/* * Copyright 2016 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkAutoMalloc.h" #include "SkColorSpacePriv.h" #include "SkColorSpaceXformPriv.h" #include "SkColorSpace_XYZ.h" #include "SkEndian.h" #include "SkFixed.h" #include "SkICC.h" #include "SkICCPriv.h" #include "SkMD5.h" #include "SkString.h" #include "SkUtils.h" SkICC::SkICC(sk_sp<SkColorSpace> colorSpace) : fColorSpace(std::move(colorSpace)) {} sk_sp<SkICC> SkICC::Make(const void* ptr, size_t len) { sk_sp<SkColorSpace> colorSpace = SkColorSpace::MakeICC(ptr, len); if (!colorSpace) { return nullptr; } return sk_sp<SkICC>(new SkICC(std::move(colorSpace))); } bool SkICC::toXYZD50(SkMatrix44* toXYZD50) const { return fColorSpace->toXYZD50(toXYZD50); } bool SkICC::isNumericalTransferFn(SkColorSpaceTransferFn* coeffs) const { return fColorSpace->isNumericalTransferFn(coeffs); } static const int kDefaultTableSize = 512; // Arbitrary void fn_to_table(float* tablePtr, const SkColorSpaceTransferFn& fn) { // Y = (aX + b)^g + e for X >= d // Y = cX + f otherwise for (int i = 0; i < kDefaultTableSize; i++) { float x = ((float) i) / ((float) (kDefaultTableSize - 1)); if (x >= fn.fD) { tablePtr[i] = clamp_0_1(powf(fn.fA * x + fn.fB, fn.fG) + fn.fE); } else { tablePtr[i] = clamp_0_1(fn.fC * x + fn.fF); } } } void copy_to_table(float* tablePtr, const SkGammas* gammas, int index) { SkASSERT(gammas->isTable(index)); const float* ptr = gammas->table(index); const size_t bytes = gammas->tableSize(index) * sizeof(float); memcpy(tablePtr, ptr, bytes); } bool SkICC::rawTransferFnData(Tables* tables) const { if (!fColorSpace->toXYZD50()) { return false; // Can't even dream of handling A2B here... } SkColorSpace_XYZ* colorSpace = (SkColorSpace_XYZ*) fColorSpace.get(); SkColorSpaceTransferFn fn; if (this->isNumericalTransferFn(&fn)) { tables->fStorage = SkData::MakeUninitialized(kDefaultTableSize * sizeof(float)); fn_to_table((float*) tables->fStorage->writable_data(), fn); tables->fRed.fOffset = tables->fGreen.fOffset = tables->fBlue.fOffset = 0; tables->fRed.fCount = tables->fGreen.fCount = tables->fBlue.fCount = kDefaultTableSize; return true; } const SkGammas* gammas = colorSpace->gammas(); SkASSERT(gammas); if (gammas->allChannelsSame()) { SkASSERT(gammas->isTable(0)); tables->fStorage = SkData::MakeUninitialized(gammas->tableSize(0) * sizeof(float)); copy_to_table((float*) tables->fStorage->writable_data(), gammas, 0); tables->fRed.fOffset = tables->fGreen.fOffset = tables->fBlue.fOffset = 0; tables->fRed.fCount = tables->fGreen.fCount = tables->fBlue.fCount = gammas->tableSize(0); return true; } // Determine the storage size. size_t storageSize = 0; for (int i = 0; i < 3; i++) { if (gammas->isTable(i)) { storageSize += gammas->tableSize(i) * sizeof(float); } else { storageSize += kDefaultTableSize * sizeof(float); } } // Fill in the tables. tables->fStorage = SkData::MakeUninitialized(storageSize); float* ptr = (float*) tables->fStorage->writable_data(); size_t offset = 0; Channel rgb[3]; for (int i = 0; i < 3; i++) { if (gammas->isTable(i)) { copy_to_table(ptr, gammas, i); rgb[i].fOffset = offset; rgb[i].fCount = gammas->tableSize(i); offset += rgb[i].fCount * sizeof(float); ptr += rgb[i].fCount; continue; } if (gammas->isNamed(i)) { SkAssertResult(named_to_parametric(&fn, gammas->data(i).fNamed)); } else if (gammas->isValue(i)) { value_to_parametric(&fn, gammas->data(i).fValue); } else { SkASSERT(gammas->isParametric(i)); fn = gammas->params(i); } fn_to_table(ptr, fn); rgb[i].fOffset = offset; rgb[i].fCount = kDefaultTableSize; offset += kDefaultTableSize * sizeof(float); ptr += kDefaultTableSize; } tables->fRed = rgb[0]; tables->fGreen = rgb[1]; tables->fBlue = rgb[2]; return true; } /////////////////////////////////////////////////////////////////////////////////////////////////// static constexpr char kDescriptionTagBodyPrefix[12] = { 'G', 'o', 'o', 'g', 'l', 'e', '/', 'S', 'k', 'i', 'a' , '/'}; static constexpr size_t kICCDescriptionTagSize = 44; static_assert(kICCDescriptionTagSize == sizeof(kDescriptionTagBodyPrefix) + 2 * sizeof(SkMD5::Digest), ""); static constexpr size_t kDescriptionTagBodySize = kICCDescriptionTagSize * 2; // ascii->utf16be static_assert(SkIsAlign4(kDescriptionTagBodySize), "Description must be aligned to 4-bytes."); static constexpr uint32_t kDescriptionTagHeader[7] { SkEndian_SwapBE32(kTAG_TextType), // Type signature 0, // Reserved SkEndian_SwapBE32(1), // Number of records SkEndian_SwapBE32(12), // Record size (must be 12) SkEndian_SwapBE32(SkSetFourByteTag('e', 'n', 'U', 'S')), // English USA SkEndian_SwapBE32(kDescriptionTagBodySize), // Length of string SkEndian_SwapBE32(28), // Offset of string }; static constexpr uint32_t kWhitePointTag[5] { SkEndian_SwapBE32(kXYZ_PCSSpace), 0, SkEndian_SwapBE32(0x0000f6d6), // X = 0.96420 (D50) SkEndian_SwapBE32(0x00010000), // Y = 1.00000 (D50) SkEndian_SwapBE32(0x0000d32d), // Z = 0.82491 (D50) }; // Google Inc. 2016 (UTF-16) static constexpr uint8_t kCopyrightTagBody[] = { 0x00, 0x47, 0x00, 0x6f, 0x00, 0x6f, 0x00, 0x67, 0x00, 0x6c, 0x00, 0x65, 0x00, 0x20, 0x00, 0x49, 0x00, 0x6e, 0x00, 0x63, 0x00, 0x2e, 0x00, 0x20, 0x00, 0x32, 0x00, 0x30, 0x00, 0x31, 0x00, 0x36, }; static_assert(SkIsAlign4(sizeof(kCopyrightTagBody)), "Copyright must be aligned to 4-bytes."); static constexpr uint32_t kCopyrightTagHeader[7] { SkEndian_SwapBE32(kTAG_TextType), // Type signature 0, // Reserved SkEndian_SwapBE32(1), // Number of records SkEndian_SwapBE32(12), // Record size (must be 12) SkEndian_SwapBE32(SkSetFourByteTag('e', 'n', 'U', 'S')), // English USA SkEndian_SwapBE32(sizeof(kCopyrightTagBody)), // Length of string SkEndian_SwapBE32(28), // Offset of string }; // We will write a profile with the minimum nine required tags. static