_OnShrink) { if (size != fSize && (size > fSize || kReuse_OnShrink != shrink)) { fPtr.reset(size ? sk_malloc_throw(size) : nullptr); fSize = size; } return fPtr.get(); } /** * Return the allocated block. */ void* get() { return fPtr.get(); } const void* get() const { return fPtr.get(); } /** Transfer ownership of the current ptr to the caller, setting the internal reference to null. Note the caller is reponsible for calling sk_free on the returned address. */ void* release() { fSize = 0; return fPtr.release(); } private: struct WrapFree { void operator()(void* p) { sk_free(p); } }; std::unique_ptr<void, WrapFree> fPtr; size_t fSize; // can be larger than the requested size (see kReuse) }; #define SkAutoMalloc(...) SK_REQUIRE_LOCAL_VAR(SkAutoMalloc) /** * Manage an allocated block of memory. If the requested size is <= kSizeRequested (or slightly * more), then the allocation will come from the stack rather than the heap. This object is the * sole manager of the lifetime of the block, so the caller must not call sk_free() or delete on * the block. */ template <size_t kSizeRequested> class SkAutoSMalloc : SkNoncopyable { public: /** * Creates initially empty storage. get() returns a ptr, but it is to a zero-byte allocation. * Must call reset(size) to return an allocated block. */ SkAutoSMalloc() { fPtr = fStorage; fSize = kSize; } /** * Allocate a block of the specified size. If size <= kSizeRequested (or slightly more), then * the allocation will come from the stack, otherwise it will be dynamically allocated. */ explicit SkAutoSMalloc(size_t size) { fPtr = fStorage; fSize = kSize; this->reset(size); } /** * Free the allocated block (if any). If the block was small enough to have been allocated on * the stack, then this does nothing. */ ~SkAutoSMalloc() { if (fPtr != (void*)fStorage) { sk_free(fPtr); } } /** * Return the allocated block. May return non-null even if the block is of zero size. Since * this may be on the stack or dynamically allocated, the caller must not call sk_free() on it, * but must rely on SkAutoSMalloc to manage it. */ void* get() const { return fPtr; } /** * Return a new block of the requested size, freeing (as necessary) any previously allocated * block. As with the constructor, if size <= kSizeRequested (or slightly more) then the return * block may be allocated locally, rather than from the heap. */ void* reset(size_t size, SkAutoMalloc::OnShrink shrink = SkAutoMalloc::kAlloc_OnShrink, bool* didChangeAlloc = nullptr) { size = (size < kSize) ? kSize : size; bool alloc = size != fSize && (SkAutoMalloc::kAlloc_OnShrink == shrink || size > fSize); if (didChangeAlloc) { *didChangeAlloc = alloc; } if (alloc) { if (fPtr != (void*)fStorage) { sk_free(fPtr); } if (size == kSize) { SkASSERT(fPtr != fStorage); // otherwise we lied when setting didChangeAlloc. fPtr = fStorage; } else { fPtr = sk_malloc_throw(size); } fSize = size; } SkASSERT(fSize >= size && fSize >= kSize); SkASSERT((fPtr == fStorage) || fSize > kSize); return fPtr; } private: // Align up to 32 bits. static const size_t kSizeAlign4 = SkAlign4(kSizeRequested); #if defined(SK_BUILD_FOR_GOOGLE3) // Stack frame size is limited for SK_BUILD_FOR_GOOGLE3. 4k is less than the actual max, but some functions // have multiple large stack allocations. static const size_t kMaxBytes = 4 * 1024; static const size_t kSize = kSizeRequested > kMaxBytes ? kMaxBytes : kSizeAlign4; #else static const size_t kSize = kSizeAlign4; #endif void* fPtr; size_t fSize; // can be larger than the requested size (see kReuse) uint32_t fStorage[kSize >> 2]; }; // Can't guard the constructor because it's a template class. #endif