constexpr uint32_t kICCNumEntries = 9; static constexpr uint32_t kTAG_desc = SkSetFourByteTag('d', 'e', 's', 'c'); static constexpr uint32_t kTAG_desc_Bytes = sizeof(kDescriptionTagHeader) + kDescriptionTagBodySize; static constexpr uint32_t kTAG_desc_Offset = kICCHeaderSize + kICCNumEntries * kICCTagTableEntrySize; static constexpr uint32_t kTAG_XYZ_Bytes = 20; static constexpr uint32_t kTAG_rXYZ_Offset = kTAG_desc_Offset + kTAG_desc_Bytes; static constexpr uint32_t kTAG_gXYZ_Offset = kTAG_rXYZ_Offset + kTAG_XYZ_Bytes; static constexpr uint32_t kTAG_bXYZ_Offset = kTAG_gXYZ_Offset + kTAG_XYZ_Bytes; static constexpr uint32_t kTAG_TRC_Bytes = 40; static constexpr uint32_t kTAG_rTRC_Offset = kTAG_bXYZ_Offset + kTAG_XYZ_Bytes; static constexpr uint32_t kTAG_gTRC_Offset = kTAG_rTRC_Offset; static constexpr uint32_t kTAG_bTRC_Offset = kTAG_rTRC_Offset; static constexpr uint32_t kTAG_wtpt = SkSetFourByteTag('w', 't', 'p', 't'); static constexpr uint32_t kTAG_wtpt_Offset = kTAG_bTRC_Offset + kTAG_TRC_Bytes; static constexpr uint32_t kTAG_cprt = SkSetFourByteTag('c', 'p', 'r', 't'); static constexpr uint32_t kTAG_cprt_Bytes = sizeof(kCopyrightTagHeader) + sizeof(kCopyrightTagBody); static constexpr uint32_t kTAG_cprt_Offset = kTAG_wtpt_Offset + kTAG_XYZ_Bytes; static constexpr uint32_t kICCProfileSize = kTAG_cprt_Offset + kTAG_cprt_Bytes; static constexpr uint32_t kICCHeader[kICCHeaderSize / 4] { SkEndian_SwapBE32(kICCProfileSize), // Size of the profile 0, // Preferred CMM type (ignored) SkEndian_SwapBE32(0x02100000), // Version 2.1 SkEndian_SwapBE32(kDisplay_Profile), // Display device profile SkEndian_SwapBE32(kRGB_ColorSpace), // RGB input color space SkEndian_SwapBE32(kXYZ_PCSSpace), // XYZ profile connection space 0, 0, 0, // Date and time (ignored) SkEndian_SwapBE32(kACSP_Signature), // Profile signature 0, // Platform target (ignored) 0x00000000, // Flags: not embedded, can be used independently 0, // Device manufacturer (ignored) 0, // Device model (ignored) 0, 0, // Device attributes (ignored) SkEndian_SwapBE32(1), // Relative colorimetric rendering intent SkEndian_SwapBE32(0x0000f6d6), // D50 standard illuminant (X) SkEndian_SwapBE32(0x00010000), // D50 standard illuminant (Y) SkEndian_SwapBE32(0x0000d32d), // D50 standard illuminant (Z) 0, // Profile creator (ignored) 0, 0, 0, 0, // Profile id checksum (ignored) 0, 0, 0, 0, 0, 0, 0, // Reserved (ignored) SkEndian_SwapBE32(kICCNumEntries), // Number of tags }; static constexpr uint32_t kICCTagTable[3 * kICCNumEntries] { // Profile description SkEndian_SwapBE32(kTAG_desc), SkEndian_SwapBE32(kTAG_desc_Offset), SkEndian_SwapBE32(kTAG_desc_Bytes), // rXYZ SkEndian_SwapBE32(kTAG_rXYZ), SkEndian_SwapBE32(kTAG_rXYZ_Offset), SkEndian_SwapBE32(kTAG_XYZ_Bytes), // gXYZ SkEndian_SwapBE32(kTAG_gXYZ), SkEndian_SwapBE32(kTAG_gXYZ_Offset), SkEndian_SwapBE32(kTAG_XYZ_Bytes), // bXYZ SkEndian_SwapBE32(kTAG_bXYZ), SkEndian_SwapBE32(kTAG_bXYZ_Offset), SkEndian_SwapBE32(kTAG_XYZ_Bytes), // rTRC SkEndian_SwapBE32(kTAG_rTRC), SkEndian_SwapBE32(kTAG_rTRC_Offset), SkEndian_SwapBE32(kTAG_TRC_Bytes), // gTRC SkEndian_SwapBE32(kTAG_gTRC), SkEndian_SwapBE32(kTAG_gTRC_Offset), SkEndian_SwapBE32(kTAG_TRC_Bytes), // bTRC SkEndian_SwapBE32(kTAG_bTRC), SkEndian_SwapBE32(kTAG_bTRC_Offset), SkEndian_SwapBE32(kTAG_TRC_Bytes), // White point SkEndian_SwapBE32(kTAG_wtpt), SkEndian_SwapBE32(kTAG_wtpt_Offset), SkEndian_SwapBE32(kTAG_XYZ_Bytes), // Copyright SkEndian_SwapBE32(kTAG_cprt), SkEndian_SwapBE32(kTAG_cprt_Offset), SkEndian_SwapBE32(kTAG_cprt_Bytes), }; // This is like SkFloatToFixed, but rounds to nearest, preserving as much accuracy as possible // when going float -> fixed -> float (it has the same accuracy when going fixed -> float -> fixed). // The use of double is necessary to accomodate the full potential 32-bit mantissa of the 16.16 // SkFixed value, and so avoiding rounding problems with float. Also, see the comment in SkFixed.h. static SkFixed float_round_to_fixed(float x) { return sk_float_saturate2int((float)floor((double)x * SK_Fixed1 + 0.5)); } static void write_xyz_tag(uint32_t* ptr, const SkMatrix44& toXYZ, int col) { ptr[0] = SkEndian_SwapBE32(kXYZ_PCSSpace); ptr[1] = 0; ptr[2] = SkEndian_SwapBE32(float_round_to_fixed(toXYZ.getFloat(0, col))); ptr[3] = SkEndian_SwapBE32(float_round_to_fixed(toXYZ.getFloat(1, col))); ptr[4] = SkEndian_SwapBE32(float_round_to_fixed(toXYZ.getFloat(2, col))); } static void write_trc_tag(uint32_t* ptr, const SkColorSpaceTransferFn& fn) { ptr[0] = SkEndian_SwapBE32(kTAG_ParaCurveType); ptr[1] = 0; ptr[2] = (uint32_t) (SkEndian_SwapBE16(kGABCDEF_ParaCurveType)); ptr[3] = SkEndian_SwapBE32(float_round_to_fixed(fn.fG)); ptr[4] = SkEndian_SwapBE32(float_round_to_fixed(fn.fA)); ptr[5] = SkEndian_SwapBE32(float_round_to_fixed(fn.fB)); ptr[6] = SkEndian_SwapBE32(float_round_to_fixed(fn.fC)); ptr[7] = SkEndian_SwapBE32(float_round_to_fixed(fn.fD)); ptr[8] = SkEndian_SwapBE32(float_round_to_fixed(fn.fE)); ptr[9] = SkEndian_SwapBE32(float_round_to_fixed(fn.fF)); } static bool is_3x3(const SkMatrix44& toXYZD50) { return 0.0f == toXYZD50.get(3, 0) && 0.0f == toXYZD50.get(3, 1) && 0.0f == toXYZD50.get(3, 2) && 0.0f == toXYZD50.get(0, 3) && 0.0f == toXYZD50.get(1, 3) && 0.0f == toXYZD50.get(2, 3) && 1.0f == toXYZD50.get(3, 3); } static bool nearly_equal(float x, float y) { // A note on why I chose this tolerance: transfer_fn_almost_equal() uses a // tolerance of 0.001f, which doesn't seem to be enough to distinguish // between similar transfer functions, for example: gamma2.2 and sRGB. // // If the tolerance is 0.0f, then this we can't distinguish between two // different encodings of what is clearly the same colorspace. Some // experimentation with example files lead to this number: static constexpr float kTolerance = 1.0f / (1 << 11); return ::fabsf(x - y) <= kTolerance; } static bool nearly_equal(const SkColorSpaceTransferFn& u, const SkColorSpaceTransferFn& v) { return nearly_equal(u.fG, v.fG) && nearly_equal(u.fA, v.fA) && nearly_equal(u.fB, v.fB) && nearly_equal(u.fC, v.fC) && nearly_equal(u.fD, v.fD) && nearly_equal(u.fE, v.fE) && nearly_equal(u.fF, v.fF); } static bool nearly_equal(const SkMatrix44& toXYZD50, const float standard[9]) { return nearly_equal(toXYZD50.getFloat(0, 0), standard[0]) && nearly_equal(toXYZD50.getFloat(0, 1), standard[1]) && nearly_equal(toXYZD50.getFloat(0, 2), standard[2]) && nearly_equal(toXYZD50.getFloat(1, 0), standard[3]) && nearly_equal(toXYZD50.getFloat(1, 1), standard[4]) && nearly_equal(toXYZD50.getFloat(1, 2), standard[5]) && nearly_equal(toXYZD50.getFloat(2, 0), standard[6]) && nearly_equal(toXYZD50.getFloat(2, 1), standard[7]) && nearly_equal(toXYZD50.getFloat(2, 2), standard[8]) && nearly_equal(toXYZD50.getFloat(0, 3), 0.0f) && nearly_equal(toXYZD50.getFloat(1, 3), 0.0f) && nearly_equal(toXYZD50.getFloat(2, 3), 0.0f) && nearly_equal(toXYZD50.getFloat(3, 0), 0.0f) && nearly_equal(toXYZD50.getFloat(3, 1), 0.0f) && nearly_equal(toXYZD50.getFloat(3, 2), 0.0f) && nearly_equal(toXYZD50.getFloat(3, 3), 1.0f); } // Return nullptr if the color profile doen't have a special name. const char* get_color_profile_description(const SkColorSpaceTransferFn& fn, const SkMatrix44& toXYZD50) { bool srgb_xfer = nearly_equal(fn, gSRGB_TransferFn); bool srgb_gamut = nearly_equal(toXYZD50, gSRGB_toXYZD50); if (srgb_xfer && srgb_gamut) { return "sRGB"; } bool line_xfer = nearly_equal(fn, gLinear_TransferFn); if (line_xfer && srgb_gamut) { return "Linear Transfer with sRGB Gamut"; } bool twoDotTwo = nearly_equal(fn, g2Dot2_TransferFn); if (twoDotTwo && srgb_gamut) { return "2.2 Transfer with sRGB Gamut"; } if (twoDotTwo && nearly_equal(toXYZD50, gAdobeRGB_toXYZD50)) { return "AdobeRGB"; } bool dcip3_gamut = nearly_equal(toXYZD50, gDCIP3_toXYZD50); if (srgb_xfer || line_xfer) { if (srgb_xfer && dcip3_gamut) { return "sRGB Transfer with DCI-P3 Gamut"; } if (line_xfer && dcip3_gamut) { return "Linear Transfer with DCI-P3 Gamut"; } bool rec2020 = nearly_equal(toXYZD50, gRec2020_toXYZD50); if (srgb_xfer && rec2020) { return "sRGB Transfer with Rec-BT-2020 Gamut"; } if (line_xfer && rec2020) { return "Linear Transfer with Rec-BT-2020 Gamut"; } } if (dcip3_gamut && nearly_equal(fn, gDCIP3_TransferFn)) { return "DCI-P3"; } return nullptr; } static void get_color_profile_tag(char dst[kICCDescriptionTagSize], const SkColorSpaceTransferFn& fn, const SkMatrix44& toXYZD50) { SkASSERT(dst); if (const char* description = get_color_profile_description(fn, toXYZD50)) { SkASSERT(strlen(description) < kICCDescriptionTagSize); strncpy(dst, description, kICCDescriptionTagSize); // "If the length of src is less than n, strncpy() writes additional // null bytes to dest to ensure that a total of n bytes are written." } else { strncpy(dst, kDescriptionTagBodyPrefix, sizeof(kDescriptionTagBodyPrefix)); SkMD5 md5; for (int i = 0; i < 3; ++i) { for (int j = 0; j < 3; ++j) { float value = toXYZD50.getFloat(i,j); md5.write(&value, sizeof(value)); } } static_assert(sizeof(fn) == sizeof(float) * 7, "packed"); md5.write(&fn, sizeof(fn)); SkMD5::Digest digest; md5.finish(digest); char* ptr = dst + sizeof(kDescriptionTagBodyPrefix); for (unsigned i = 0; i < sizeof(SkMD5::Digest); ++i) { uint8_t byte = digest.data[i]; *ptr++ = SkHexadecimalDigits::gUpper[byte >> 4]; *ptr++ = SkHexadecimalDigits::gUpper[byte & 0xF]; } SkASSERT(ptr == dst + kICCDescriptionTagSize); } } SkString SkICCGetColorProfileTag(const SkColorSpaceTransferFn& fn, const SkMatrix44& toXYZD50) { char tag[kICCDescriptionTagSize]; get_color_profile_tag(tag, fn, toXYZD50); size_t len = kICCDescriptionTagSize; while (len > 0 && tag[len - 1] == '\0') { --len; // tag is padded out with zeros } SkASSERT(len != 0); return SkString(tag, len); } // returns pointer just beyond where we just wrote. static uint8_t* string_copy_ascii_to_utf16be(uint8_t* dst, const char* src, size_t count) { while (count-- > 0) { *dst++ = 0; *dst++ = (uint8_t)(*src++); } return dst; } sk_sp<SkData> SkICC::WriteToICC(const SkColorSpaceTransferFn& fn, const SkMatrix44& toXYZD50) { if (!is_3x3(toXYZD50) || !is_valid_transfer_fn(fn)) { return nullptr; } SkAutoMalloc profile(kICCProfileSize); uint8_t* ptr = (uint8_t*) profile.get(); // Write profile header memcpy(ptr, kICCHeader, sizeof(kICCHeader)); ptr += sizeof(kICCHeader); // Write tag table memcpy(ptr, kICCTagTable, sizeof(kICCTagTable)); ptr += sizeof(kICCTagTable); // Write profile description tag memcpy(ptr, kDescriptionTagHeader, sizeof(kDescriptionTagHeader)); ptr += sizeof(kDescriptionTagHeader); { char colorProfileTag[kICCDescriptionTagSize]; get_color_profile_tag(colorProfileTag, fn, toXYZD50); ptr = string_copy_ascii_to_utf16be(ptr, colorProfileTag, kICCDescriptionTagSize); } // Write XYZ tags write_xyz_tag((uint32_t*) ptr, toXYZD50, 0); ptr += kTAG_XYZ_Bytes; write_xyz_tag((uint32_t*) ptr, toXYZD50, 1); ptr += kTAG_XYZ_Bytes; write_xyz_tag((uint32_t*) ptr, toXYZD50, 2); ptr += kTAG_XYZ_Bytes; // Write TRC tag write_trc_tag((uint32_t*) ptr, fn); ptr += kTAG_TRC_Bytes; // Write white point tag (must be D50) memcpy(ptr, kWhitePointTag, sizeof(kWhitePointTag)); ptr += sizeof(kWhitePointTag); // Write copyright tag memcpy(ptr, kCopyrightTagHeader, sizeof(kCopyrightTagHeader)); ptr += sizeof(kCopyrightTagHeader); memcpy(ptr, kCopyrightTagBody, sizeof(kCopyrightTagBody)); ptr += sizeof(kCopyrightTagBody); SkASSERT(kICCProfileSize == ptr - (uint8_t*) profile.get()); return SkData::MakeFromMalloc(profile.release(), kICCProfileSize); }